MODELING SOME DYNAMIC PHENOMENA WITH MAPLE6 IN A CAS-BASED MATH
CLASS

Patricia E. Balderas Canas, Jacinto Mendez Banda, and
Xavier Rojel Martinez
Facultad de Ingenieria, Universidad Nacional Autéonoma de México

Abstract

We are interdisciplinary members of a research team supported by CONACYT #41596-Y, Mexico.
We pursuit some math teaching guidelines for modeling courses at a main Mexican University. At
the Summer Academy, we will illustrate some classroom activities from CAS-based curricula and
teaching methods approach. The modeling problem is get the valve diameter of a pipeline entrance
as a result of a decision making process from the waste water flow that is poured into one tank of a
waste water treatment process. We designed two Maple6 programs to generate a data table of the
water flow historical records, the correspondent residence time and the valve diameter. The
residence time is an intermediate variable and the valve diameter is the key decision. This is very
important because is the control for sewage plant. We think that this is the type of problems that we
should discuss in a CAS-based teaching of applied mathematics on transport phenomena.

Introduction

Perhaps, many of us as mathematics teachers have listened that some curriculum boards try to
increase the number and the extent of math courses of engineering curricula, and from professional
engineering activities, some engineers judge that math curricula is huge. So, curriculum boards

should find a balance between those points of views.

In addition, there are still some methodological debates related with an extensive use of specific
software for math courses. Both problems aloud us to look for some math teaching guidelines,
particularly with modeling courses for engineering curricula at The National Autonomous

University of Mexico.

Indeed, undergraduate teaching has a huge challenge when its main objective is promote student’s
conceptual change and math professor is the promoting agent of that conceptual change. Modeling

is the mean by which this teaching would reach that objective.

Curricula and teaching contexts

We analyzed curricula from three points of view: thematic content, pertinence and coherence. First,

did thematic content reflect the relation between professional activities and disciplines? Second,

was engineer profile pertinent to professional requirements? And third, was math modeling

CONTS

background of math professors coherent with resources (technology and material) available to
institution? Those questions address our research activities. Somewhere, we report some
coincidences, repetitions and lacks of modeling topics in mathematics curricula at undergraduate

and graduate levels (Balderas, et.al. 2003).

Simultaneously, we did analyses of postgraduate teaching and found that the teaching trends were
based on case discussions; most of them came from professional experience. In those cases, we

remark the priority to systematize that teaching at the time teacher’s research on the same area.

Following the third point of view, we designed some activities based on two Maple6 programs (see
the Annex) that produce historical and numerical data from hydraulic flow inputs. The modeling
problems were to get residence times and valve diameters (a cutoff valve) of a pipeline entrance as
a result of decision making processes from the waste water flow that is poured into one tank of a
waste water treatment process. Residence times and valve diameters (of the outlet size) were the
outputs. The residence time is an intermediate variable and the valve diameter is the key decision.

This is very important because is the control for sewage plant.

Model building

Our team visited three wastewater treatment plants. Those plants were built as part of a huge project
of Puebla State Government. The treatment process is represented in figure 1. It depicts the main
steps of treatment process of wastewater that were our focus. A first step is collect wastewater
(1600 cubic meters). Second, after the water is pumped at 1.2 cubic meters by second, a fine sifting
eliminates solid waste and feeds a deposit where grease and oil are removed by a mechanical

device. At the same time, sand is removed by decantation.

Then, the organic material is separated from water by a flocculation process that produces sludge.
Next, the sludge is sent to an anaerobic digestion process, and a chlorination process treats the
water, free of organic material. After this last process, a final product is gotten that we name treated

water.

The treatment process is conceived as an open and continuous system, and it is graphically
represented in Figure 1. The numbered processes from (1) to (3), as black boxes, were modeled

with the rule input — treatment — output. The first Maple6 program, for residence times (see the

CONTS

CONTS

Annex), corresponds to the process (1) as a function of flow. The second program shows draining

times vs. outlet sizes, in process (2).

Flow
Gross sifting -
Input h2 M " .
| 12 ™ :
~
Pump /s Fine sifting | Grease () | JFlocculation | - Sludge
removal (2}
J/ Lom
Coliector h Chlarination
- Plastics aand (3 Water
1600
de agua 14 P \L
Finizhed
product

Treated water

Figure 1. An open and continuous system of sewage treatment

In order to build a model we used a schema (see Figure 2) to represent the computational
mechanics'. Many physical problems of mechanical engineering, related with solid body,
mechanics of flow, stiffness body, etc., follow the principles of Physics of continuum media
(Gurtin, 1981; Mase & Mase, 1999). We assume the following continuous media variation

principia.

1. Energy conservation
Mass conservation

Linear momentum conservation

S

Entropy

! Méndez-Banda, Jacinto R. (2004) Metodologia para el planteamiento y analisis de problemas de corrosion
de acero en concreto bajo atmosfera marina. Posgrado de Ingenieria Mecanica, Facultad de Ingenieria,
Universidad Nacional Auténoma de México.

CONTS

The key question is how long it takes to drain water from a tank? The tank is part of the wastewater
treatment system. We set the following hypothesis to explain the water flow behavior. Water
follows Newton laws, so our framework is the mechanics of continuous media. But, there were
some restrictions: atmosphere pressure, laminar flow, hydraulic time, waste water comes from

municipal zones, and the treatment process is an advanced primary one.

/ mechanical fhegry af

continuos redia

| material mechanics ‘ elashiciy

b4

A * |physical model

convar algebra
technique

¥

variation radels

finite elernent
technique

L

h 4
aproximated
models

hinneat algebra

¥

h 4

¥
soltion

¥
[

Figure 2. Schema of a computational mechanics

As the water is stored it has potential energy [1], where variables are m = mass, g = gravity
1
constant, and /2 = height. If a drop falls free, its kinetic energy is Emv2 [2]. So, by the energy

conservation principle we equate [1] and [2].

CONTS

Kinetic energy = potential energy [3]
1
5 mv’ = mgh [4]

Then, we solve for v

v=./2gh [5]

From that, we state a hydrodynamic expression known as the Torricelli’s Law as follows. Let 4, be

the cross draining area, so the water flow that comes out from a tank is

Output flow = A4,./2gh [6]
Then, the corresponding differential equation is

dv
—=—A4,-/2gh 7
ar 28 [7]

We are able to predict hydraulic time as we increase or decrease draining area; because, grease and

oil removing takes time.

Generally speaking, for a primary advanced process we consider four tanks: one collector, one
grease and oil removing tank, one flocculation tank, and one chlorination tank. With a properly

modification of equation [6] we model each tank of the system.

The set of equations and operating conditions produce a model at each step, from hydraulic point of

view, when g =9.81 % o’ h =4 m and 0.8 is the friction constant.

Concept Model
Grease removal GR =0.84,-/(2)9.81)4
Flocculation F=0.84,-/(2)9.81)3
Chlorination C=0.84, (2)(9.8 1)(2)

Table 1. Math modeling of some physical processes. Concepts and formulations.

Class methodology

At the beginning of an applied math course, students form small groups (with three or four
members). Those groups propose some ideas to develop projects that should be negotiated with the
full class and professor. Then, as the course goes, thematic discussions are oriented to reach most of
project objectives. In that way, students are deeply engage with their own project and the class

progress.

An introduction to Maple6 environment and commands is necessary if students do not know them.
At this part, students frequently propose the use of other software resources, like Matlab, Statistics
or Excel, to develop their projects. So, this challenges professor’s management class because, she

must coordinate and focus class activities to reach the objectives of applied math course.

Now, let us depict a sequence of activities that we propose to develop in applied math class

sessions, repeatedly.
Classroom activities

1. Set the objective(s) of modeling a system (as an example, the wastewater treatment plant).

2. Review and analyze pertinent literature to the system (mechanics of continuous media, in this
case).

3. Select software resource(s) to build a model (Maple6).

4. Collect data (historical data from waste water treatment plant).

5. Validate and test the model (use pertinent methods to do that).
6

Make conclusions and decisions.

CONTS

CONTS

Some remarks

The interpretative context of our didactical proposal was professional engineer work. So, from
teaching analysis and modeling activities, we suggest that mathematics curricula at engineer schools

should be reviewed to inquiry on previous three questions (see curricula and teaching section).

As our discussions took place, engineer, biologist, mathematician, and mathematics educator,
negotiated basic meanings to reach a gradual comprehension of wastewater treatment process.
Gradual formulations of the treatment process incorporated those negotiated meanings (from
arithmetic to higher mathematics). So, we agree with Jorgensen (2003, 880) that said
“...[ilndependent lines of thinking fortuitously converge on a common ground of some algorithms
and some matrix tricks,..., the same mathematical term being assigned different names by the

different groups, and yet the discussion is about the same fundamental underlying idea...”

Finally, we think that professional activities are the source and they should inspire us to set proper

problems to discuss in a CAS-based teaching of applied mathematics.

References

Balderas-Canas, P., Flores de la Mota, 1. , and Nivon-Zaghi, A. Andlisis curricular de matematicas
en la licenciatura y maestria en ingenieria respecto a la modelacion de fenomenos dindamicos.
XXXVI Congreso Nacional de la Sociedad Matematica Mexicana, Pachuca, Hgo. México, October
2003.

Gurtin, M.E. (1981) 4n introduction to Continuum Mechanics. London: Academic Press, Inc.
Jorgensen, P. E. T. (2003) “Matrix Factorizations, Algorithms, Wavelets”. Notices of the American
Mathematical Society, 50 (8), September.

Mase, G. T. and Mase, G.E. (1999) Continuum Mechanics for Engineers. Boca: CRC Press.

Annex

Program 1. Residence Time

> #Project 41596-Y SEP-CONACYT

Researcher on Chief: Patricia E Balderas Caiias

Participants: Jacinto R Mendez Banda and Xavier Rojel Martinez
Engineering School, The National Autonomous University of Mexico

> residence_time:=proc(file,data_num::numeric, nonnegint)
> #Global variables definition
#Local variables definition
> global f, time_hrs, time_min:
local contador, data_arrayl, data_array2, v, i, c:
> data_arrayl:=array(l..data_num):
data_array2:=array(l..data_num):
v:=Vector(l..data_num):
#Importation of data
v:=ImportVector("a:\\octnovdicdata.txt" ,format=rectangular);
#Data processing
for contador from 1 to data_num do:
data_array2[contador]:=v|[contador]:
end do:
#Calculation of residence time
with(linalg):
for i from 1 to data_num do:
> f:=(i)->204/((0.002026%95)*0.8*sqrt((2*9.81*(v[i]))/(4*17%24%60*60)));
end do:
time_hrs:=Vector(data_num,f):
> time_min:=scalarmul(time_hrs,1/60); print(time_min);
> #Data plotting
> with(plots):
pointplot({seq([i,time_min[i]],i=1..data_num)}):
> end proc;

VVVVVVYVYVYV

Compilation

residence_time := proc (file, data_num::numeric, nonnegint)
local contador, data_arrayl, data_array2, v, i, c;
global f, time_hrs, time_min,

data_arrayl = array(1 .. data_num);

data_array?2 = array(1 .. data_num);

CONTS

CONTS

v = Vector(1 .. data_num);
v := ImportVector "a:\\octnovdicdata.txt’ format = rectangular);
for contador to data_num do data_array2| contador] = v[contador] end do ;
with(/inalg);
for i to data_num do f:=i — 1324.881800x1/sqrt(.3339460784*10"(-S)xv[i])
end do ;
time_hrs := Vector(data_num, f);
time_min = scalarmul(time hrs, 1/60);
print(time_min);
with(plots);
pointplot({seq([i, time _min[i]],i=1 .. data num)})
end proc

Program Execution

> residence_time("a:\\octnovdicdata.txt",92);

Warning, the protected names norm and trace have been redefined and unprotected

[54.29421345, 47.47891233, 52.97375967, 51.32338243, 52.20190540, 52.55622105,
53.89311262, 57.24204212, 53.38056290, 50.05704412, 52.75620738, 51.43485417,
51.97444503, 54.27230293, 54.66520468, 50.32549487, 53.04517353, 53.61124018,
49.97990797, 55.01537283, 61.78342643, 54.12509765, 55.49485643, 53.61651767,

55.69492337, 56.40029390, 55.57109775, 56.78511383, 56.42488527, 60.67521935,
63.01455810, 61.17078832, 63.88931618, 64.20419888, 57.44220102, 62.10083005,

61.81575685, 63.04886107, 64.24956328, 64.72712522, 56.69129027, 55.58873658,
57.69044548, 58.04211863, 58.04211863, 55.75417963, 54.52033690, 58.33901122,
57.69044548, 57.59207032, 59.46552650, 55.86728947, 60.39415578, 57.62480610,

57.77611302, 59.94656445, 59.96870813, 57.67401462, 57.67401462, 56.52975858,
56.71001778, 55.83745702, 59.03107587, 59.03812142, 57.47468173, 55.25066625,

55.89118993, 52.95340865, 59.11578922, 55.50656545, 55.93908298, 54.00603423,
55.18148758, 56.96150468, 59.12286517, 58.84179457, 59.49435128, 56.54832643,
57.13954957, 55.30272133, 58.38666545, 57.19072697, 58.21024977, 58.87670930,
54.81123343, 58.87670930, 59.88763443, 57.81578078, 59.87292907, 60.45459528,
60.99906953, 57.84227142]

Warning, the name changecoords has been redefined

Ed- &

52 T & ¢<}

00 ka4 Y

Tl b @ s %

55' & o & 4 &

544 % s

521 ¢ %

50 s +

451

Program 2. Draining time vs outlet size

> #Project 41596-Y SEP-CONACYT

Researcher on Chief: Patricia E Balderas Caiias

Participants: Jacinto R Mendez Banda and Xavier Rojel Martinez
Engineering School, The National Autonomous University of Mexico

> #Program: DRAINING TIME VS OUTLET SIZE
>
> QOutlet_size:=proc(file,data_num,data_view,intervals::numeric, nonnegint)
>
> # The procedure has the following parameters
> # Parameter 1 <<file>> Data are taken form the file
> # Parameter 2 <<data_num>> The amount of data in the file that would be processed
> # Parameter 3 <<data_view>> Ask if before data processing it should be display them
> # Parameter 4 <<intervals>> Amount of intervals to associate outlet sizes
> # Variables definition
>
global f, dt, v, os,
draining_time,
draining_time Min,
draining_time_Max,
upper_limit,
lower_limit,
result,

>
>
>
>
>
>
>
> points;

10

CONTS

VVVVVVVVVVVVVVVVVVYVVYVYVYVY

>
>
>
>
>
>
>
>

VVVVVVVVVVVVVVVVVVYVVVYVYVVYV

local chain,
imported_data,

flow,

counter, aux_counter,

m, Ku, M, K,

k,

finding;
imported_data := Vector(l..data_num):
flow := Array(l..data_num):
draining_time := Array(l..data_num):

lower_limit := Array(l..intervals):
upper_limit := Array(l..intervals):

result := Array(l..data_num):
dt := Array(l..data_num):
v := Vector(l..data_num):

chain := "File from we take °:

chain := cat(chain,data_num,” data: -> °):
chain := cat(chain,file):

print(chain) :

(1) Data importation
imported_data:=ImportVector(file,format=rectangular);

(2)Data transformation as an array to process them
flow:= imported_data:

(3) Charging libraries
with(linalg):
with(stats):
with(plots):
with(stats[statplots]):

(4) Draining time calculation

Build a vector whose components are 293760 times reciprocal of flow input

Set a functional operator to build
f:=x->293760/x:
for counter from 1 to data_num do:

draining_time[counter]:= convert(f(flow|[counter]),float):

Draining_time has floating format
end do:

(5) Block to describe data
for counter from 1 to data_num do:

dt:=[seq(convert(f(flow[counter]),float),counter=1..data_num)]:

m:= describe[mean](dt):
Ku:=describe[kurtosis](dt):
end do:

print(Mean of draining times: °, m):
print(' Kurtosis of draining times: °, Ku):

(6) Getting the minimun and maximun of draining times
for counter from 1 to data_num do:

11

CONTS

if counter = 1 then:
draining_time_Min := draining_time[counter]:
draining_time Max := draining_time[counter]:

else
if draining_time_Min > draining_time[counter]| then:
draining_time_Min := draining_time[counter]:
end if:
if draining_time_Max < draining_time[counter] then:
draining_time_Max := draining_time[counter]:
end if:

end if:

end do:

print(Minimum draining time: °, draining_time_Min):
print(Maximun Draining time: °, draining_time_Max):

(7) Getting upper and lower limits of intervals
for k from 1 to intervals do:
Lower and upper limits of k-interval
lower_limit[Kk] := draining_time_ Min:

upper_limit[k] := draining_time_Max:
upper_limit[k] := lower_limit[k]+(k)*(draining_time_Max - draining_time_Min)/intervals:
print(Interval’, ['K’] , *(,Jower_limit[k],"," ,upper_limit[k],")"):

end do:

(8) Draining time comparison and classification
for counter from 1 to data_num do:
finding :=0:
for k from 1 to intervals do:
if (draining_time[counter] > lower_limit[k]) and
(draining_time[counter] < upper_limit[k]) and
(finding = 0) then:
result[counter] := 204/(0.8*(lower_limit[k]+((upper_limit[k]-
lower_limit[k])/2))*sqrt(2%9.81%3)*60):
chain := cat(Datum °,convert(draining_time[counter],string)):
chain := cat(chain,” belongs to interval’, convert(k,string)):
chain := cat(chain,’ [*,convert(lower_limit[k],string)," , *,convert(upper_limit[k],string),” |):
chain := cat(chain,” and it is associated with °, convert(result[counter],string)):
print(chain):
finding :=1:
end if:
end do:
if finding = 0 then:
result[counter] :=.11030318241:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVY

Y

chain := cat(chain,” and is associated with *,convert(.1103031824,string)):

print(chain):
end if:

end do:

(9) Block to describe data

for counter from 1 to data_num do:
os:=[seq(result[counter]|,counter=1..data_num)]:
M:= describe[mean](os):
K:=describe[kurtosis](o0s):

end do:

VVVVVVVVVVVVVVVVVYVYVYV

lower_limit[k] := lower_limit[k]+(k-1)*(draining_time_Max-draining_time_Min)/intervals:

chain := cat('Datum ",convert(draining_time[counter],string),” does not belong to any interval’):

12

CONTS

print(’ Outlet size range’, describe[range](o0s)):
print(' Mean of outlet sizes: *, M):
print(' Kurtosis of outlet sizes: °, K):

(10) Draining time vs outlet size plot
for counter from 1 to data_num do:
points:={seq([convert(f(flow[counter]),float),result[counter]],counter=1..data_num)}:
end do:
pointplot(points,title="draining time vs outlet size’);

VVVVVVVVVVYVYV

end proc;

Compilation

Outlet size = proc (file, data_num, data_view, intervals::numeric, nonnegint)
local chain, imported data, flow, counter, aux_counter, m, Ku, M, K, k, finding;
global f, dt, v, os, draining _time, draining time Min, draining_time Max,
upper_limit, lower limit, result, points;

imported_data = Vector(1 .. data_num);
flow .= Array(1 .. data_num);

draining time := Array(1 .. data_num);
lower_limit .= Array(1 .. intervals);
upper_limit .= Array(1 .. intervals);

result := Array(1 .. data_num);
dt .= Array(1 .. data_num);

v = Vector(1 .. data_num);
chain := 'File from we take
chain := cat(chain, data_num, " data: -> ");
chain := cat(chain, file);
print(chain);
imported_data := ImportVectox file, format = rectangular);
flow = imported data;,
with(/inalg);
with(stats);
with(plots);
with(stats[statplots]);
fi=x—293760x1/x;
for counter to data_num do
draining_time[counter] := convert({(flow|[counter]), float)

13

CONTS

CONTS

end do ;
for counter to data_num do
dt := [seq(convert(f(flow[counter)), float), counter =1 .. data_num)];
m := describe[mean](dt);
Ku := describe| kurtosis |(dt)
end do ;
print("Mean of draining times: °, m);
print(‘Kurtosis of draining times: ", Ku);
for counter to data_num do
if counter =1 then
draining time_Min = draining_time|[counter];
draining time Max = draining_time| counter]

else
if draining_time[counter] < draining time Min then
draining time_Min = draining_time[counter]
end if ;
if draining time Max < draining time| counter] then
draining time Max = draining_time[counter]
end if
end if
end do ;

print("Minimum draining time: °, draining time Min);
print("Maximun Draining time: , draining_time Max);
for k to intervals do
lower limit| k] := draining time Min;
lower_limit k] = lower limit| k]
+ ((k— 1)x(draining _time Max — draining time Min))/intervals;
upper limit| k] := draining time Max;
upper_limit| k] := lower_limit| k]
+ kx(draining time Max — draining_time_Min)/intervals;
print(Interval, [k], (", lower limit[k], ", , upper limit[k],) ")

end do ;
for counter to data_num do
finding = 0;

for k to intervals do
if lower limit[k] < draining_time[counter| and
draining time| counter] < upper limit[k] and finding = 0 then
result] counter] := 4.250000000x
1/((172xlower_limit] k| + 1/2xupper_limit[k])xsqrt(58.86))

b

14

chain := cat("Datum °, convert(draining_time|[counter], string))
chain := cat(chain, " belongs to interval’, convert(k, string));
chain := cat(chain, " [, convert(lower limit| k], string), *,

convert(upper limit[k|, string), "]");
chain = cat(chain, " and it is associated with ",
convert(result| counter], string));

print(chain);
finding =1
end if

end do ;
if finding = 0 then
result| counter] :=.11030318241;
chain := cat("Datum °, convert(draining_time[counter], string),

“does not belong to any interval’);
chain = cat(chain, " and is associated with ",

convert(.1103031824, string));
print(chain)
end if

end do ;
for counter to data_num do

os = [seq(result] counter], counter =1 .. data_num)];
M = describe[mean](os);
K = describe| kurtosis](os)

end do ;

print("Outlet size range’, describe[range](0s));
print("Mean of outlet sizes: ", M);

print(‘Kurtosis of outlet sizes: ", K);

for counter to data_num do points == {seq(

[convert(f(flow| counter]), float), result| counter]],
counter =1 .. data_num) }

end do ;
pointplot(points, title = “draining time vs outlet size")
end proc

Program Execution

> Qutlet_size("a:\\octnovdicdata.txt",92,1,4);
File from we take 92 data: -> a:\octnovdicdata.txt

Warning, these names have been redefined: anova, describe, fit, importdata, random, statevalf, statplots,
transform

15

CONTS

Warning, these names have been redefined: boxplot, histogram, scatterplot, xscale, xshift, xyexchange,
xzexchange, yscale, yshift, yzexchange, zscale, zshift

Mean of draining times: , 6.540653914
Kurtosis of draining times: , 3.012731889
Minimum draining time: , 4.535433071
Maximun Draining time. , 8.429268293
Interval, [1], (,4.535433071, ,, 5.508891876,)
Interval, [2], (, 5.508891876, ,, 7.455809487,)
Interval, [31], (, 6.482350682, ,, 9.402727100,)
Interval, [4], (, 7.455809489, ,, 11.34964471,)

Datum 5.930950939 belongs to interval? [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

Datum 4.535433071 does not belong to any interval and is associated with .11030318
24

Datum 5.645973477 belongs to interval2 [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

et cetera’

Datum 8.429268293 belongs to interval3 [6.482350682 , 9.402727100] and it is ass\
ociated with .6974602342e-1

Datum 7.353191489 belongs to interval? [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

Datum 7.486238532 belongs to interval3 [6.482350682 , 9.402727100] and it is ass
ociated with .6974602342¢-1

Datum 6.731439047 belongs to interval? [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

Outlet size range, .06974602342 .. .11030318241
Mean of outlet sizes. , 08573883853
Kurtosis of outlet sizes: ,5.715473113

2 We omitted 85 result lines due to space reduction purpose.

CONTS

0111

0.1 1

0.0 5

0. 08

.07 -

draining time vs outlet size

L - E

a0 O EaCa DN S 5 O 0

[

[y =

=]

L
— T —

17

CONTS

	toabstr:

