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Abstract

In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic
genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as
in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs,
hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we
obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected
enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome
increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the
availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at
9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low
number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the
greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower
proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion
might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also
found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of
multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.
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M.A.M-N is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: malberto.martinez@iimas.unam.mx (MMN); erueda@ibt.unam.mx (EPR)

Introduction

An important clue to understanding how prokaryotes have

evolved and how they exist in their modern forms can be

addressed by comparing their transcriptional and enzymatic

repertoires. The availability of more than 3,000 organisms for

which complete genome sequences have been determined,

belonging to the three cellular domains of life, provides the

opportunity to conduct evolutionary and functional studies. In this

respect, the diversity of lineages, genome sizes, and lifestyles are

widely represented in the universe of organisms for which genomic

information is available, such as the archaeon Nanoarchaeum

equitans, an obligate symbiont with one of the smaller genomes,

0.491 Mbp [1–3], or the largest bacterial genome sequenced so far

(10 Mbp), the filamentous nitrogen-fixing cyanobacterium Nostoc

punctiforme [4–9]. Consequently, assessing the distribution and

content of genes associated with enzymatic reactions and gene

regulation in sequenced genomes, the evolution of metabolic and

regulatory capabilities of prokaryotic cells can be inferred.

Under this perspective, in this work, an exhaustive analysis of

enzymes and DNA-binding transcription factors (TFs) was

conducted to evaluate their abundance and distribution across

794 non-redundant genomes from Bacteria and Archaea cellular

domains. From this study, we found that enzymes and TFs follow

power-law behavior and that archaeal organisms exhibit a smaller

repertoire of enzymatic and regulatory proteins than bacterial

organisms. The rate of change (derivative) associated with the

power-law behavior exhibits a negative trend for enzymes, while

for TFs is positive. These findings suggest that the number of

acquired enzymes diminishes as genome size increases; on the

contrary, the number of TFs acquired increases as the size of the

genome increases. This inverse behavior between the rates of

incremental changes in the numbers of TFs and enzymes can be

explained in terms of decreasing enzymatic diversity of prokary-

otes due to a re-use of existing enzymes (referred as ‘‘tools’’)

already encoded in the genome. Thus, as the genome of an

organism becomes larger, it acquires a smaller amount of new

tools to perform a new metabolic task because the larger ‘‘toolbox’’
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is more likely to contain the necessary enzymes for the new

function [10]. While an expansion of the regulatory capability

would optimize matter acquisition and processing energy through

an increase in the number of TFs acting on metabolic enzymes. In

addition, TFs exhibit a low number of duplications, in contrast

with the high number of duplications associated with enzymes.

Despite the greater number of redundant enzymatic sequences,

the rate of increments for duplicates is higher for TFs than for

enzymes. Structural domain contents, functional promiscuity, and

enzyme pathway relationships were also investigated. From these

data, it was determined that the low proportion of enzymatic

proteins associated with archaeal genomes can also be partially

explained by the low number of metabolic pathways identified in

those organisms and by the functional plasticity associated with

their proteins that participate in diverse metabolic pathways.

Finally, we suggest that one of the strategies by which prokaryotic

organisms contend with changing environments is by increasing

the number of multifunctional enzymes, which can confer to the

cell the ability for adaptation to different ecological niches.

Results

Enzymes Follow a Power-law Behavior in Relation to
Genome Size
In order to assess the abundance of the enzymatic repertoires in

Bacteria and Archaea genomes, 794 non-redundant organisms were

analyzed by using diverse bioinformatics tools and database

assignments. In this work, enzymes were selected on the basis of

their E.C. numbers, PFAM, COG and Superfamily annotations in

addition to the annotations deposited in the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database. Once the enzyme

dataset was selected, the correlation between the number of

detected enzymes and genome sizes (open reading frames

[ORFs]), based on calculation of Spearman’s rank correlation

coefficient, was analyzed. From this analysis, the occurrence of

enzymes correlated with the genome size, with a strong Spear-

man’s coefficient of 0.93 (p-value ,2.2e216). To determine

whether there is a linear function between the distribution of

enzymes and genome size, a standard residual plot analysis was

performed. The residual analysis showed that the distribution of

the enzymes with respect to genome size was not linear but

followed a power-law behavior, with a correlation coefficient (R2)

of 0.99 between data and the power-law fitting function (Figure 1).

The exponent in the power-law function of our model was 0.78,

which is within the range of exponents of protein families with

functions related to metabolism or transport, as well as DNA

replication and repair, as previously reported [11–14]. To

reinforce the notion of the power-law behavior previously

described, a sliding-window boxplot analysis was accomplished

by using five different sets of windows (11, 22, 33, 44, and 55) with

different length sizes (836, 418, 278, 209, and 167 ORFs). From

this analysis, exponents in the power-law ranging from 0.74 to

0.80 were obtained, being consistent with the complete data set,

suggesting that our analysis is robust (Figure S1 and Table S1).

When the power-law fitting function was calculated using the

enzymatic repertoires in Bacteria and Archaea as independent data

sets, similar results were found (data not shown). To discard the

possibility of overrepresentation of sequenced bacterial genomes in

the observed results or an uneven sampling of genomes with

different size-ranges, we analyzed the abundance and distributions

of enzymes in equivalent sets of Bacteria and Archaea, i.e., 89

bacterial genomes were selected with similar genome sizes to the

archaeal genomes considered in this study (referred to here as the

‘‘bacterial subset’’). In table 1 we show the properties of the

bacterial subset and the archaeal genomes. From this analysis,

results similar to those for the complete data set were obtained,

reinforcing the notion of a power-law behavior of enzymatic

capabilities of prokaryotic genomes, in contrast to the linear model

previously proposed [13].

Archaea organisms contain a smaller repertoire of
enzymatic proteins and metabolic pathways than
Bacteria
In order to compare the repertoire of enzymatic proteins in all

the prokaryotic genomes, the content of this class of proteins was

exhaustively evaluated. From this analysis, it was determined that

bacterial and archaeal genomes exhibit a different average number

of enzymes, 764 and 487, respectively (Wilcoxon test, p-value

,2.2e216) (Table 1). Hence, 1.5 times more enzymatic sequences

in bacterial than in archaeal genomes were detected. When the

proportion of enzymes was obtained in relation to the genome size,

Table 1. Comparative analysis of enzymes of Archaea and Bacteria genomes.

Parameter Bacteria Bacterial subset# Archaea

Total of available sequenced genomes 705 89 89

Average of ORFs 3,314 2,280 2,292

Average of enzymes 764 598 487

Proportion of enzymes/ORFs* 25.15 27.01 22.38

Average of unique metabolic pathways per organism 71 66 58

Number of different superfamily domains 364 336 287

Number of different superfamily domains/total of superfamily
domains*

32.28 36.18 38.9

Average of mutifunctional enzymes 68 55 41

Number of multifunctional enzymes/total of enzymes* 8.8 9.2 8.3

Spearman’s rank coefficient 0.93 (p-value ,2.2e216) 0.84 (p-value ,2.2e216) 0.82 (p-value ,2.2e216)

Values are averages for each group presented.
*: Expressed as a percentage; Spearman’s rank correlation coefficient between enzymatic sequences and genome size. The superfamily domains were obtained from
Superfamily database [18].
#: Bacterial subset contains 89 genomes with similar sizes (ORFs) as their archaeal counterpart.
doi:10.1371/journal.pone.0069707.t001

Increments and Duplications of Enzymes and TFs
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according to the ratio of enzymatic sequences versus total ORFs

per genome, around one-quarter of the bacterial genes encode for

enzymes (25.1%), whereas in Archaea this proportion is approxi-

mately one-fifth of the genome (22.3%) (Table 1). A similar result

was found when a histogram of the fraction of metabolic enzymes

comparing Archaea and Bacteria within a bin of roughly equal

genome sizes was achieved (Figure S2, top). To exclude a possible

bias as a consequence of the number of bacterial genomes, the

bacterial subset was evaluated, identifying an average of 598

enzymes, versus 487 in archaea genomes, being statistically

significant (Wilcoxon test, p-value= 2.44e206). The proportion of

the enzymatic content showed an increase to almost one-third for

the bacterial subset (27%), which was statistically different from

the value previously obtained for the archaeal genomes (Wilcoxon

test, p-value = 8.486e206) (Table 1). These findings not only

suggest more diversified metabolic capabilities in Bacteria, which

can carry out cellular processes from a wide range of metaboliz-

able substrates and can be found in ecological niches where the

variables may show high fluctuations, but also that archaeal

metabolism might be constrained to particular environmental

conditions, where variables such as temperature, salt concentra-

tion, and pH can be extreme and metabolizable substrates are

limited. For example, the methanogenic Archaea, for which the

number of substrates used to carry out methanogenesis may be

restricted to CO2/H2, formate, and/or acetate [15] and archaeal

organisms with an only hydrogen-based energy metabolism in

more stable, although extreme, environments [16].

In addition, we evaluated whether the low enzyme content

observed in Archaea is related to the small number of metabolic

pathways. To determine the number of metabolic pathways in all

the genomes, an account of unique metabolic pathways annotated

within the KEGG database for each organism was obtained. From

this analysis, the average numbers of metabolic pathways detected

were 66 for the bacterial subset and 58 for the archaeal genomes

(Wilcoxon test, p-value = 2.252e208) (Table 1), suggesting a lower

proportion of metabolic pathways in Archaea than in Bacteria. It is

interesting to note that the carbohydrate, amino acids and

cofactors, and vitamins metabolisms are the most prevalent in all

the bacterial and archaeal genomes. On the contrary, biosynthesis

of other secondary metabolites, glycan biosynthesis, and nucleo-

tide metabolism are underrepresented in the organisms analyzed

here (Figure S2, bottom). Another important question asked was

whether there was an association between all the enzymes and

their corresponding metabolic pathways, i.e., the proportion of

shared enzymes in more than one pathway. In this address,

enzymes associated with three pathways were identified in higher

proportions in Bacteria than in Archaea, and the opposite was

observed for enzymes that participate in two or six pathways, i.e.,

such enzymes were more frequent in Archaea than in Bacteria

(Figure S3). Thus, the low enzymatic repertoire identified in

Archaea could be associated to the low number of metabolic

pathways reported in the databases for these organisms, where the

apparent lack of enzymes could be compensated by the increment

in the proportion of enzymes participating in two or six pathways,

increasing the betweenness in this cellular domain. In this context,

it has been reported that metabolic pathways present in Archaea

have a high betweenness, with more central pathways located at

the cross-points of many pathway pair communications [17],

reinforcing our previous observations.

To elucidate the individual contribution of the broad enzymatic

classes (E.C. assignments) to the power-law behavior previously

described, we analyzed their abundance in all the genomes. From

this analysis, it was evident that the three E.C. classes most

represented in all the genomes corresponded to transferases (E.C.

2), hydrolases (E.C. 3), and oxidoreductases (E.C. 1). Indeed, these

three classes contributed significantly to the distribution trend

previously described. In contrast, lyases (E.C. 4), ligases (E.C. 6),

and isomerases (E.C. 5) were less abundant (Figure 2). In archaeal

genomes, the oxidoreductases are the second most abundant

group of enzymes, unlike bacterial genomes, in which the second

most abundant class corresponds to the hydrolases (Figure S4).

The increase of enzymes associated with redox processes in

archaeal genomes reflects the footprint of inhabited environments

associated with these organisms, such as anoxic environments, for

which the organisms have developed the ability to use hydrogen-

based energy metabolism [16]. In this regard, the electron transfer

process for energy use (consumption and generation) associated

with oxidoreductases and its metabolite electron carriers,

Figure 1. Abundance of enzymes as a function of genome size. On the x axis, genomes are sorted by the number of ORFs. The abundance of
enzymes for each genome is shown on the y axis. Each dot corresponds to one genome. Bacteria and Archaea genomes are indicated by gray and
filled or red and empty dots, respectively. The power-law function (black line) and R2 adjustment are also indicated y=1.1378x0.7883.
doi:10.1371/journal.pone.0069707.g001

Increments and Duplications of Enzymes and TFs
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NAD(P)(H) and FAD(H), are favored in archaeal organisms as a

response to the ecological environments they inhabit, in which

energy and matter use are optimized.

Structural Domains are More Diverse for Archaeal than
Bacterial Enzymes
To gain insights into the diversity of enzymes detected in

bacterial and archaeal genomes, the structural domains associated

with the enzymatic repertoire were evaluated using the superfam-

ily domains assignments of Superfamily database [18]. The

proportion of different superfamily domains in relation to the

total superfamily domains detected per genome was calculated.

From this analysis it was found that in average the fraction

represented in the bacterial subset was 36%, whereas in Archaea

was 39% (Wilcoxon test, p-value = 5.004e205). Table 1. Therefore,

a lower proportion of different structural domains was identified in

Bacteria than in Archaea. The higher proportion of different

structural domains in Archaea may be an associated mechanism

to compensate for the relatively low abundance of identified

enzymes, allowing greater participation of archaeal enzymes in a

higher number of metabolic pathways, as described below, which

may contribute to the betweenness of metabolic networks [17].

Enzyme Promiscuity, a Fitness Mechanism of an
Organism to Adapt to its Ecological Niche, is Higher in
Bacteria than in Archaea
Considering the differences between the numbers of enzymatic

proteins and metabolic pathways, in Bacteria and Archaea previously

described, we decided to evaluate whether an increase in enzymes

with multiple functions, i.e., promiscuous enzymes that exhibit

more than one different E.C. number, compensates for the low

number of enzymes in Archaea. Multifunctional enzymes have been

considered a mean for evolution of metabolic pathways. From

multifunctional enzymes that catalyze consecutive steps, the

pathways might have evolved by duplication and diversification

of these precursors to form specific and efficient enzymes that

catalyze only one step in the new pathway [19,20]. Based on this

approach, the number of promiscuous enzymes identified was

higher, on average, in the bacterial subset (55) than in Archaea (41)

(Wilcoxon test p-value = 0.0023) (Table 1). When the fraction that

represented the promiscuous enzyme sequences in relation to all

enzymes by organism was evaluated, a significant difference in the

ratios for the bacterial subset (9.15%) versus Archaea (8.3%) was

found (Wilcoxon test, p-value= 0.034). The number of promiscu-

ous enzymes in the bacterial subset preserved the difference

observed in the analysis of all bacterial genomes, i.e., there was a

greater number of promiscuous enzymes in bacterial than in

archaeal organisms. A greater number of promiscuous enzymes in

Bacteria could compensate for the fact that these organisms have a

lower percentage of different structural domains than Archaea, as

previously discussed. In this regard, Bacteria can perform a great

number of enzymatic reactions without the need to change an

entire domain, by modifying specific positions that change the

catalytic activity or the substrate recognition of the enzyme.

Mutation of specific positions in the metabolic genes can lead to

the development of new catalytic activities in the encoded

enzymes, which is a fast evolutionary mechanism in comparison

to modifications in the entire domain; thus, Bacteria can respond

more quickly to fluctuations in variables at their ecological niches.

An example of duplication and divergence of enzymes that

conserve the same domain is observed in the biosynthesis of

tryptophan and folate molecules in Escherichia coli. The pathways

involved in the first step of the biosynthesis of tryptophan and

folate start off with the same substrate, chorismate, but the final

product is completely different. The trpE and trpG genes encode

proteins involved in the conversion of chorismate to anthranilate

in the tryptophan pathway, while the products of the pabA and

pabB genes, paralogues of trpE and trpG, carry out the conversion of

chorismate to p-aminobenzoate [21–23].

Figure 2. Abundance of different E.C. classes in Bacteria and Archaea genomes. On the x axis, genomes are sorted by the number of ORFs.
The abundance of the six E.C. classes is shown in y axis.
doi:10.1371/journal.pone.0069707.g002
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In addition, it has been observed that generalist enzymatic

reactions (i.e., of promiscuous enzymes) have low metabolic fluxes,

while specialist enzyme reactions (i.e., of specific enzymes)

maintain high metabolic fluxes, as estimated for the steady-state

metabolic flux rates for E. coli enzymes [24]. Similarly, when the

regulatory mechanisms, which act on generalist and specialist

enzymes, were quantified, less regulation in the generalist enzymes

was found, while allosteric, uncompetitive, and noncompetitive

regulatory interactions were enriched among specialists [24].

These data complement our observation of the importance of

promiscuous enzymes in bacteria as an evolutionary mechanism of

fitness to different ecological niches, from the metabolic perspec-

tive. The presence of more promiscuous enzymes allows for

internal metabolic fluxes that can vary according to environmental

fluctuations; therefore, there is less regulation, which allows faster

reprogramming of gene expression. In contrast, specialist enzymes,

which are found in greater numbers in Archaea, maintain high

metabolic fluxes with a higher sensitivity to environmental changes

and are identified in more stable and even extreme environments.

TF Distributions Follow a Similar Trend as Enzymatic
Proteins
In this section, we describe how the number and diversity of

DNA-binding TFs can also influence cellular complexity. Bacterial

and archaeal genomes were analyzed in a similar fashion as for the

enzymatic repertoires, i.e., numbers of TFs were evaluated as a

function of genome size. From this analysis, the Spearman’s rank

correlation coefficient was 0.91 (p-value ,2.2e216), showing a

strong positive correlation between TFs and genome size

(measured by ORFs number). Residual analysis showed that the

distribution of TFs detected with respect to genome size was not

linear, and the function that best fitted the distribution was the

power-law (R2=0.99) (Figure 3). Similarly, the power-law fitting

function exponent (1.80) was within the range reported in other

studies for protein families classified as regulators [12,13]. When a

sliding-window boxplot analysis was achieved, the consistence of

the power-law fitted function was confirmed (Figure S5).

Therefore, TFs increase in their number as the size of the

genome increases. Although in small genomes the number of TFs

is lower than in larger genomes, mainly in those described as

intracellular or opportunistic pathogens [25], the higher number

of TFs in larger genomes does not necessarily imply diversity of

families, but instead an increase in the size of some families of TFs,

as it has been previously described [26,27]. This increase in the

number of any given family seems to stem primarily from lineage-

specific proliferation of families of paralogous genes [12,13]. In

addition, recent results suggest that a few regulatory elements

identified in small genomes could compensate for the regulation of

the entire genome, with an increase in the number of DNA-

binding sites per element, in contrast to the high number of

elements identified in large genomes, which control a smaller

proportion of DNA-binding sites, on average [28].

TF Content and Domain Diversity
In this section we compare the repertoires of regulatory proteins

between Bacteria and Archaea in terms of their TF contents and

structural diversity (superfamily domains). From this analysis, it

was found that the bacterial and archaeal genomes exhibited a

different average number of TFs, 150 and 73, respectively

(Wilcoxon test, p-value = 2.11e28) (Table 2). When the proportion

of TFs was analyzed with respect to the total genome, almost 4%

of genes encoded TFs in bacterial genomes, while in archaeal

genomes around 3% of the gene products were TFs. When the

analysis was performed with the bacterial subset, neither the

number nor the proportion of TFs showed a significant difference

(Wilcoxon test, p-value .0.05) (Table 2). To determine the

diversity of structural domains in TFs, the identification of

domains annotated within the Superfamily database was carried

out. The results showed that the number of different superfamily

domains in bacterial TFs is greater than in archaeal regulators,

with average numbers of 28 and 20, respectively. However, when

the proportion of different superfamily domains associated to TFs

was calculated in relation to all superfamily domains present in

each genome, a higher proportion of different superfamily

domains in the archaeal genomes was found, with an average of

28% different domains, versus Bacteria, with an average of 24%

(Wilcoxon test, p-value = 1.39e210) (Table 2). When the structural

domains analysis was performed with the bacterial subset, the

Figure 3. Abundance of TFs as a function of genome size. On the x axis, genomes are sorted by the number of ORFs. The abundance of TFs for
each genome is shown on the y axis. The power-law equation (black line) and R2 adjustment are also indicated. y= 4.44e-05x1.8044. Gray filled points
represent Bacteria; red empty points represent Archaea.
doi:10.1371/journal.pone.0069707.g003
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proportion of different superfamily domains did not differ

substantially from the Archaea proportion. From the data obtained

in our analysis of the content and diversity of superfamily domains

in TFs, a bias was observed, probably as consequence of the

smaller number of sequenced archaeal genomes. However, it has

been reported an apparent deficit of TFs in archaeal genomes with

similar sizes to the bacterial genomes, such as those of

Methanosarcina acetivorans and Haloarcula marismortui with a similar

sizes to the bacteria E. coli K12 but with a lower proportion of TFs

[15], which agrees with our data analysis using the full set of

bacterial genomes. One possibility for the apparent lack of proteins

dedicated to regulation of gene expression in Archaea is that these

proteins form various multimeric complexes, as happens in

eukaryotes and, depending on which complex is formed, the

target sites in the DNA will be different [15]. This possibility of

forming complex regulatory structures may be favored by the

higher proportion of diversity of structural domains present in

Archaea, as found in our study and mentioned above, as such

diversity would increase the number of different combinations and

would avoid repetition of the elements that make up the complex.

Rates of the Incremental Changes in Enzymes Numbers
and TFs are Different in Prokaryotic Genomes
Based on the previous results, the abundance of enzymes and

TFs increase according to genome size. These increases in

metabolic and regulatory contents of the genomes seem to be

coupled, so that an increase in the number of metabolic enzymes

in a genome is usually accompanied by additional new TFs

regulating these enzymes [27]. In order to study the coupling

between the metabolic and regulatory contents, the rates of

incremental changes in the numbers of enzymes and TFs with

respect to the increase in genome complexity were analyzed, based

on the calculation of the derivative of the power-law fitting

function adjusted to the abundance of enzymes and TFs previously

described. From these data, it was identified that the rate of

incremental changes in metabolic enzymes diminishes as the

genome size grows with an abrupt drop in genomes with less than

1,500 ORFs (Figure 4). Above this level, the rate follows a slight

decay with a gentle slope. In contrast, the rate of incremental

changes of TFs increases as a function of the genome size

(Figure 4). The acquisition rate for TFs identified here is lower

than that previously reported by Ranea et al. [13] for families of

regulatory proteins. This variation could be due to the data sets

from which the models were obtained, as our set of regulatory

sequences was minor due to the specificity in the identification of

TFs, while Ranea et al. [13] employed superfamilies for counting,

i.e., we considered TFs as those proteins that activate or repress

gene expression but do not belong to the transcriptional basal

machinery, and in consequence sigma factors, antiterminators,

terminators, and sensor proteins, among other proteins were

excluded from the resulting data set.

In this context, we found that the maximum rate of incremental

changes for enzymes corresponded to genomes with less than

2,000 genes, while genomes above that size acquired enzymes at a

slower speed. Maslov et al. [10], propose that the number of

added enzymes (‘‘tools’’) systematically decreases with the propor-

tion to which the organism has already explored the universe of

available metabolic reactions and thus, indirectly, with the size of

its genome, which agrees with the decrease in the rate of

incremental changes in numbers of enzymes found in this study.

Several approaches to estimate the upper bound of the gene

number have been proposed, such as the viewpoint of ‘‘micro-

economic principles’’ where the acquisition of enzymes is set equal

to the ‘‘bacterial revenue’’ and the acquisition of TFs with a

‘‘logistical cost’’, and then finding the point of maximization

between the metabolic complexity (‘‘revenue’’) and the number of

regulators (‘‘logistical cost’’) [13]. Based on a similar approach, the

intersection between the derivatives for enzymes and TFs was

identified at 9,659 genes. At this point, the metabolic gain is equal

to expenses for the increase in regulation; after this point, the

regulatory complexity grows faster than metabolic complexity

every time genome complexity increases. Although the average

fraction of the genome that encoded enzymes (25%) was greater

than for TFs (4%); when analyzing the proportion of the genome

that encodes enzymes and TFs with respect to genome sizes, a

decrease in the enzyme fraction and an increase in the TF fraction

Table 2. Comparative analysis of TFs of Bacteria and Archaea.

Parameter Bacteria Bacterial subset# Archaea

Number of TFs 150 81 73

Number of TFs/ORFs* 3.9 3.31 3.16

Number of different superfamily domains 28 23 20

Number of different superfamily domains/total of superfamily domains* 24.88 29.27 28.15

Values are averages for each group presented.
*: Expressed as a percentage. The superfamily domains were taken from Superfamily database [18].
#: Bacterial subset contains 89 genomes with similar sizes (ORFs) as their archaeal counterpart.
doi:10.1371/journal.pone.0069707.t002

Figure 4. Derivatives of enzymes and TFs abundances. The
increments of enzymes and TFs ORFs (y axis) were estimated from the
derivatives of metabolic (solid green line) and regulatory (blue dashed
line) functions, calculated as a function of the genome size (x axis).
doi:10.1371/journal.pone.0069707.g004

Increments and Duplications of Enzymes and TFs
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were found, consistent with acquisition rate previously described

for enzymes and TFs. Analysis of the fraction of the genome that

represented enzymes in three different classes of genome size

(,3,000, between 3,000 and 6,000, and .6,000 genes), shows a

decrease in enzyme content when moving from genomes

containing fewer than 3,000 genes to those larger than 6,000

genes. Conversely, the fraction of TFs per genome increased from

small genomes (below 3,000 genes) to larger genomes (greater than

6,000 genes). The differences between the fractions of enzymatic

proteins and between TFs fractions with respect to the genome

sizes showed a statistically significant difference (Wilcoxon test, p-

value = 2.752e212). This finding agrees with that reported

previously by Cases, et al [25], whose study showed that larger

genomes harbor more TFs per gene than small ones while there is

a greater overrepresentation of small-molecule metabolism

enzymes per gene in smaller genomes than in large genomes.

This inverse behavior between rate of TFs and enzymes

increments can be explained within the context of cell capacity

compensation, where a decrease in the rate of acquisition of new

enzymes of prokaryotes in relation to an increase in genome size is

compensated by an expansion in the regulatory ability to optimize

matter acquisition and processing of energy.

Increment Rates of Duplicated Sequences Differ between
Enzymes and TFs in Prokaryotes
Gene duplication has been described as a source of raw material

for the generation of new functions in prokaryotes. In models

designed to explain the change in the sizes of protein families with

respect to the sizes of their genome, duplication processes have

been reported to play an important role. To evaluate the effects of

duplication processes in the repertoire of enzymes and TFs in all

the genomes, we applied a Blastp ‘‘all-against-all’’ search

sequence, as described below in Material and Methods. From

our data, we found an average of 242 duplicated sequences among

enzymes and 72 among TFs per genome, i.e., 3 times more

duplicated enzymes than duplicated TFs. When the number of

duplicated sequences in relation to the total enzymes and TFs per

genome was expressed as a proportion, we found that on average

28% of total enzymes arise by a duplication process, whereas in

the case of TFs almost 40% emerge by duplications. To determine

whether there was a correlation between the duplicates and

genome size, Spearman’s rank correlation test was applied. The

occurrence of duplicate enzymes strongly correlated with genome

size, with a Spearman coefficient of 0.94 (p-value ,2.2e216), while

the Spearman’s rank correlation for duplicate TFs was 0.84 (p-

value ,2.2e216); in both cases, there was a strong correlation

between the variation in the number of duplicate sequences and

genome size. The abundance of the duplicated sequences of

enzymes and TFs grows as the genome size increases; where the

best function fitted was a power-law with R2 values of 0.9 for

enzymes and 0.8 for TFs, and the exponent in the power-law

fitting function of duplicated enzymes was 1.5, while that for TFs

was 2.28 (Figure 5).

By analyzing the rate of increments of redundant enzymes and

TFs, which were derived from the power-law function fitted to the

data, it was found that the rates of duplicates were positive for both

enzymes and TFs. As the size of the genome increased in

organisms, a greater increment of duplicated sequences for TFs

than for enzymes was observed. Thus, the TFs and their

regulatory interactions have a greater plasticity and robustness

than the enzymes and their metabolic interactions, which have a

limited redundancy, suggesting a limited robustness and adapt-

ability to external factors [29]. Higher values in the increment of

duplicated sequences in TFs raise the possibility of generation of

functional divergence, which can then lead to integration of new

molecules into existing circuits in transcriptional regulation

networks or can create new ones [28]. Finally, it has been

reported that massive duplication followed by shuffling and

probably HGT, all have significant influence on the evolution

on the architecture of regulatory networks in bacteria [30].

Therefore, only 64 (13.85%) out of 462 clusters of paralogous

detected in the total proteome of E. coli K12, and 106 (21.85%.)

out of 485 clusters in Bacillus subtilis, contain at least one member

identified as consequence of HGT [30], suggesting that duplica-

tions impact more significantly the diversity of metabolic and

regulatory networks in prokaryotes than HGT events, as

previously described.

Discussion

To understand the metabolic and regulatory diversity in

prokaryotes, 794 non-redundant genomes were exhaustively

analyzed. Enzymes and TFs were identified based on databases

annotations (KEGG, COGs, PFAM and Superfamily) and HMM

searches. The analysis showed that the increment rate in the

number of enzymes is negative, i.e., it diminishes with increasing

genome size, and the number of acquired enzymes is always lower

in large genomes than in small ones. The loss of enzymatic

diversity is offset by an increase in the ability of regulation to allow

a better acquisition of matter and processing of energy. On the

contrary, a positive incremental changes rate of TFs was identified.

The increases in the number of TFs coordinate and couple the

expression of most genes and cellular functions, increasing as the

metabolic and regulatory interaction networks in prokaryotes

become more complex. The inverse behavior of the incremental

change rate of enzymes and TFs leads to an intersection of the

derivative at 9,659 genes, suggesting that this is the genome size to

which a prokaryotic organism can grow while maintaining

maximum metabolic variability at a minimal regulation cost, after

this point the regulatory complexity increases faster than the

metabolic complexity. TFs have a low number of duplications, in

contrast to the apparent high number of duplications associated

with enzymes. Despite the greater number of duplicated enzymes

versus TFs, the rate at which duplicates appear is higher in TFs

than enzymes. One of the probable strategies of bacterial and

archaeal organisms to contend against changing environments is

increasing the number of multifunctional enzymes, which can

confer to the cell capacities of adaptation to different ecological

niches. The ability of multifunctional enzymes to be less sensitive

to changes in the variables of the ecological niche and their

decreased regulation, which allows them to ‘‘rewire’’ their genetic

circuits, is more apparent in Bacteria, which are found in

environments with greater fluctuations than in Archaea. Overall

the analyses presented here will not only contribute to improve our

understanding of the design on metabolism and regulation of gene

expression but also to support the basis for a comprehensive

understanding of how prokaryotes are evolving and modeling their

metabolic and regulatory networks. Although we understand that

enzymes and TFs analyzed in this work were detected by

computational methods and database annotations and probably

we do not cover all the possible universe of these proteins (included

those experimentally characterized), observations discussed in this

study should be valid for a wide-range of prokaryotes as for most of

other genomic studies [13,14,31].
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Material and Methods

Proteomes Analyzed
The complete list of bacterial and archaeal genomes evaluated

was downloaded from the NCBI ftp server (ftp://ncbi.nlm.nih.

gov/genomes). We considered annotated genes as those genes with

ORFs that encode predicted protein sequences (the proteome) in

all organisms. In order to exclude any bias associated with

overrepresentation of organisms that have been completely

sequenced and are associated with particular divisions, non-

redundant genomes were considered. In this work, we refer to

non-redundant genomes as representative bacterial and archaeal

species (Table S2). In brief, through the concatenation of 21

conserved proteins across diverse sequenced genomes [32], a

single data set for phylogenetic analysis was constructed [33]. By

eliminating genomes located more closely together on a phyloge-

netic tree, 794 genomes phylogenetically distant from each other

were obtained, including 705 corresponding to Bacteria and 89 to

Archaea. The phylogenetic tree reconstruction was based on a

maximum likelihood method and was taken from the database of

the Computational Genomics Group (http://www.ibt.unam.mx/

biocomputo).

Identification of Enzymatic Proteins
For each protein sequence, we identified the annotation of an

E.C. class number, for which all the enzymes have been

functionally classified, by using the KEGG database [34]. Then,

for each protein associated with an E.C. class, the presence of both

functional and structural domains, based on PFAM [35], COG

[36], and Superfamily [18] assignments, were defined. Therefore,

only proteins that exhibited domains in the three databases were

considered in this study. Although our inclusion criterion was quite

strict, we were only interested in enzymatic sequences with

identified metabolic contexts and functional assignments (Table S3

and S4).

Identification of TFs
To identify the repertoire of TFs in all bacterial and archaeal

sequenced genomes, we used a combination of information

sources and bioinformatics tools. We identified and evaluated all

the TFs in three bacterial models, E. coli K-12, Bacillus subtilis, and

Corynebacterium glutamicum, from three different databases, Regu-

lonDB version 6.0 [37], DBTBS version 5.0 [38], and Coryregnet

version 4.0 [39], and their domain assignments were obtained

from the Superfamily database. Posteriorly, associated TFs were

identified in all the complete genomes, based on specific hidden

Markov model searches and from the regulators deposited in the

DBD database and Superfamily database. Those with an E-value

of less than 10e203 and a coverage $60% relative to the model

were considered in our analysis (Table S3 and S4).

Evaluation of Duplication Events
Paralogous protein identification was carried out under the

criteria previously described by Pushker et al., [40,41,42], by

which paralogues are defined as protein-coding sequences within a

fully sequenced genome with $30% sequence identity, $60%

coverage, and an E-value cutoff of 10e25. Therefore, for each

single proteome, a BlastP [43] all-against-all search was per-

formed, selecting sequences that satisfied the criteria described

above. Once duplicated sequences in each genome were identified,

we cross-checked the information with the list of enzymatic

Figure 5. Abundance of duplicated enzymes and TFs as a function of genome size. The total numbers of all duplicated enzymes and TFs
were calculated for each species (y axis) and plotted against the sizes of the 794 species, in ORFs (x axis). The power-law equation and R2 adjustment
are also indicated. The power-law fitting function is shown by the black dashed line (enzymes) and the red solid line (TFs). Gray filled points represent
enzymes; red empty points represent TFs.
doi:10.1371/journal.pone.0069707.g005
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sequences of each organism in order to identify those enzymes that

came from duplication events.

Statistical Analysis
The correlation between genome size, measured in number of

ORFs, and enzymes, TFs, and duplicated proteins was calculated

using Spearman’s rank correlation coefficient. Standard residual

plot analyses to determine whether a distribution was linear were

also performed. Finally, a Wilcoxon test, for comparing means,

and linear regression analyses were performed using the R

programming language for statistical analysis [44].

Supporting Information

Figure S1 Sliding-window boxplot of detected enzymes
in Bacteria and Archaea. 11 windows with a length of 836
ORFs were considered. 11 windows with a length of 836

ORFs were considered. In x axis is the number of windows. In y

axis is the number of enzymes. The mean of each window is

displayed with a red circle and the fitted power-law function is

shown with a black line. The number of windows was calculated

by using the Sturges’s formula, which is used to group many

different values in equal classes: k=1+ log2N where k is the

number of equal classes and N the number of data, rounding to

the nearest integer, the k value. Then, the width of classes is

determined with the following equation: c=R/k where R=high

value – low value (Genome size). Values resulting from the

application of the above formulas were k=11 and c=836, thus 11

windows without overlaps were used with a width of 836 ORFs.

Subsequently, the number of windows was increased in 11,

obtaining 22 windows with a width of 418 ORFs. This procedure

was performed three times, increasing the number of windows in

11. Based on this approach three more sets of 33, 44 and 55

windows with a width of 278, 209 and 167 ORFs, respectively,

were obtained.

(TIF)

Figure S2 top) Comparing the percentage of enzymes
into eleven size classes. As in figure S1, 11 windows with a

length of 836 ORFs were considered. In x axis is the number of

genome sizes classes. In y axis is the percentage of enzymes per

class. Numbers upper each bar denotes the average of enzymes per

class. In light gray are the bacterial genomes, dark gray are the

bacterial subset and in white color are the archaea genomes.

Figure S2. bottom) Average of metabolic KEGG pathways per

genome. In x axis are the functional KEGG categories. In y axis

are the mean of metabolic KEGG pathways by organism. In light

gray are the bacterial genomes, dark gray are the bacterial subset

and in white color are the archaea genomes.

(TIF)

Figure S3 Percentage of enzymes associated with two or
more metabolic pathways. In x axis is the number of

pathways. In y axis is the percentage of enzymes associated to each

pathway class. In light gray are the bacterial genomes, dark gray

are the bacterial subset and in white color are the archaeal

genomes.

(TIF)

Figure S4 Percentage of enzymes classified by their
E.C. numbers. In x axis are the six E.C. classes. In y axis is the

percentage of enzymes associated to each class. In light gray are

the bacterial genomes, dark gray are the bacterial subset and in

white color are the archaeal genomes.

(TIF)

Figure S5 Sliding-window boxplot of detected TFs in
Bacteria and Archaea. 11 windows with a length of 836 ORFs

were considered. In x axis is number of windows. In y axis is the

number of TFs. The mean of each window is displayed with a red

circle and the fitted power-law function is shown with a black line.

(TIF)

Table S1 Power-law functions fitted to different sliding-
windows. Nomenclature is as follows: Column 1 denotes the

number of windows considered and their size in ORFs; Columns 2

and 3 shown power-law function and R2 associated to enzymes;

and columns 4 and 5 shown power-law function and R2 associated

to TFs.

(DOCX)

Table S2 Genomes analyzed in this work. 794 bacterial

and archaeal genomes were considered in this work.

(DOCX)

Table S3 Prokaryotic genomes, Transcription factors,
Enzymes and their respective annotations are provided.
The information of genomes, transcription factors and enzymes is

placed in a tabular format. In the case of enzymes the directory

DatasetS2_enzymes contains 794 files, one per genome. The

information is organized as in follows: KEGGID: identifier of gene

from KEGG database; NCBIGI: identifier from NCBI database;

ECS: E.C.s numbers from KEGG; PfamID: identifier of Pfam

domain; COGID: identifier of COG domain; SFamilyID:

identifier of superfamily domain. For the case of TFs the directory

DatasetS2_tfs contains 794 files, one per genome. Nomenclature is

as follows: KEGGID: identifier of gene from KEGG database;

NCBIGI: identifier from NCBI database; PfamID: identifier of

Pfam domain; SFamilyID: identifier of superfamily domain. The

file orgsIdName.txt contains the names of the organism and their

KEGG-ID identifiers.

(7z)

Table S4 Scripts in Perl to obtain the equivalents GI-
NCBI or ID-KEGG identifiers from the KEGG database.

(ZIP)
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