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Abstract

M
any important physics systems involved coupled os-
cillators. A solid is a good example because it can
be described in terms of coupled oscillations. The

atoms oscillate around their equilibrium positions, and the in-
teraction between the atoms is responsible for the coupling.
The purpose of this study is to highlight and to explain, in
a simple way, the dynamic interaction of two coupled oscil-
lators based on normal-modes approach. In addition, at the
end of the manuscript the equation of motion is derived based
on energy method, and a link is provided to download and
play a video in which the phenomenon of coupled oscillator
is proven.

Coupled oscillator description

A
simple pendulum consists of a massm hanging from a
string of length L and �xed at a pivot point P . When
the pendulum is given an initial displacement and

released, it will swing back and forth with periodic motion,
called simple harmonic motion.

Due to its sti¤ness component the simple pendulum store
potential energy being converted to kinetic energy. In the
absence of non-conservative forces, this transfer of energy is
continual, causing the pendulum to oscillate about its equilib-
rium. However, non-conservative forces can dissipate or add
energy to the system. The friction force is non-conservative
and dissipates energy, if the pendulum is given a displace-
ment from equilibrium and released, the energy dissipated
by the friction force eventually causes the motion to cease.

Two simple pendulum connected by a horizontal wire, �xed
at the same elevation, together they create a coupled oscil-
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lator. In a coupled oscillator the energy is transferred each
other through the wire.

In a coupled oscillator the phenomenon of resonance occurs
when the red mass, from the �gure above, is given an initial
displacement from equilibrium and released from rest, while
the blue mass remains at rest. Suddenly, an observer will
notice that the blue mass begins to oscillate as time increases,
to the point that the pink mass stands still. The blue mass
keep on oscillating while the pink mass begins to oscillate
once again until the blue mass stops, and so on, and so forth.

From the point of view of work and energy theory [1], the
energy �ows into the system from one mass to each other
through the coupling. The behavior of the coupled oscillator
depends entirely on the coupling forces in the spring. If the
coupling is strong (high sti¤ness), then we expect the two
masses to oscillate almost in phase. That means, the strong
coupling will not allow one mass to lag far behind the motion
of the other. If the coupling is weak, then we may expect that
the two masses will oscillate, with one sometimes reinforcing
the motion of the other (larger amplitudes) and at other times
canceling out the motion of the other (smaller amplitudes).
So, we can assume the energy is constant due to the energy
is being transferred continuously between the two masses.

Normal-mode approach

W
e can imagine that the wire works like a spring,
since both masses are embedded at the same dis-
tance, both of them has the same elasticity.

1



On the other hand, the coupling is given by another wire�s
section, and it has a di¤erent elasticity.

Taken into account the displacements of the masses, we
can obtain

Free-body diagram

Mass-acceleration diagram

The spring on the left moved X1, and the spring on the
right moved X2 while the central one was deformed the dif-
ference of these displacements.

From the summation of forces

m�x1 = �kx1 � ka(x1 � x2)

m�x2 = �kx2 � ka(x2 � x1) (1)

The equation can be expanded as

m�x1 + kx1 + kax1 � kax2 = 0
m�x2 + kx2 + kax2 � kax1 = 0

Which is rearranged to yield

m�x1 + (k + ka)x1 + kax2 = 0

m�x2 � kax1 + (k + ka)x2 = 0

And writing it in a matrix form leads to

"
m 0

0 m

#"
�x1
�x2

#
+

"
k + ka �ka
�ka k + ka

#"
x1
x2

#
=

"
0

0

#
(2)

This equation is written in a general form as

M �X +KX = 0 (3)

Eq. (3) is a coupled system of equations. One way to
solve this system is to uncouple them by using an appropriate
coordinate transformation. One candidate transformation is
the modal matrix [�], given by

[�] =
�
fXg1 fXg2 � � � fXgN

	
=266664

X11 X12 � � � X1N

X21 X22 � � � X2N

...
...

. . .
...

XN1 XN2 � � � XNN

377775
where fXgj is the mode shape associated with the jth

eigenvalue �2j .
The modal matrix has the desirable property of being or-

thogonal to the matrices [M ] and [K ] [2]. Thus, we assume
a solution to Eq. (3) of the form

fx(t)g = [�] f�(t)g
Modal matrix Modal amplitudes

(4)

where f�(t)g is a column vector of generalizated (modal)
coordinates that are to be determined.
So, we assume a solution of the following form

x1 = A1 cos!t

x2 = A1 cos!t

Next, we substitute into the di¤erential equation given
above

�mA1!2 cos!t+ (k + ka)A1 cos!t� kaA2 cos!t = 0
�mA2!2 cos!t� kaA1 cos!t+ (k + ka)A2 cos!t = 0

Dividing this equation by cos!t

�A1!2m+A1(k + ka)�A2ka = 0
�A2!2m+A2(k + ka)�A1ka = 0

Which is rearranged to yield

(k + ka � !2m)A1 �A2ka = 0
�A1ka + (k + ka � !2m)A2 = 0

In turn, the matrix form is

"
k + ka � !2m �ka

�ka k + ka � !2m

#(
A1
A2

)
=

(
0

0

)
(5)

This system of equations has a nontrivial solution for fAg
only when the determinant of the coe¢ cient matrix is zero.
Thus, we arrive at
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det

"
k + ka � !2m �ka

�ka k + ka � !2m

#
=�

k + ka � !2m
�2 � (�ka)2 = 0

Which gives the characteristic equation

!4m2 � (2k + 2ka)m!2 + 2kak + k2 = 0

Due to the form of this equation, one can treat it as a
quadratic polynomial in !2, where !2 = �

m2�2 � (2k + 2ka)m�+ 2kak + k2 = 0

Solving the equation for �1;2

�1;2 =
k+ka
m

� ka
m

Thus, the two roots are given by

!1 =
p
�1 =

r
k + ka � ka

m
=

r
k

m
(6)

!2 =
p
�2 =

r
k + ka + ka

m
=

r
k + 2ka
m

(7)

Which are the two natural frequencies of the system and
they have been ordered so that !1 < !2. That way, the
general motion of the coupled oscillator can be considered as
the superposition of two normal-modes.

To determine the mode shape associated with !1 and !2,
we set ! = !1 in Eq. (5), to obtain

A2
A1
= k+ka�!2m

ka

First mode shape

A2
A1
j!1 = ka

ka
= 1

Second mode shape

A2
A1
j!2 = �ka

ka
= �1

Therefore, the mode shapes of the coupled oscillator are as
follow

fAg1 = A1

(
1

1

)
(in phase) (8)

fAg2 = A2

(
�1
1

)
(out of phase) (9)

Graphically, we can see this behavior as

Energy is initially invested from the blue mass, which is
in this instance only weakly coupled to the red mass. As
time passes, energy is traded back and forth between the two
masess.

Proof of the phenomenon

I
n order to verify the phenomenon of resonance in
a coupled oscillator, please refer to the next link,
in which you will be able to play in youtube.

(https://youtu.be/WDtkvHRd5UY)

Conclusion

B
ased on initial conditions and the normal-mode so-
lution of the system, there is a continuous exchange
of energy between the two modes, this is due to the

phase di¤erence between the two amplitudes. This two am-
plitudes represents the initial excitation and steady-state re-
sponse of the system. During one-quarter of the period, the
amplitude of an oscillator tends to decay while the other one
increases, faster or slower as the system´s resistance allows,
resulting in an energy transfer from each other. During the
second-quarter of the period the same behavior occurs in the
opposite sense, the energy �ows in the opposite direction.
The process is continually repeated.

3



Finally, the system´s energy is given by

E = Ek+Ep =
1
2
mv21+

1
2
mv22+

1
2
kx21+

1
2
kx22+

1
2
ka(x2�x1)2

Therefore, the total energy of the system is

E = 1
2
(mv21 + (k + ka))x

2
1+

1st oscillator energy

1
2
(mv22 + (k + ka))x

2
2�

2nd oscillator energy

kax1x2
Interaction energy
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