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SUMMARY

Preserving Order Observers provide an estimation that is always above or below the true variable and, in
the absence of uncertainties/perturbations, the estimation converges asymptotically to the true value of the
variable. In this paper we propose a novel methodology to design preserving order observers for a class
of nonlinear systems in the nominal case or when perturbations/uncertainties are present. This objective
is achieved by combining two important systemic properties: dissipativity and cooperativity. Dissipativity
is used to guarantee the convergence of the estimation error dynamics, while cooperativity of the error
dynamics assures the order preserving properties of the observer. The use of dissipativity for observer
design offers a big flexibility in the class of nonlinearities that can be considered while keeping the design
simple: it leads in many situations to the solution of a Linear Matrix Inequality (LMI). Cooperativity of the
observer leads to a LMI. When both properties are considered simultaneously the design of the observer
can be reduced, in most cases, to the solution of both a Bilinear Matrix Inequality (BMI) and a Linear
Matrix Inequality (LMI). Since a couple of preserving order observers, one above and one below, provide
an interval observer, the proposed methodology unifies several interval observers design methods. The
design methodology has been validated experimentally in a three-tanks system, and it has also been tested
numerically and compared to an example from the literature. Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Observers provide a state variables estimation which converges asymptotically to their true values,
at least when the plant model is perfectly known and/or no unknown disturbances are acting on the
system. One drawback for certain applications is the fact that during the time span of convergence
it is not possible to trust in the estimation given by the observer. Decisions taken on the basis of
such estimation can lead to bad behavior in control (recall the use of saturating functions to avoid
the destabilizing effect in output feedback), or to wrong decisions in failure detection.
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2 J. D. AVILÉS AND J. A. MORENO

This situation is even worse when (non vanishing) uncertainties and/or perturbations are present.
Since in this case it is not possible to construct a continuous observer without error, an alternative
in many applications would be to have an estimation of a state variables that is always above or
below the true value. This would allow, for example, to send an alarm signal when the temperature
of a nuclear reactor is about to reach the maximal critical value before it really reaches it, if the
estimated temperature would be guaranteed above the true temperature. Such behavior can be
obtained by a Preserving Order Observer, defined as an observer whose estimates always stay above
or below the true state trajectory and, in the absence of uncertainites/perturbations, the estimation
error converges asymptotically to zero. Preserving order (or monotone) systems have very important
properties, and they have been studied since several decades in mathematics and control [2, 14], of
which Cooperative systems build an important subclass. Although monotone systems have found a
growing interest in modeling and control, relatively few works on its use for observation purposes
have appeared.

Interval observers, which consist of a couple of preserving order observers, one giving an upper
and the other a lower estimation of the state, have been proposed in the literature to provide
guaranteed bounds at any instant of time for the states of an uncertain dynamical system. The first
application of the preserving order observers appeared in [12, 25], where interval observers are
introduced and applied to a class of nonlinear systems with uncertainties. They have been mainly
applied to the estimation of parameters or non measurable variables in biological systems, for which
observation issues are very challenging due to the limited availability of on-line sensors and the
uncertainties related to the model dynamics. Experimental validation of Interval Observers has been
also reported in [1] for highly uncertain bioreactors. A combination of interval observers and the so
called asymptotic observers [5, 9, 6] is proposed in [26], where the state observation for bioprocesses
under uncertain process parameters and/or process inputs is solved, without requiring the knowledge
of the process kinetics.

One interesting feature of interval observers is that they allow the comparison of the estimates of
several interval observers: the best upper bound is the lowest of the upper bounds, and vice versa for
the lower bounds. This has lead to the development of bundles of interval observers [6, 19], which
consist of several interval observers running in parallel and the best estimate is taken at each time
instant. In these bundles some estimates can be unstable. In this case the preserving order observers
are called framers, since they do not have any stability properties. Recently in [20] a robust interval
observer to estimate the unknown variables of uncertain chaotic systems is presented.

Since cooperativity is a coordinate dependent property, it is possible to use coordinate
transformations to obtain interval observers in appropriate coordinates. This idea has been used
recently in [17, 18] to show that it is possible to design an exponentially convergent interval observer
for any Linear Time Invariant System, with additive perturbations, by using a linear time-varying
coordinate transformation.

The objective of this paper is to pursue the line of research initiated in [12] (see also [19, 20]),
for designing interval observers in the original coordinates of the system. The main idea is to merge
the dissipative observer design methodology, introduced by one of the authors several years ago
[21, 22, 23, 27], with the basic idea of making the observer error system a cooperative one (see
[4]), so that the observer preserves the order and converges to the true values, in the nominal case,
i.e. in the absence of perturbations or uncertainties. For the perturbed case, the convergence will
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PRESERVING ORDER OBSERVER 3

be weakened to the practical one: the observation error is Input-to-State Stable with respect to the
perturbing signal. Moreover, the estimation error is required to be cooperative with respect to the
perturbation. One of the advantages of using the dissipative observer design method resides in the
fact that it is very flexible and unifies several observer design methods known to date, as for example
the High-Gain Observer or the Circle-Criterion Observer design methods [21, 22, 23, 27].

Thus we consider a class of nonlinear systems, in absence and in presence of perturbations, for
which dissipative observers can be designed, and a preserving order property will be imposed to
render the estimation error of the observer cooperative. These systems are an extension of those
proposed in [12], where interval observers were introduced. A first step consists in taking the error
dynamics and to decompose it into a linear time invariant subsystem and a nonlinear time varying
feedback. If the nonlinearity is dissipative with respect to a quadratic supply rate, the linear part must
be designed to be dissipative with respect to a related supply rate, to assure exponential stability of
the closed loop [21, 22, 23, 27]. Likewise, if the observation error dynamics is a cooperative system
(with respect to the uncertainties/perturbations in case they exist) then the trajectories of the error
are assured to preserve the order and therefore the observer estimate dynamically upper or lower
bounds for the states, depending on the order of the initial error. Therefore, in a second step the
estimation error will be made cooperative. Thus, preserving order observers for nonlinear systems
fulfill the two characteristics: observers preserve the order and the error estimation converges to
zero in the absence of uncertainties/perturbations, or the error will be ultimately bounded for the
perturbed case. These estimators were defined as cooperative observers in [4]. To build an interval
observer two preserving order observers will be run in parallel: one provides an upper while the
other a lower estimation of the states. The design of these observers can be reduced, in most cases,
to a linear matrix inequality (LMI) and a bilinear matrix inequality (BMI), which are standard tools
in control theory. The performance of the preserving order observers has been tested in several
numerical simulations.

2. PRELIMINARIES

In this work two system properties will be used for the design of preserving order observers:
i) cooperativity is an order preserving property [28, 2, 14], and it will be fundamental for the
interval observers, and ii) dissipativity [8, 31, 32] (see also [15] and [21]) will be used to assure
the convergence properties of the estimation error. Some relevant results in these fields will be
recalled here.

2.1. Cooperative Systems

The symbol � represents a partial order in a space of vectors or matrices. For vectors
x, y ∈ Rn, x � y ⇔ xi − yi ≥ 0,∀ i ∈ {1, . . . , n}, i.e. each component of x is greater or equal
to the corresponding component of y. For matrices M,N ∈ Rn×m, M � N ⇔Mij −Nij ≥
0, , ∀ i, j ∈ {1, . . . , n}. In particular, non negative vectors or matrices satisfy, x � 0⇔ xi ≥
0, ∀ i ∈ {1, . . . , n} or M � 0⇔Mij ≥ 0, ∀ i, j ∈ {1, . . . , n}, respectively.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
Prepared using rncauth.cls DOI: 10.1002/rnc



4 J. D. AVILÉS AND J. A. MORENO

Cooperative systems [2, 14], which are a special class of monotone systems, are those whose state
and output trajectories preserve the partial order at every time, when the input signals (if they are
present) and the initial states are (partially) ordered.

Definition 1
Consider a nonlinear system

ΣNL

{
ẋ = F (t, x, u) , x(0) = x0

y = H (t, x, u) ,
(1)

where x ∈ Rn is the state, u ∈ Rm is the input, and y ∈ Rp is the output of the system. F is a
smooth vector field and H is a smooth nonlinear function, both depending on the variables (t, x, u).
We will assume that the system is complete, i.e. the trajectories exist for all positive times t ≥ t0.
ΣNL is cooperative if whenever the initial states and the inputs are ordered, i.e.

x10 � x20, u1 (t) � u2 (t) , ∀t ≥ 0

it follows that the state and the output trajectories are ordered too, i.e.

x
(
t, t0, x

1
0, u

1 (t)
)
� x

(
t, t0, x

2
0, u

2 (t)
)
,

H ◦ x
(
t, t0, x

1
0, u

1 (t)
)
� H ◦ x

(
t, t0, x

2
0, u

2 (t)
)
,∀t ≥ t0 .

Note that when no inputs and outputs are present, the previous definition reduces to the classical
one, in which ordered initial states implies ordered state trajectories [28]. Smooth cooperative
systems can be characterized in a simple way.

Proposition 2 ([2])
The system ΣNL in (1) is cooperative if and only if all the following conditions are satisfied:

(C1)
[
∂Fi
∂xj

]
M
� 0⇔ ∂Fi

∂xj
≥ 0, ∀i 6= j ; (C2)

[
∂Fi
∂uj

]
� 0 ; (C3)

[
∂Hi

∂xj

]
� 0 .

The symbol
M
� 0 represents that

[
∂Fi
∂xj

]
is Metzler, that is, the off-diagonal elements are non

negative. In the classical situation without inputs/outputs cooperativity is equivalent to condition
(C1). Linear cooperative systems are specially easy to characterize:

Proposition 3 ([2])
Consider the linear continuous time system

ΣL :

{
ẋ = Ax+Bu , x (0) = x0

y = Cx ,
(2)

where (x, u, y) ∈ Rn ×Rm ×Rp are the state, the input and the output vectors, respectively. The
system ΣL in (2) is cooperative if and only if,

(C1) A
M
� 0⇔ aij ≥ 0, ∀i 6= j ; (C2) B � 0 ; (C3) C � 0 .
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PRESERVING ORDER OBSERVER 5

We recall that Positivity is a related property to cooperativity. A system is positive if whenever
the input and the initial conditions are non negative the state and output trajectories will be also non
negative, i.e. x0 � 0 and u (t) � 0 implies that x (t, t0, x0, u (t)) � 0 and H ◦ x (t, t0, x0, u (t)) � 0.
For Linear Systems cooperativity and positivity are equivalent properties, but this is not the case for
nonlinear systems.

2.2. Dissipative Systems

As dissipativity will play a fundamental role in the convergence of the observers, some results (see
[31, 32, 8, 21, 22, 23, 27]) are recalled.

Consider a (smooth) nonlinear system ΣNL in (1), where x ∈ Rn, u ∈ Rm, and y ∈ Rp the state,
the input and the output vectors, respectively. Assume that F (t, 0, 0) = 0 and H(t, 0, 0) = 0. A
function w (y, u) : Rm ×Rp → R, such that w (0, 0) = 0 is called a supply rate for ΣNL if w (y, u)

is locally integrable for all input-output pairs of ΣNL. ΣNL is said to be State Strictly Dissipative
with respect to the supply rate w (y, u) ( or for short SSD {w}) if there exists a continuously
differentiable, positive-definite function V : Rn → R, with V (0) = 0, called a storage function, and
a constant ε > 0, such that along any trajectory of the system the dissipative inequality

V̇ (x(t)) ≤ −εV (x(t)) + w(y(t), u(t)) (3)

is satisfied.
We will consider only quadratic supply rates (see [31, 32]):

w (y, u) =

[
y

u

]T [
Q S

ST R

][
y

u

]
(4)

where Q ∈ Rp×p, S ∈ Rp×m, R ∈ Rm×m and Q, R are symmetric. In this case the system is said
to be (Q,S,R)-SSD. In the case of LTI systems in (2) with quadratic supply rates in (4) there is no
loss of generality if the storage function is restricted to be a positive-definite quadratic form

V = xTPx, P = PT > 0. (5)

This can be characterized by means of a LMI:

Lemma 4
The system ΣL in (2) is state strictly dissipative (SSD) with respect to the supply rate w (y, u) in
(4), or for short (Q,S,R)-SSD, iff there exist a matrix P = PT > 0 and a constant ε > 0 such that

[
PA+ATP + εP PB

BTP 0

]
−

[
CTQC CTS

STC R

]
≤ 0 . (6)

A time-varing nonlinearity f : [0,∞)×Rm → Rp (see [15, 21])

y = f (t, u) (7)
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6 J. D. AVILÉS AND J. A. MORENO

piece-wise continuous in t and locally Lipschitz in u, such that f (t, 0) = 0, is said to be dissipative
with respect to the supply rate w (y, u) in (4), or for short (Q,S,R)-D, if for every t ≥ 0 and u ∈ Rm,

w (y, u) = w (f (t, u) , u) ≥ 0 . (8)

We note that the classical sector conditions [15] for square nonlinearities, i.e., m = p, can be
represented in this form:

1. If f ∈ [K1,K2], i.e., (y −K1u)
T

(K2u− y) ≥ 0, then it is (Q,S,R)-D with: (Q,S,R) =(
−I, 12 (K1 +K2) ,− 1

2

(
KT

1 K2 +KT
2 K1

))
.

2. If f ∈ [K1,∞], i.e., (y −K1u)
T
u ≥ 0, then it is (Q,S,R)-D with: (Q,S,R) =(

0, 12I,−
1
2

(
K1 +KT

1

))
.

A multivariable nonlinearity f can be (Qi, Si, Ri)-D for several triples (Qi, Si, Ri), i.e.,
ωi(f(t, u), u) = fTQif + 2fTSiu+ uTRiu ≥ 0, for i = 1, 2, ..., µ [21]. In this case, it is easy to
see that f is

∑µ
i=1 θi(Qi, Si, Ri)-D for every θi ≥ 0, i.e., f is dissipative with respect to the supply

rate ωθ(f, u) =
∑µ

i=1 θiωi(f, u). Note that the inequality (8) provides a characterization of the
nonlinearity f , since it means that the graph of f is contained in the subspace corresponding to
the non negative eigenvalues of the quadratic form (Q,S,R). If the quadratic form (Q,S,R) is
positive semidefinite, then inequality (8) does not provide any information about the nonlinearity f
and it is therefore of no use in what follows.

The following lemma, which is a generalization of the circle criterion of absolute stability for non
square systems, shows that the negative feedback interconnection of a LTI dissipative system with
a (complementary) dissipative static nonlinearity is internally exponentially stable:

Lemma 5 ([21, 22])
Consider the feedback interconnection

ΞS :





ẋ = Ax+Bu, x(0) = x0

y = Cx

u = −f (t, y) .

(9)

If there exist (Q, S, R) such that f (t, y) is (Q,S,R)-D, and the linear subsystem of ΞS is(
−R,ST ,−Q

)
-SSD, then the equilibrium point x = 0 of ΞS is globally exponentially stable, , i.e.

there exist constants k > 0 and % > 0 such that for all x0

‖x (t)‖ ≤ k ‖x0‖ exp(−%t) . (10)

Now we consider system ΞS with external additive perturbations, i.e.

ΞP :





ẋ = Ax+Bu+ b(t), x(0) = x0

y = Cx

u = −f (t, y)

(11)

where b (t) is an input signal. Trajectories of the system will not converge to the origin x = 0, but if
the input signal b(t) is bounded, the trajectories will converge to a ball centered at the origin, with
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PRESERVING ORDER OBSERVER 7

a radius depending on the bound of b, and they will remain there for all future times. This is the
content of the Input-to-State-Stability property:

Definition 6 ([15])
System ΞP is said to be Input-to-State Stable (ISS) with respect to b (t) if there exist a class KL
function β, a class K function γ such that for any initial state x(t0) and any bounded input b(t), the
solution x(t) exists for all future times t ≥ t0 and satisfies

‖x (t)‖ ≤ β(‖x(t0)‖ , t− t0) + γ

(
sup

t0≤τ≤t
‖b(τ)‖

)

Lemma 7
Consider the system ΞP and suppose that the conditions of Lemma 5 are satisfied. Under these
conditions system ΞP is ISS with respect to b.

Proof
We give the proofs of Lemmata 5 and 7. By hypothesis (4) is satisfied with

(
−R,ST ,−Q

)
. Take

V (x) = xTPx as Lyapunov-like function candidate for the closed loop system. The time derivative
of V (x) along the solutions of ΞP is V̇ = (Ax+Bu)

T
Px+ xTP (Ax+Bu) + 2xTPb(t), or,

because of (6) and (11)

V̇ =

[
x

u

]T [
PA+ATP PB

BTP 0

][
x

u

]
+ 2xTPb(t)

≤

[
x

−f

]T [
−CTRC CTST

SC −Q

][
x

−f

]
− εxTPx+ 2xTPb(t)

= −

[
f

y

]T [
Q S

ST R

][
f

y

]
− εV (x) + 2xTPb(t) ≤ −εV (x) + 2xTPb(t) ,

since f is (Q,S,R)-dissipative. When the perturbation vanishes, i.e. b(t) = 0, then V̇ ≤ −εV and,
using the comparison Lemma [15], it follows that

V (x (t)) ≤ V (x(0)) e−εt .

This means that

λmin (P ) ‖x(t)‖22 ≤ xT (t)Px(t) ≤ xT (0)Px(0)e−εt ≤ λmax (P ) ‖x(0)‖22e−εt ,

where λmin,max(P ) are the smallest and the greatest eigenvalues of P , respectively. Therefore

‖x(t)‖2 ≤

√
λmax (P )

λmin (P )
‖x(0)‖2e−

ε
2 t ,

so that x = 0 is a globally exponential equilibrium point. This finishes the proof of Lemma 5.
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8 J. D. AVILÉS AND J. A. MORENO

When b is different from zero the inequality V̇ ≤ −εV + 2xTPb can be rewritten, for any
θ ∈ (0, 1), as

V̇ (x) ≤ −(1− θ)εV − θεxTPx+ 2xTPb

≤ −(1− θ)εV − θελmax(P )‖x‖22 + 2λmax(P )‖b‖2‖x‖2
≤ −(1− θ)εV + λmax(P )‖x‖2(2‖b‖2 − θε‖x‖2)

≤ −(1− θ)εV, ∀‖x‖2 ≥
2

θε
‖b‖2 .

Applying [15, Theorem 4.19] it follows that ΞP is ISS with respect to b(t).

3. PRESERVING ORDER OBSERVERS

For a preserving order observer the estimated state x̂ (t) is always above (or below) the true state
variable x (t) of the plant, i.e. either x̂ (t) � x (t) or x̂ (t) � x (t).

Definition 8 (Preserving Order Observer)
Consider a nonlinear system

ΣNLP : ẋ = F (t, x, u, w) , y = H (t, x, u) , x(0) = x0 ,

where x ∈ Rn, u ∈ Rm is a known input, y ∈ Rp and w ∈ Rq is an unknown input, representing
uncertainties and/or perturbations acting on the system. F and H are smooth and we will assume
that the system is complete. The dynamical system

ΩNLP : ˙̂x = Φ (t, x̂, u, y, w̄) , x̂(0) = x̂0 ,

is an Upper (Lower) Preserving Order Observer, for system ΣNLP if (i) it is complete. (ii)
The estimation error e (t) = x̂ (t)− x (t) converges globally and asymptotically to zero when the
perturbation is identically zero, i.e. w (t) = 0. (iii) Whenever the initial states of the observer are
greater (smaller) than the initial states of the plant, i.e. x̂0 � x0 (x̂0 � x0), the estimated state
will be greater (smaller) than the state of the plant for all future times and inputs (u,w), i.e.
x̂ (t, t0, x̂0, u, y (t)) � x (t, t0, x0, u, w (t)) or ( x̂ (t, t0, x̂0, u, y (t)) � x (t, t0, x0, u, w (t))).

Although the completeness condition is not strictly necessary, it simplifies the presentation and
it also seems reasonable for physical systems. An interval observer [17, 18] can be obtained with
two preserving order observers: one upper and the other lower bounding the states of the plant. If
we dispense of the convergence condition (ii), then a framer will be obtained.

Condition (ii) in Definition 8 is a convergence condition on the observer, while condition (iii) is a
cooperativity condition on the estimation error. In order to guarantee the convergence of the observer
we will make use of the the dissipativity theory. This idea has been already proposed by one of the
authors [21, 22, 27] to design observers for a class of nonlinear systems. For the same class of
systems we extend the method in order to make the observer not only convergent, but also order
preserving [4]. We consider first the case of systems without perturbations and then a modification

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
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PRESERVING ORDER OBSERVER 9

will be introduced to the observer in order to assure the order preserving property despite of the
perturbation.

3.1. Preserving Order Observers for nonlinear systems: The nominal case

Consider the nonlinear plant (without uncertainties/perturbations)

ΠS :





ẋ = Ax+Gf (σ; t, y, u) + ϕ (t, y, u) ,

σ = Hx, x (0) = x0

y = Cx

(12)

where x ∈ Rn is the state, y ∈ Rq is the measured output, σ ∈ Rr is a (not necessarily measured)
linear function of the state, u ∈ Rp is the input, f (σ; t, y, u) ∈ Rm is a nonlinear function locally
Lipschitz in σ, depending on t and the measured variables u and y, and ϕ is a nonlinear function
locally Lipschitz in (u, y) and piecewise continuous in t. We propose here a full order observer
[21, 22, 27] for ΠS in (12) of the form

ΠO :





˙̂x = Ax̂+ L (ŷ − y) +Gf (σ̂ +N (ŷ − y) ; t, y, u) + ϕ (t, y, u) ,

σ̂ = Hx̂, x̂ (0) = x̂0

ŷ = Cx̂

(13)

where x̂ ∈ Rn is the estimate of x in (12) and the matrices L ∈ Rn×q and N ∈ Rr×q have to
be designed. The state estimation error is defined by e , x̂− x, the output estimation error by
ỹ , ŷ − y, and the functional estimation error by σ̃ , σ̂ − σ. The dynamics of the observation error
are given by

ė = (A+ LC) e+G [f (σ̂ +N (ŷ − y) ; t, y, u)− f (σ; t, y, u)]

ỹ = Ce

σ̃ = He

(14)

with e (0) = e0 = x̂0 − x0. Note that σ̂ +N (ŷ − y) = Hx+He+NCe = σ + (H +NC) e.
Defining z , (H +NC) e = σ̃ +Nỹ, a function of the estimation error e, and the incremental
nonlinearity

φ (z, σ; t, y, u) , f (σ; t, y, u)− f (σ + z; t, y, u) (15)

the dynamics of the error in (14) can be written as

ΠE :





ė = ALe+Gv, e(0) = e0

z = HNe

v = −φ (z, σ; t, y, u) ,

(16)

where AL , A+ LC and HN , H +NC.
The observer ΠO in (13) is an (upper/lower) preserving order observer for ΠS if the estimation

error dynamics ΠE satisfies two properties:

1. The origin e = 0 is a globally asymptotically stable equilibrium point, and
2. The error system ΠE in (16) is cooperative (in the classical sense).

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
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10 J. D. AVILÉS AND J. A. MORENO

The first condition means that x̂ (t)→ x (t) as t→∞. The last condition implies that

if x̂0 � x0 =⇒ x̂ (t) � x (t) , ∀t ≥ 0

if x̂0 � x0 =⇒ x̂ (t) � x (t) , ∀t ≥ 0 ,

i.e. the observer preserves the order, and the estimation is always above or below the true plant
trajectory, depending on the initial condition. Note that the observer is upper and lower preserving
order. In the next paragraphs conditions ensuring these two properties will be given.

3.1.1. Convergence of the observer. The following theorem gives sufficient conditions for
asymptotic stability of the origin of the error dynamics making use of the dissipativity theory:

Theorem 9 ([21, 22, 27])
Suppose that the nonlinearity φ in (15) is (Qi, Si, Ri)-D for some finite set of (non positive
semidefinite) quadratic forms

ωi(φ, z) = φTQiφ+ 2φTSiz + zTRiz ≥ 0, for all σ, for i = 1, 2, ..., µ (17)

Suppose that there exist matrices L, N and a vector θ = (θ1, ..., θµ), θi ≥ 0, such that ΠE in
(16) is

(
−Rθ, STθ ,−Qθ

)
-SSD with (Qθ, Sθ, Rθ) =

∑µ
i=1 θi(Qi, Si, Ri), that is, there exist matrices

P = PT > 0, L and N , a vector θ = (θ1, ..., θµ) � 0 and ε > 0 such that the matrix inequality (MI)

[
PAL +ATLP + εP +HT

NRθHN PG−HT
NS

T
θ

GTP − SθHN Qθ

]
≤ 0 (18)

is satisfied. Under these conditions the observer ΠO in (13) is globally exponentially stable for ΠS .

The proof of the Theorem is based on Lemma 5 (see the proof of Lemma 7). The Dissipative
Design of observers presented in the preceding Theorem 9 is very flexible in the kind of
nonlinearities considered for the system. Moreover, the inclusion of multiple quadratic forms
(Qi, Si, Ri) to characterize this nonlinearity greatly enhances the possibilities of the method. In
particular, several methods for observer design, well known in the literature, are special cases of this
design. As examples we mention the High-Gain Observer design [10], the circle criterion design [3],
the Lipschitz observer design [24], et cetera. For more details we refer the reader to the references
[21, 22, 27].

3.1.2. Cooperativity of the observation error. The observer in (13) designed according to Theorem
9 is convergent, but it does not have any order preserving properties. In order to assure cooperativity,
the error system ΠE in (16) has to be a cooperative system. In accordance to the characterization
given in Proposition 2 this will be the case if the Jacobian matrix of the vector field of ΠE is Metzler,
i.e.

∂

∂e
{ALe−Gφ (z, σ; t, y, u)} = AL +G

∂f (z + σ; t, y, u)

∂z
HN

M
� 0, ∀z, σ, t, y, u .
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PRESERVING ORDER OBSERVER 11

We obtain this last expression noting that from (15) and the equality z = HNe it follows that

−∂φ (z, σ; t, y, u)

∂e
=
∂f (z + σ; t, y, u)

∂e
=
∂f (z + σ; t, y, u)

∂z
HN .

Note that this condition is equivalent to the fact that the matrix

M (z; t, y, u) , AL +GJ (z; t, y, u)HN

M
� 0 , ∀z ∈ Rr, ∀t, y, u (19)

is Metzler everywhere. Here J(z; t, y, u) = ∂f(z;t,y,u)
∂z is the Jacobian matrix of the nonlinearity

of the plant ΠS in (12). The following Theorem provides sufficient conditions for the design of a
preserving order observer for ΠS in absence of uncertainties/perturbations:

Theorem 10
Consider the plant ΠS in (12), and assume that the nonlinearity φ in (15) is (Qi, Si, Ri)-Dissipative
for a finite number of quadratic forms, that is (17) holds. Suppose furthermore that there exist
constant matrices P = PT > 0, L, N , a constant scalar ε > 0, and a vector θ = (θ1, ..., θµ), θi ≥ 0,
such that:

1. The Dissipativity condition, that is the matrix inequality in (18) is satisfied, and

2. M (z; t, y, u)
M
� 0 in (19) is Metzler ∀z ∈ Rr, ∀t, y, u.

Under these conditions the system Π0 in (13) is a globally exponentially convergent upper/lower
preserving order observer for the plant ΠS .

Proof
The Convergence condition 1 is derived from Theorem 9 (see also the Proof of Lemmata 5 and 7).
The cooperativity condition 2 follows from Proposition 2.

Note that the same system Π0 is an upper or a lower preserving order observer, depending if
the initial condition of the observer is above (x̂0 � x0) or below (x̂0 � x0) the initial conditions of
the plant, respectively. Since the initial condition of the plant is unknown, to initialize correctly the
upper (lower) preserving order observer it is necessary to know an upper x+0 (lower x−0 ) bound of
the possible initial conditions of the plant, i.e.

x−0 � x0 � x
+
0 . (20)

Selecting the initial condition of the upper (lower) preserving order observer as x̂0 � x+0 (x̂0 � x−0 )
ensures the correct behavior.

In order to obtain simultaneously a lower and an upper estimate of the state trajectory, it is
necessary to built two preserving order observers and initialize them adequately. This constitutes
an interval observer.

Note that the design of a preserving order observer imposes an additional cooperativity condition
to the usual one of convergence for a standard observer. As a consequence it is expected that: (i)
The class of systems for which a preserving order observer can be designed is a proper subset of the
ones for which a convergent observer exist. (ii) The assignable dynamic properties of a preserving
order observer can be more restricted than those for a simple convergent observer. For example, it is
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12 J. D. AVILÉS AND J. A. MORENO

possible that for a system is possible to design a convergent observer with assignable convergence
dynamics, but that the convergence dynamics of a preserving order observer (if it exists) are strongly
restricted. The study of these issues is an important topic for further research. Note that to design
a preserving order observer it is not necessary that the plant ΠS be cooperative. Finally, the results
of the paper can be easily extended to the class of systems described by ΠS in (12) with system
matrices depending on time or measurable signals y and u as long as the dissipative inequality is
satisfied with constant values for P and ε. The observer matrices L and N can also be time-varying.

3.2. Preserving Order Observers for systems with uncertainties/perturbations

Consider now the plant in (12) on which additive perturbations are acting

ΨS :





ẋ = Ax (t) +Gf (σ; t, y, u) + ϕ (t, y, u) + π (t, x) ,

σ = Hx (t) , x (0) = x0

y = Cx (t) ,

(21)

where π (t, x) ∈ Rn represents unknown exogenous variables or/and system uncertainties. If the
observer Π0 in (13) is used for the plant, then the resulting estimation error dynamics

Πp
E :





ė = ALe+Gv − π (t, x) , e(0) = e0

z = HNe

v = −φ (z, σ; t, y, u) ,

will not converge to zero, if the perturbation is not vanishing. Moreover, since in general π (t, x)

is not an ordered input signal, the error dynamics will not be cooperative, and the estimated states
will not be ordered with respect to the true states of the plant. Due to the presence of unknown
inputs in the plant, it is unlikely to obtain an observer that provides exact estimation of the states. In
general, we will then require the estimation error not to be convergent, but to be bounded when the
uncertainty is bounded, and to converge when the perturbation vanishes. In order to obtain an upper
(lower) preserving order observer it will be assumed that upper (lower) bounds for the perturbation
π(t, x) are known, so that π (t, x) satisfies

π+ (t, y) � π (t, x) � π− (t, y) ,∀t ≥ 0, ∀x, y , (22)

where π+ (t, y) and π− (t, y) are known Lipschitz continuous functions.
Consider an upper ΨO+ (lower ΨO−) estimator for ΨS of the form

ΨO+ :





˙̂x
+

= Ax̂+ +Gf (σ̂+ +N+ (ŷ+ − y)) + L+ (ŷ+ − y) + π+ (t, y) + ϕ(t, y, u)

σ̂ = Hx̂+, x̂+ (0) = x̂+0
ŷ = Cx̂+

(23)

ΨO− :





˙̂x
−

= Ax̂− +G f (σ̂− +N− (ŷ− − y)) + L− (ŷ− − y) + π− (t, y) + ϕ(t, y, u)

σ̂ = Hx̂−, x̂− (0) = x̂−0
ŷ = Cx̂−

(24)
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PRESERVING ORDER OBSERVER 13

where x̂+ (x̂−) is the upper (lower) estimate of x. Matrices L+ ∈ Rn×q, N+ ∈ Rr×q (L− ∈ Rn×q,
N− ∈ Rr×q) have to be designed in order to assure the required convergence and cooperative
properties. Note that in ΨO+ the upper bound and in ΨO− the lower bound of the perturbation (22)
have been introduced. This will allow the error dynamics to be cooperative. Defining the estimation
errors as e+ , x̂+ − x and e− , x− x̂− (and the other variables defined in a similar manner), the
observation error dynamics are given by

ΨE+





ė+ = A+
Le

+ +Gv+ + b+

z+ = H+
Ne

+, e+(0) = e+0 � 0

v+ = −φ+ (z+, σ)

(25)

ΨE−





ė− = A−Le
− +Gv− + b−

z− = H−Ne
−, e−(0) = e−0 � 0

v− = −φ− (z−, σ)

(26)

where A+
L , A+ L+C, H+

N , H +N+C, A−L , A+ L−C, H−N , H +N−C and the incremen-
tal nonlinearities φ+ (z+, σ) y φ− (z−, σ) are defined in a similar form as (15). The uncertainty
errors

b+ , π+ (t, y)− π (t, x) � 0 (27)

b− , π (t, x)− π− (t, y) � 0 (28)

act as inputs on the systems ΨE+ in (25) and ΨE− in (26).
Note that the observer ΨO+ in (23) (ΨO− in (24)) is an upper (lower) preserving order observer

for ΨS if the estimation error dynamics ΨE+ (ΨE−) satisfies two properties:

1. It is ISS with respect to b+ (b−), and
2. The error system ΨE+ (ΨE−) is cooperative with input b+ (b−) and output e+ (e−).

The first condition means that the estimation error e+(t) (e−(t)) will be ultimately bounded by a
bound depending on b+ (b−) and that it will converge to zero if b+(t)→ 0 (b−(t)→ 0) as t→∞.
The latter condition implies that

x̂+0 � x0 =⇒ x̂+ (t) � x (t) ,
(
x0 � x̂−0 =⇒ x (t) � x̂− (t)

)
, ∀t ≥ 0 ,

i.e. the observer preserves the order, and the trajectories of Ψ0+ (Ψ0−) are always above (below) the
true trajectories of the plant, despite of the perturbations.

Note that here, in contrast to the nominal case, the upper (lower) preserving order observer is only
one sided ordered. This means that x̂+0 � x0 ; x̂+ (t) � x (t) (x̂−0 � x0 ; x̂− (t) � x (t)).

The following Theorem states sufficient conditions for the design of a preserving order observer.
We state the result only for the upper preserving order observer ΨO+ , but it is also valid for the
lower preserving order observer ΨO− .

Theorem 11
Consider the perturbed plant ΨS in (21), and assume that the nonlinearity φ+ in (15) is (Qi, Si, Ri)-
Dissipative for a finite number of quadratic forms, that is (17) holds. Suppose furthermore that
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14 J. D. AVILÉS AND J. A. MORENO

there exist constant matrices P+ = P+T > 0, L+, N+, a constant scalar ε+ > 0, and a vector
θ+ = (θ+1 , ..., θ

+
µ ), θ+i ≥ 0, such that:

1. The Dissipativity condition, that is the matrix inequality in (18) is satisfied, and

2. M (z; t, y, u)
M
� 0 in (19) is Metzler ∀z ∈ Rr, ∀t, y, u.

Under these conditions the system ΨO+ in (23) is a globally ISS upper preserving order observer
for the plant ΨS .

Proof
The Convergence condition 1 is derived from Lemma 7. The cooperativity condition 2 follows from
Proposition 2, by noting that the input and the output mappings are for our case the identity, and
therefore its Jacobian matrix is non negative.

Since both φ+ and φ− depend only on the same nonlinearity f it follows that if φ+ is (Qi, Si, Ri)-
D then so is φ−. This also implies that if the conditions of the Theorem 11 are satisfied for ΨO+ ,
they will be also satisfied for ΨO− with the same parameter values, and in particular, with the same
observer matrices L+ = L− and N+ = N−. That means that if it is possible to design an upper
preserving order observer it will be also possible to design a lower preserving order observer, and
vice versa. Moreover, both observers can have (but they do not have to) the same matrices L+ = L−

and N+ = N−.
If both upper Ψ0+ in (23) and lower Ψ0− in (24) preserving order observers are run in parallel, if

there exist known bounds on the initial conditions (20) and on the perturbations (22) of the plant,
and the observers are adequately initialized, then an interval observer is obtained for the perturbed
plant ΨS , so that the next conditions hold:

x̂+0 � x
+
0 � x0 � x

−
0 � x̂

−
0 =⇒ x̂+ (t) � x (t) � x̂− (t) . (29)

Note that Theorem 11 can be seen as a generalization of Theorem 10. In fact, setting π+(t, y) ≡ 0

in the upper Ψ0+ in (23) and π−(t, y) ≡ 0 in the lower Ψ0− in (24) preserving order observers we
obtain an interval observer in the nominal case. Moreover, the set of values for the observer matrices
L andN that satisfy the conditions of Theorems 11 and 10 are the same, since the conditions in these
Theorems do not depend on the perturbation.

4. COMPUTATIONAL ISSUES

The design of preserving order (or interval) observers for the considered class of nonlinear systems,
in the nominal case or in presence of uncertainties/perturbations, is reduced to the solution of two
matrix inequalities (see Theorems 10 and 11):

(i) Convergence requires to find matrices L, N , P = PT > 0, a constant ε > 0 and a vector
θ = (θ1, ..., θµ) � 0 such that the Matrix Inequality (MI) (18) is satisfied.

(ii) Cooperativity requires that matrices L and N are such that the family of matrices M (·)
M
� 0

in (19) is Metzler.

We will discuss some issues on the solution of these inequalities.
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4.1. The Dissipativity Inequality (18)

The nature of the MI in (18) has been studied in [21, 22, 27]. Here we recall some results and provide
some new ones. In general, inequality (18) is nonlinear in the unknowns (L,N, P, ε, θ). However,
under some important conditions, (18) becomes a Linear Matrix Inequality (LMI) feasibility
problem, for which a solution can be effectively found by several algorithms in the literature [11, 7]
and in Matlab.

1. A first observation is that the product εP makes (18) nonlinear in the two unknowns ε and P .
However, the bilinear term εP can be always replaced by the term εI , where I is the identity
matrix, that is linear in ε, without altering the feasibility of the MI in (18). To see this, assume
that there exist ε and P that satisfy (18). The MI (18) can be rewritten as

[
PAL +ATLP + εI +HT

NRθHN PG−HT
NS

T
θ

GTP − SθHN Qθ

]
≤

[
εI − εP 0

0 0

]
. (30)

If ε ≤ λmin (P ) ε, then it follows that the left hand matrix in (30) is negative semidefinite.
Conversely, a similar argument shows that if the left hand matrix in (30) is negative
semidefinite, then there exist an ε > 0 such that MI (18) is fulfilled. So both inequalities are
in fact equivalent. For the further discussion we will assume that in (18) the term εP has been
replaced by the term εI .

2. Further nonlinear terms in (18) are due to the terms SθHN and HT
NRθHN , where bilinear

terms in θ and N appear, but also a quadratic term in N . If N is fixed, as for example for
the High-Gain Observer design, where N = 0 [21, 22], then (18) is an LMI in P, ε, PL, θ.
Note that, once the values of P and PL have been obtained, then the value of L can be easily
calculated from L = P−1(PL), since P is invertible.

3. A further alternative is to fix θ. This is a natural situation when the nonlinearity φ is (Q,S,R)-
Dissipative only for one quadratic form, that is (17) holds with µ = 1. This is always the case
if the nonlinearity f in (12) is scalar, i.e. m = r = 1, or if it is square (i.e. m = r) and the
nonlinearities are decoupled, i.e. f(σ) = [f1(σ1), . . . , fm(σm)]. In these situations multiple
(non trivial) dissipativity conditions for φ are impossible [22, 27]. We consider different
situations:

(a) If Rθ = 0, for example if all Ri = 0, again (18) is an LMI in P, ε, PL,N . In some
situations it is possible to transform a problem with Rθ 6= 0 into one with Rθ = 0 by
a loop transformation (see [27]).

(b) If Rθ > 0, and using Schur’s complement, one can transform inequality (18) into the
equivalent Matrix Inequality



−R−1θ −HN 0

−HT
N PAL +ATLP + εI PG−HT

NS
T
θ

0 GTP − SθHN Qθ


 ≤ 0 , (31)

that is again an LMI in P, ε, PL,N .
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16 J. D. AVILÉS AND J. A. MORENO

(c) If Rθ ≤ 0 a sufficient condition for (18) is the Matrix Inequality

[
PAL +ATLP + εI PG−HT

NS
T
θ

GTP − SθHN Qθ

]
≤ 0 ,

that is an LMI in P, ε, PL,N .

In general, a solution to (18) can be found by using specialized software for nonlinear Matrix
Inequality Problems, e.g. the software PENNON [16]. Alternatively, one can use an efficient LMI
solver, fixing iteratively the matrix N , or the vector θ in cases (3a-3c) above.

4.2. The Cooperativity Inequality (19)

Consider the set J ⊂ Rm×r of all values taken by the Jacobian of the nonlinearity f , i.e.

J =

{
Γ ∈ Rm×r

∣∣Γ = J (z; t, y, u) =
∂f (z; t, y, u)

∂z
,∀z, t, y, u

}
. (32)

Inequality (19) is an LMI in L,N , for every J ∈ J . However, since J is a set with an uncountable
infinite number of points, (19) corresponds to an infinite number of LMIs. This is a difficult task,
and it is of interest to reduce the number of LMIs to be checked to a finite number. In the following
paragraphs it will be shown that it is possible to find a finite number q of points Ωi in Rm×r such

that if inequality (19) is satisfied at all these points, i.e. AL +GΩiHN

M
� 0 ∀i = 1, . . . , q, then it

will be satisfied for all J ∈ J .
The basic idea is very simple. We assume that the set J is bounded. This is the case if the

nonlinearity f (σ; t, y, u) is globally Lipschitz in σ, uniformly in (t, y, u). In this case, it is always
possible to find a polytope that contains J (take for example a hypercube containing J ). Due to the
convexity of inequality (19) it suffices to check it on the vertices of such polytope to conclude that it
is satisfied on the whole set J . Refinement of the polytope, by adding extra vertices while reducing
its size, will provide less conservative conditions.

We will show that if the nonlinearity φ (z;σt, y, u) = f (σ; t, y, u)− f (z + σ; t, y, u), defined
in (15), satisfies a sector condition, i.e. if there exist two constant matrices K1 ∈ Rm×r and
K2 ∈ Rm×r such that for all σ, t, y, u and all z the inequality

[φ (z;σ, t, y, u)−K1z]
T

[K2z − φ (z;σ, t, y, u)] ≥ 0 (33)

is satisfied, then the set of values at which the inequality (19) has to be verified can be considerably
reduced. In fact, we will show that under condition (33) the set J is contained in a convex set Υ,
and that it is only necessary to verify the inequality (19) on the boundary of Υ. This is established
in the following proposition.

Proposition 12
Let z → f(z; t, y, u) : Rr → Rm be a multivariable function, continuous in t, y, u and continuously
differentiable in z. Suppose that φ (z;σ, t, y, u) = f (σ; t, y, u)− f (z + σ; t, y, u) is in the sector
[K1 , K2], i.e. for some constant matrices K1 ∈ Rm×r and K2 ∈ Rm×r (33) is fulfilled. If the
matrices

AL +G∆HN

M
� 0 (34)
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are Metzler for all ∆ ∈ Υf , defined by

Υf =
{

Γ ∈ Rm×r
∣∣ (Γ +K1)

T
(K2 + Γ) = 0

}
, (35)

then condition M(z; t, y, u)
M
� 0 in (19) is satisfied ∀ z ∈ Rr, and all t, y, u.

Proof
The demonstration is given in three parts:

(i) We first show that when the nonlinearity φ belongs to the sector [K1, K2], then J ⊂ Υ, where
the convex set

Υ ,
{

Γ ∈ Rm×r
∣∣ [Γ +K1]

T
[K2 + Γ] ≤ 0

}
. (36)

By the mean value theorem (see e.g. [30, p. 51]) one can write

φ(z;σ, t, y, u) = −
(∫ 1

0

J (σ + θz; t, y, u) dθ

)
z , (37)

where the matrixΘ (z;σ, t, y, u) ,
∫ 1

0

J (σ + θz; t, y, u) dθ is continuous in all its arguments.

The sector condition (33) can therefore be equivalently expressed as

−
(∫ 1

0

zT [J (σ + θz; t, y, u) +K1]
T

[K2 + J (σ + θz; t, y, u)] zdθ

)
≥ 0 . (38)

This implies that J ⊂ Υ. It is obvious that if (34) is satisfied for all ∆ ∈ Υ inequality (19)
follows.

(ii) Now we show that Υ is a convex set. Convexity of Υ follows from the fact that the defining
inequality of Υ, i.e. [Γ +K1]

T
[K2 + Γ] ≤ 0, using Shur’s Lemma, can be rewritten as

[
KT

1 K2 +K1Γ + ΓTK2 −ΓT

−Γ −I

]
≤ 0 ,

that is an LMI in Γ.
(iii) Finally we show that if (34) is satisfied for all ∆ ∈ Υf , the boundary of Υ, then it is also

satisfied for all ∆ ∈ Υ. For this note that if AL +G∆1HN

M
� 0 and AL +G∆2HN

M
� 0 for

two matrices ∆1 , ∆2 ∈ Υ, then it follows that for every scalar α ∈ [0 , 1]

α (AL +G∆1HN ) + (1− α) (AL +G∆2HN ) = AL +G (α∆1 + (1− α) ∆2)HN

M
� 0 ,

showing that the inequality (34) is convex in ∆. This implies that it suffices to check (34) on
the boundary of Υ.

Remark 13
Recall that φ being in the sector [K1 , K2] is equivalent to φ being (Q, S, R)-Dissipative, where
(Q,S,R) =

(
−I, 12 (K1 +K2) ,− 1

2

(
KT

1 K2 +KT
2 K1

))
.
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A more general version of the Proposition, with basically the same proof, can be obtained in the
following form. When φ is (Q, S, R)-Dissipative, with Q < 0, then

φTQφ+ 2φTSz + zTRz =

∫ 1

0

zT
{
JT (ϑ)QJ (ϑ)− 2JT (ϑ)S +R

}
zdϑ ≥ 0

where J (ϑ) = J (σ + ϑz; t, y, u). It is clear that J ⊂ Υ, where Υ is the set of matrices Γ ∈ Rm×r

such that

ΓTQΓ− 2ΓTS +R =

[
R− ΓTS − STΓ ΓT

Γ −Q−1

]
≥ 0 . (39)

Since Υ is convex, it is sufficient to check the inequality (34) on its boundary Υf , defined as the set
of Γ ∈ Rm×r such that ΓTQΓ− 2ΓTS +R = 0.

Note also that if φ satisfies several dissipative conditions (Qi, Si, Ri), for i = 1, . . . , µ, with
Qi < 0, then the previous Proposition is valid for each sector condition with a boundary set Υfi. To
simplify the presentation we will restrict ourselves in what follows to the case of one dissipativity
condition, or when the vector θ is fixed.

Proposition 12 reduces substantially the size of the set of matrices at which the cooperativity
condition (19) has to be checked. In particular, in the scalar case, i.e. r = m = 1, and σ →
f(σ; t, y, u) : R→ R, the set Υ is the interval [K1, K2] and its boundary are the two extreme
points Υf = {K1, K2}. In this case it suffices to check (19) for just these two values of J . A
similar situation occurs in the diagonal case, i.e. r = m and σ → f(σ; t, y, u) : Rm → Rm with
σi → fi(σi; t, y, u) : R→ R for i = 1, . . . ,m, where Υf consists of a finite number of points.

Beyond these two simple cases, the number of points in Υf is not finite. In what follows we
will restrict our discussion to the case where Γ is a vector, i.e. r = 1, m > 1, since in this case the
geometrical interpretation is simple. However, the general idea can be extended to the matrix case.
The set of vectors Γ ∈ Rm, satisfying expression in (39), i.e.

Υ ,
{

Γ ∈ Rm|ΓTQΓ− 2ΓTS +R ≥ 0
}

where Q < 0, represents an ellipsoid in Rm [7] (see Figure 1).
Given an ellipsoid Υ we construct two convex polytopes:

(i) Select k > 1 points ∆i ∈ Υf ⊂ Rm on the boundary Υf of Υ, and construct the closed convex
polytopte PI ⊂ Rm as the convex hull (convex combination) of these points [13], i.e.

PI =

{
k∑

i=1

αi∆i ∈ Rm
∣∣∣∣∣αi ≥ 0,

k∑

i=1

αi = 1, i = 1, ..., k

}
. (40)

∆i, i = 1, . . . , k are the vertices of PI . In particular, we select all the vertices of the ellipsoid
as vertices of the polygon PI . In a refinement of PI further points on Υf are added to the
set of vertices of PI . It is easy to see that the polytope PI is inscribed in Υ, i.e. PI ⊂ Υ (see
Figure 1).

(ii) At each vertex ∆i of PI there is a supporting hyperplane Hi, that is tangent to Υf . The
polytope PC ⊂ Rm can be equivalently defined as the intersection of the closed half-spaces
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obtained from the supporting hyperplanes, or as the convex hull of the points of intersection
Ωi of these supporting hyperplanes Hi (see [13]), i.e.

PC =

{
κ∑

i=1

αiΩi ∈ Rm
∣∣∣∣∣αi ≥ 0,

κ∑

i=1

αi = 1, i = 1, ..., κ

}
. (41)

Ωi, i = 1, . . . , κ are the vertices of PC (see Figure 1). It is also easy to show that the polytope
PC circumscribes Υ, i.e. Υ ⊂ PC .
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Υ

Υf

Polytope
PC

Polytope
PI

Figure 1. Approximations of the ellipsoid Υ in R2: PC is the polytope circumscribing Υf and PI is inscribed
in Υf .

The vertices of both polytopes PI and PC play a crucial role here, since they are a finite number
of points (see Figure 1) at which the cooperativity condition is tested. This corresponds to a finite
number of LMI’s.

To satisfy that the Jacobian matrix AL +GJ (z)HN

M
� 0 in (19) ∀ z ∈ Rr it is necessary that

Coop1) Suppose that the cooperativity condition AL +GJHN

M
� 0 in (19) is satisfied for every

J ∈ J . Then AL +G∆iHN

M
� 0 is satisfied for every vertex {∆1, ..,∆k} of PI .

Coop2) Suppose that AL +GΩiHN

M
� 0 is satisfied at each vertex {Ω1, ...,Ωk} of PC . Then AL +

GJHN

M
� 0 in (19) is satisfied for every J ∈ J .

The proof of these two facts is similar to the proof of the previous Proposition 12. Checking the
cooperativity condition on the inscribed polytop PI constitutes a necessary condition for (19). If it
is not satisfied at some vertex of PI , then the condition in (19) is falsified. On the other side, checking
the cooperativity condition on the circumscribed polytop PC constitutes a sufficient condition for
(19). If it is satisfied at all vertices of PC , then the condition in (19) is verified.

The verification of the cooperativity condition (19) can be done iteratively. Suppose that at the
step (i) condition Coop1) above is satisfied at all vertices of PI , but condition Coop2) is not fulfilled
at some vertex Ωx of PC . It is reasonable to refine the polytopes by adding some vertices near to
Ωx. The idea is to obtain vertices closer to the boundary Υf . A refining procedure is as follows (see
Figure 2):

a) Draw a line from the center of Υ to the vertex Ωx, and find the intersection ∆k+1 of this line
with Υf . ∆k+1 is a vertex of the refined polytope PI .
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b) Construct the supporting hyperplane (tangent hyperplane) Hk+1 of Υ at ∆k+1 and find the
intersection points with all other supporting hyperplanes Hi. These points define new vertices
Ωκ+1, . . . ,Ωκ+g for the refined polytope PC .

c) Conditions Coop1) and Coop2) are checked at the new vertices of PI and PC . If the result is
not conclusive, then a new refinement can be performed, i.e. go to item a).

The iteration ends when a conclusive result (falsification or verification of the cooperativity
condition) is obtained, or when the number of iterations is sufficiently large.
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Figure 2. Refinement process: creating new vertices of PC and PI .

4.3. Coupling of the Cooperativity and the Dissipativity Conditions

In the previous paragraphs we have seen that the cooperativity condition (19) can be reduced to a
finite number of LMI’s in the design variables L, N . The Dissipativity condition (18), although in
general a Nonlinear Matrix Inequality, can be reduced under some important circumstances to a LMI
in the design parameters P, ε, PL,N, θ. Note, however, that when trying to solve simultaneously
both inequalities a problem appears: whereas (19) is linear in L the inequality (18) is linear in PL,
so that both inequalities are coupled in a nonlinear (bilinear) manner.

One possible solution is to solve the inequalities in an iterative form, but there is no guarantee
of convergence of this procedure. We propose here a further solution to this problem, consisting in
looking at inequality (18) as a Bilinear Matrix Inequality (BMI) in P and L, and using appropriate
software for its solution. Thus, the coupling of the variables of both inequalities (18) and (19) is not
considered, and therefore, the design of the preserving order observers consists in the solution of a
BMI and a LMI. The first one is given by the inequality (18) and the second one by (19).

BMI’s are well known in control (see [11, 29] and the references therein), and there are several
algorithms to solve it, as e.g. PENBMI [16]. The conditions under which (18) becomes a BMI are
the same studied in the first paragraph of this section to render it a LMI. We have implemented
the previous solution, including Proposition 12 as well as the refinement criterion, in a numeric
algorithm with the help of the software PENBMI and YALMIP. This software has been used for the
calculation of the examples presented in the following section.
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5. DESIGN EXAMPLES

To illustrate the design methodology and the performance of the preserving order observers, we
will present two examples. The first example shows an experimental validation in the classical
three-tanks system. The second example compares in simulation our design with one example taken
from the literature.

5.1. Experimental validation: The Three-Tanks system

For the classical Three-Tanks System (we have used Amira’s model DTS200) we have designed
interval observers using the method proposed in the previous sections, and we have tested the results
in simulation and validated them experimentally. This system can be viewed as a prototype of many
industrial process applications and our results provide an illustration of the behavior and properties
of preserving order observers in a realistic framework (see Figure 3).

Figure 3. Schematic Diagram of the Three-Tanks System.

The observation problem consists in estimating the level h3 of the liquid in Tank 3, from the
on-line measurements of the levels h1 and h2 in the Tanks 2 and 3, respectively. A mathematical
description of the behavior of the levels in the three tanks, [x1, x2, x3] = [h1, h2, h3], which are the
states of the system, is given by the equations

ΣT :





AT
dx1

dt = Q1 (t)−Q13(x1 − x3)

AT
dx2

dt = Q2 (t) +Q32(x3 − x2)−Q20(x2)

AT
dx3

dt = Q13(x1 − x3)−Q32(x3 − x2)

. (42)

AT represents the area of the base of the three identical cylindrical tanks. The (volumetric) input
flows in Tanks 2 and 1 areQ2 andQ1, respectively.Q32 is the flow between tanks 2 and 3, that flows
through valve V 1, and Q20 is the flow, through valve V 2, going from Tank 2 outside of the system.
Q13 is the flow between Tanks 1 and 3. These flows, that are dependent on the difference of levels
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of the tanks they connect, are described by:

Q32(x3 − x2) , K32 sgn (x3 − x2)
√

2g |x3 − x2|

Q13(x1 − x3) , K13 (x1 − x3)

Q20(x2) , K20

√
2gx2

where K13 = a13Sn, K32 = a32Sn and K20 = a20Sn. The values of these parameters for the
experimental setup used are listed in Table I. It is possible to write the (nominal) system in the

Parameters Numeric values
Sn 5×10−5 m2

g 9.81 m/s2

a13 8.5720
a20 0.7026
a32 0.4883
1
AT

64.977 1/m2

Table I. Parameters for the Experimental setup of the Three-Tanks system ΣT .

form ΠS in (12) with matrices given by:

A =
K31

AT



−1 0 1

0 0 0

1 0 −1


 , G =

1

AT




0

−1

1


 , H =




0

1

−1




T

, C =

[
1 0 0

0 1 0

]
.

The known input vector u consists of the two input flows Q1 and Q2, i.e. u = [Q1 , Q2]
T , and the

input/output injection vector ϕ (t, y, u), consisting of known signals affecting the dynamics of the
plant, is given by

ϕ (t, y, u) =
1

AT




Q1 (t)

Q2 (t)−Q20 (x2)

0


 .

Finally, the (internal) nonlinearity in the model f (σ) is given by f (σ) , K32 sgn (σ)
√

2g |σ|, and
it depends on the variable σ = x2 − x3, which is linear function of the states, i.e. σ = Hx, and it is
not measurable, since it depends on the unmeasured state variable x3.

We will consider two scenarios for the interval observer design:

1. We consider that there are no uncertainties in the model description, and we design the
observer using the results of Subsection 3.1.

2. We consider a perturbation for the system consisting of a leak in Tank 3, flowing out of the
system. It is possible to write the (perturbed) system in the form ΨS in (21) with the same
matrices as for the nominal model and with a perturbation vector π(t, x) = [0, 0, π3(t)]T . We
know that π3(t) lies between some values π− ≤ π(t) ≤ π+. We design an interval observer
using the results of Subsection 3.2.
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5.1.1. Interval observer design for the Three-Tanks system. For both scenarios we design the same
observer matrices L and N . The incremental nonlinearity φ defined in (15) is given by

φ (z, σ) = K32

(
sgn (σ)

√
2g |σ| − sgn (σ + z)

√
2g |σ + z|

)
,

which is a scalar nonlinearity in the sector [−∞, 0]. Although it is possible to satisfy the conditions
of Theorem 10 using this sector, the required observer gains are very high. Since the infinity
value is due to the lack of differentiability of the square root function in Q20, it is reasonable
to consider a smooth approximation of this function, that has a finite slope in zero, without
altering the accuracy of the model to predict the experimental results. We have found that using an
approximating function, belonging to the the sector φ ∈ [−0.1 , 0], or equivalently, being (Q,S,R)-
Dissipative with (Q,S,R) = (−1, −0.05, 0) reasonable experimental results are obtained, with
gains implementable in practice. Using this data we solve both, the dissipative in (18) and the
cooperative in (19) inequalities using a BMI solver†, and we have obtained as solutions the following
matrices

L =



−518.317 53.9564

118.9967 −303.4840

122.9429 278.2979


 , N =

[
0 10

]
,

P =




18.6334 39.3332 39.3332

39.3332 84.2404 84.2334

39.3332 84.2334 84.2327


 , ε = 0.1796 .

Since Theorem 10 is satisfied it is possible to design a preserving order observer, and therefore
an interval observer by running in parallel two adequately initialized preserving order observers,
one to upper estimate and the other to lower estimate the state trajectory. We have used the same
gains for both observers, and thus L = L+ = L−, N = N+ = N−, P = P+ = P−, ε = ε+ = ε−.
For comparison purposes an open-loop observer has been designed, i.e.,

L = 0 and N = 0.

Note that this open loop observer is also a preserving order observer, since the conditions of
Theorem 10 are satisfied with these values of L and N .

5.1.2. Experimental validation of the Interval observers. We have run three experiments on the
system to test the two interval observers designed. The first two consider the nominal case, while in
the third experiment a leak in Tank 3 causes a perturbation for the observation problem.

Experiment 1: For this test we consider the case without a leak in Tank 3. The input flows
have been set constant with values Q0

1 = 2.4425× 10−5 m3

s and Q0
2 = 1.9889× 10−5 m3

s . The initial
states for the plant were x10 = 0.14 m, x20 = 0.04 m and x30 = 0.09 m, and the initial conditions

†we have used here PENBMI ’s software.
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for both the interval and the open loop observers were set as x̂+0 = (0.22, 0.13, 0.16) for the upper,
and x̂−0 = (0.07, 0.02, 0.05) for the lower preserving order observer.

Figure 4 shows the behavior of the real states and the states estimated by the interval and the
open loop observers under these conditions. We first note that both observers are order preserving,
so that the estimated states are above/below their real values for all the time. Note further that
the estimated states x̂+1 and x̂−1 , x̂+2 and x̂−2 of the interval observer, that correspond to measured
variables, converge very fast, but this is not the case for the open loop observer. The convergence of
the estimation for the unmeasured state x3 is not as fast as for the measured ones, but the estimation
errors e+3 and e−3 converge much faster for the interval than for the open loop observer. This shows
that the inclusion of the injection (or innovation) terms N (ŷ± − y) and L (ŷ± − y) in the interval
observer accelerates the convergence of the estimation. We note that e3 for the interval observer
grows very fast at the initial phase, and then it decreases monotonically. This explains why in Figure
4 the initial states for both observers are apparently different. In this case, since no uncertainties
have been considered for the model of the plant, the estimated states of both observers converge
(exponentially) to the true values.

Experiment 2: For this test we consider the case without a leak in Tank 3. The input flows
are varying periodically asQ1(t) = 7.3284× 10−5 sin(0.1t) m3

s andQ2(t) = 1.9889× 10−5 m3

s . The
initial conditions for the plant were x10 = 0.14 m, x20 = 0.04 m and x30 = 0.15 m, while the initial
conditions for both observers are the same as in the previous Experiment 1.

Figure 5 shows the behavior of the real state x3 and its estimation by the interval observer under
these conditions. Note again that the estimated states are above/below their real values for all the
time, and that they converge (exponentially) to their true values.

Experiment 3: For this test we consider the case with a leak in Tank 3. The input flows are
kept constant, taking the same values as in Experiment 1. The initial conditions for the plant
and the interval observer are also as in the previous Experiment 1. The bounds for the leak in
the third Tank is considered to be neither bigger than π+

3 = 3.5899× 10−6 m3

s nor smaller than
π−3 = 1.5763× 10−6 m3

s , so that (22) holds.
Figure 6 shows the behavior of the real state x3 and its estimation by the interval observer under

these conditions. Note that the estimated states are above/below their real values for all the time.
However, in contrast to the nominal case considered in the two previous Experiments the estimation
error does not converge anymore to zero, but it converges (exponentially) to a final bound. The
estimated lower bound x−3 of the (unmeasured) level in Tank 3 can serve as an indicator when the
Tank will run empty, before it actually happens. Or the estimated upper bound x−3 of the same state
is an indicator of a possible overflow in the same tank.

5.2. A Stirred Tank Reactor

Consider a stirred tank reactor (STR) [26]:

Σ2a





ẋb = −D (t)xb + µ (s)xb

ṡ = D (t) (Sin − s)− 1
Y µ (s)xb

y = s

(43)
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Figure 4. Real and estimated states for the Three-Tanks System with constant inputs in Experiment 1. The
real state is a continuous — (red) line, the estimated states of the interval observer are the continuous —
(blue and green) lines, and the estimated states of the open loop observer are the dashed – – (magenta and

light blue) lines.
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Figure 5. Real and estimated state x3 for the Three-Tanks System with varying inputs in Experiment 2. The
real state is a continuous — (red) line and the estimated states of the interval observer are the continuous —

(blue and green) lines
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Figure 6. Real and estimated state x3 for the Three-Tanks System with a leak in Tank 3 in Experiment 3.
The real state is a continuous — (red) line and the estimated states of the interval observer are the continuous

— (blue and green) lines

where Y is the yield coefficient, µ is the specific growth rate, D is the dilution rate, s is the
substrate concentration in the reactor, Sin is the influent substrate concentration, and xb is the
biomass concentration in the reactor. The specific growth rate we are going to consider is given by
the Monod law

µ (s) = µ0
s

ks + s
, (44)

where µ0 is the maximum specific growth rate and ks is the saturation constant. In [26] interval
observers for this system were proposed, with the aim of estimating the biomass concentration
xb from on-line measurements of s, and having as uncertainties the specific growth rate µ and Sin.
Moreover, a detailed analysis of the convergence conditions and the limits of the achievable behavior
of the observers were given.

Here we will illustrate the results using our approach and the relation with the detailed work in
[26]. We will consider again two scenarios for the interval observer design: (i) We consider that
there are no uncertainties in the model description, and we design the observer using the results of
Subsection 3.1. (ii) We consider that the specific growth rate µ is uncertainand we design an interval
observer using the results of Subsection 3.2.

5.2.1. Design of an interval observer: The nominal case. For this example it is impossible to
design an interval observer in the coordinates of Σ2a since the cooperativity condition (19) cannot
be fulfilled, as already noticed in [26]. To explain this, notice first that for this case matrix M has
the form

M (z; t, y) =

[
−D (t) + l1 − µ (y) NY −µ (y) 1

Y

l2 + µ (y)N −D (t) + µ (y)

]
.

Since there is a negative off-diagonal term, that does depend on L,N , the the cooperativity condition
is violated by the observer. However, and since the cooperativity is a coordinate dependent property,

it is possible to design a preserving order observer in the new coordinates x =
[
xb, z

]T
, where

z = xb + Y s, where the model is given by

Σ2b





ẋb = −D (t)xb + µ (s)xb

ż = −D (t) z +D (t)Y Sin

y = 1
Y (z − xb) .

(45)
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It is possible to write this (nominal) system in the form ΠS in (12) with matrices given by:

A =

[
−D (t) 0

0 −D (t)

]
, G =

[
0

1

]
,

H =
[

0 1
]
, C =

[
1
Y − 1

Y

]
.

The input/output injection vector ϕ (t, y, u), consisting of known signals affecting the dynamics of
the plant, is given by

ϕ (t, y) =

[
D (t)Y

0

]
Sin (t) ,

and f (σ, y) = µ (y)σ. The incremental nonlinearity φ (σ, z) = µ (y)σ − µ (y) (σ + z) = −µ (y) z

is (Q, S, R)-D with (Q, S, R) = (−1,−0.5, 0), i.e. φ ∈ [−1, 0]. Convergence of the observer is
guaranteed if the dissipativity inequality (18) is satisfied. For this case matrix M in (19) is

M (z; t, y) =

[
−D (t) + l1

Y − l1Y
l2
Y + µ (y) NY −

(
D (t) + l2

Y

)
+ µ (y)

(
1− N

Y

)
]
,

so that the Cooperativity Condition is satisfied if l1 ≤ 0 and l2 + µ (y)N ≥ 0. When both
dissipativity (18) and cooperativity (19) inequalities are satisfied, so that Theorem 10 is satisfied,
an interval observer of the form (23)-(24) can be designed, with the terms π+ = π− = 0. Note that
this interval observer is similar to the one proposed by [26], except for two differences: (i) For the
shake of the presentation, we have assumed that x̂− is always nonnegative, so that our observer
is slightly simpler than the one in [26]. Our assumption is reasonable, and it is usually satisfied.
(ii) Our interval observer has an extra injection term, N± (ŷ± − y), entering in the nonlinearity.
However, since the nonlinearity in this example is affine in the unmeasured state, i.e. µ (s)xb, then
the estimation error is in fact linear time varying, and the injection term due to N becomes also a
linear one, adding to the correction term with gain l2. Therefore, the extra correction term causes
no qualitatively different behavior to the observer in [26] for this example. This will be clear in the
simulations below. We note, however, that our method generalizes the one proposed in [26].

Using the same parameters as in [26], i.e. ks = 5 g/l, Sin = 5 g/l, D = 0.05 h−1, µ0 = 0.33 h−1

and Y = 0.5, where D and Sin are constant, it is possible to find numerically (using e.g. the
PENBMI software) that for the values

L =

[
0

19.991

]
, N = −10 , P = 106

[
7.8109 −0.0007

−0.0007 0.00004

]
, ε = 183.232

both inequalities (18) and (19) are satisfied. We select in interval observer N+ = N− = N and
L+ = L− = L. Figure 7 shows the behavior of the interval observer. The initial conditions for the
plant were xb0 = 1.05 g/l and s0 = 0.9 g/l, and those for the interval observer were set as

x̂+b (0) = 1.5 g/l , x̂−b (0) = 0 g/l,

ẑ+ (0) = 0.45 g/l , ẑ− (0) = 1.95 g/l .
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As expected the estimation error preserves the order and it converges exponentially to zero. As
explained in [26] the convergence velocity cannot be improved much further without violating the
cooperativity condition.
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Figure 7. Simulation of the bioreactor (−.), the estimation of the proposed interval observer (−) and their
estimation errors for the nominal case.

5.2.2. Interval observer design for the stirred tank reactor with uncertainties We consider now that
the specific growth rate µ in (44) is uncertain, and known to be between lower and upper bounds

µ− (s) ≤ µ (t, s) ≤ µ+ (s) .

In particular, we assume that µ± (s) are given by Monod models (44) with µ+
0 = 0.495 h−1 and

µ−0 = 0.165 h−1. The interval observer is of the form (23)-(24), where the terms π+ and π− are
given by

π+ (t, y) = 0.165
y

ks + y
x+b , π

− (t, y) = −0.165
y

ks + y
x−b .

Using the same parameters as in the previous paragraph we found numerically a different set of
parameters satisfying both inequalities (18) and (19)

L =

[
−0.5847

561.2413

]
, N = −10 , P = 104

[
4.2090 −0.0025

−0.0025 0.0068

]
, ε = 506.6 .

We also select in interval observer N+ = N− = N and L+ = L− = L. For comparison we design
also the interval observer proposed in [26], that corresponds to the structure given by (23)-(24) with
l1 = 0, l2 = 2.255, and N = 0. Figure 8 shows the behavior of the trajectories for the plant, both
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Figure 8. Simulation trajectories of the bioreactor (−.), the upper and lower estimates of our interval
observer (−−), the interval observer proposed in [26] (−−) , and their estimation errors when there is

an uncertainty in the maximum specific growth rate µ0.

interval observers and their respective estimation errors when the initial conditions are the same as
in the previous paragraph.

As expected the estimation error preserves the order and it converges exponentially to an ultimate
bound (different from zero). Again the convergence velocity cannot be improved much further
without violating the cooperativity condition. Since both interval observers are essentially identical,
they have very much the same behavior. Anew, the interesting point here is that the preserving order
observers methodology allows to unify several interval observers design methods.

6. CONCLUSIONS

A novel methodology to design preserving order observers for a class of nonlinear systems in
absence and in presence of perturbations/uncertainties has been proposed. This methodology unifies
several interval observers design methods proposed previously in the literature and it is based on
the combination of dissipative and cooperative properties, both applied to the estimation error
dynamics. Computationally the design can be reduced, in most cases, to the solution either of a
Bilinear Matrix Inequality (BMI) and a Linear Matrix Inequality (LMI), or of two coupled LMIs, for
which highly efficient numerical methods are available. The design methodology has been validated
experimentally in the three-tanks system. It would be interesting in future work to analyze the effect
of measurement noise on the estimation of the preserving order observers (a work already initiated
in [26]) and to use state transformations in a more systematic way to design interval observers, in
the same spirit as the recent works of [17, 18].
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