inorganic compounds Acta Crystallographica Section C ## Crystal Structure Communications ISSN 0108-2701 ## In_{1.06}Ho_{0.94}Ge₂O₇: a thortveitite-type compound Erick A. Juarez-Arellano, ** Ivonne Rosales, * Alicia Oliver, * Jose Luis Ruvalcaba, * Raul E. Carbonio, * Lauro Bucio * and Eligio Orozco * alnstituto de Física, Universidad Nacional Autónoma de México, AP 20-364, 01000 México DF, Mexico, and bINFIQC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina Correspondence e-mail: erickj@fisica.unam.mx Received 28 October 2003 Accepted 17 December 2003 Online 17 January 2004 A new indium holmium digermanate, In_{1.06}Ho_{0.94}Ge₂O₇, with a thortveitite-type structure, has been prepared as a polycrystalline powder material by high-temperature solidstate reaction. This new compound crystallizes in the monoclinic system (space group C2/c, No. 15). The structure was characterized by Rietveld refinement of powder laboratory X-ray diffraction data. The In3+ and Ho3+ cations occupy the same octahedral site, forming a hexagonal arrangement on the ab plane. In their turn, the hexagonal arrangements of (In/Ho)O₆ octahedral layers are held together by sheets of isolated diortho groups comprised of double tetrahedra sharing a common vertex. In this compound, the Ge₂O₇ diortho groups lose the ideal D_{3d} point symmetry and also the C_{2h} point symmetry present in the thortveitite diortho groups. The Ge-O-Ge angle bridging the diortho groups is 160.2 (3)°, compared with 180.0° for Si-O-Si in thortveitite (Sc₂Si₂O₇). The characteristic mirror plane in the thortveitite space group (C2/m, No. 12) is not present in this new thortveitite-type compound and the diortho groups lose the C_{2h} point symmetry, reducing to C_2 . ## Comment Previous work on a series of isomorphous germanates $MRGe_2O_7$ (where M is In, Mn, Fe, Y, Sc, Ga or Al, and R is a rare earth) has included compounds such as FeInGe₂O₇ (Bucio *et al.*, 2001) and InYGe₂O₇ (Juarez-Arellano, Bucio *et al.*, 2002), described by the space group C2/m (No. 12) and adopting the thortveitite structure, FeRGe₂O₇ (where R is La, Pr, Nd or Gd; Bucio *et al.*, 1996) and NdAlGe₂O₇ (Jarchow *et al.*, 1985), taking space group $P2_1/c$ (No. 14), and FeRGe₂O₇ (R is Y or Tb–Yb; Cascales *et al.*, 1998), GdMnGe₂O₇ and EuMnGe₂O₇ (Taviot-Gueho *et al.*, 1999; Juarez-Arellano *et al.*, 2001), with space group A222 (No. 21). Interesting optical, **Figure 1**The observed (crosses), calculated (solid line) and difference (at the bottom) X-ray powder diffraction profile for In_{1.06}Ho_{0.94}Ge₂O₇ at room temperature. Vertical marks correspond to the position of the allowed Bragg reflections. electrical and magnetic properties have been reported in these kinds of compounds. In recent years, compounds with rare earth cations (especially Gd³⁺, Tb³⁺, Eu³⁺ and Ho³⁺) have been developed and employed as scintillators for radiation detectors used in medical diagnostics, industrial inspection, dosimetry, nuclear medicine and high-energy physics. In each application, the scintillator is the primary radiation sensor that emits light or scintillates when it is struck by high-energy photons (Greskovich & Duclos, 1997). Polycrystalline ceramic scintillators are a relatively new class of materials developed for quantitative detection accuracy. Ceramic scintillators have been attracting increasing attention because their complex compositions, which cannot be grown by single-crystal methods, can be synthesized by relatively inexpensive ceramic processes. Figure 2 A projection of $In_{1.06}Ho_{0.94}Ge_2O_7$ on the ab plane, showing the honeycomb-like arrangement of $(In/Ho)O_6$ octahedra (in dark grey). (a) The Ge_2O_7 diortho groups (light grey) link at three points to the hexagonal rings of octahedra. The displacement of bridging O atoms to the right-hand side (black arrows) is clearly seen, changing the C_{2h} symmetry of the Ge_2O_7 diortho groups to C_2 . (b) $(In/Ho)O_6$ octahedral layers (dark grey) are held together alternately along the c axis by sheets of isolated Ge₂O₇ diortho groups (in light grey).