
MODELING SOME DYNAMIC PHENOMENA WITH MAPLE6 IN A CAS-BASED MATH
CLASS

Patricia E. Balderas Cañas, Jacinto Mendez Banda, and

Xavier Rojel Martinez
Facultad de Ingeniería, Universidad Nacional Autónoma de México

Abstract

We are interdisciplinary members of a research team supported by CONACYT #41596-Y, Mexico.
We pursuit some math teaching guidelines for modeling courses at a main Mexican University. At
the Summer Academy, we will illustrate some classroom activities from CAS-based curricula and
teaching methods approach. The modeling problem is get the valve diameter of a pipeline entrance
as a result of a decision making process from the waste water flow that is poured into one tank of a
waste water treatment process. We designed two Maple6 programs to generate a data table of the
water flow historical records, the correspondent residence time and the valve diameter. The
residence time is an intermediate variable and the valve diameter is the key decision. This is very
important because is the control for sewage plant. We think that this is the type of problems that we
should discuss in a CAS-based teaching of applied mathematics on transport phenomena.

Introduction

Perhaps, many of us as mathematics teachers have listened that some curriculum boards try to

increase the number and the extent of math courses of engineering curricula, and from professional

engineering activities, some engineers judge that math curricula is huge. So, curriculum boards

should find a balance between those points of views.

In addition, there are still some methodological debates related with an extensive use of specific

software for math courses. Both problems aloud us to look for some math teaching guidelines,

particularly with modeling courses for engineering curricula at The National Autonomous

University of Mexico.

Indeed, undergraduate teaching has a huge challenge when its main objective is promote student’s

conceptual change and math professor is the promoting agent of that conceptual change. Modeling

is the mean by which this teaching would reach that objective.

Curricula and teaching contexts

We analyzed curricula from three points of view: thematic content, pertinence and coherence. First,

did thematic content reflect the relation between professional activities and disciplines? Second,

was engineer profile pertinent to professional requirements? And third, was math modeling

 2

background of math professors coherent with resources (technology and material) available to

institution? Those questions address our research activities. Somewhere, we report some

coincidences, repetitions and lacks of modeling topics in mathematics curricula at undergraduate

and graduate levels (Balderas, et.al. 2003).

Simultaneously, we did analyses of postgraduate teaching and found that the teaching trends were

based on case discussions; most of them came from professional experience. In those cases, we

remark the priority to systematize that teaching at the time teacher’s research on the same area.

Following the third point of view, we designed some activities based on two Maple6 programs (see

the Annex) that produce historical and numerical data from hydraulic flow inputs. The modeling

problems were to get residence times and valve diameters (a cutoff valve) of a pipeline entrance as

a result of decision making processes from the waste water flow that is poured into one tank of a

waste water treatment process. Residence times and valve diameters (of the outlet size) were the

outputs. The residence time is an intermediate variable and the valve diameter is the key decision.

This is very important because is the control for sewage plant.

Model building

Our team visited three wastewater treatment plants. Those plants were built as part of a huge project

of Puebla State Government. The treatment process is represented in figure 1. It depicts the main

steps of treatment process of wastewater that were our focus. A first step is collect wastewater

(1600 cubic meters). Second, after the water is pumped at 1.2 cubic meters by second, a fine sifting

eliminates solid waste and feeds a deposit where grease and oil are removed by a mechanical

device. At the same time, sand is removed by decantation.

Then, the organic material is separated from water by a flocculation process that produces sludge.

Next, the sludge is sent to an anaerobic digestion process, and a chlorination process treats the

water, free of organic material. After this last process, a final product is gotten that we name treated

water.

The treatment process is conceived as an open and continuous system, and it is graphically

represented in Figure 1. The numbered processes from (1) to (3), as black boxes, were modeled

with the rule input – treatment – output. The first Maple6 program, for residence times (see the

 3

Annex), corresponds to the process (1) as a function of flow. The second program shows draining

times vs. outlet sizes, in process (2).

Figure 1. An open and continuous system of sewage treatment

In order to build a model we used a schema (see Figure 2) to represent the computational

mechanics1. Many physical problems of mechanical engineering, related with solid body,

mechanics of flow, stiffness body, etc., follow the principles of Physics of continuum media

(Gurtin, 1981; Mase & Mase, 1999). We assume the following continuous media variation

principia.

1. Energy conservation

2. Mass conservation

3. Linear momentum conservation

4. Entropy

1 Méndez-Banda, Jacinto R. (2004) Metodología para el planteamiento y análisis de problemas de corrosión
de acero en concreto bajo atmósfera marina. Posgrado de Ingeniería Mecánica, Facultad de Ingeniería,
Universidad Nacional Autónoma de México.

 4

The key question is how long it takes to drain water from a tank? The tank is part of the wastewater

treatment system. We set the following hypothesis to explain the water flow behavior. Water

follows Newton laws, so our framework is the mechanics of continuous media. But, there were

some restrictions: atmosphere pressure, laminar flow, hydraulic time, waste water comes from

municipal zones, and the treatment process is an advanced primary one.

Figure 2. Schema of a computational mechanics

As the water is stored it has potential energy [1], where variables are m = mass, g = gravity

constant, and h = height. If a drop falls free, its kinetic energy is 2

2
1 mv [2]. So, by the energy

conservation principle we equate [1] and [2].

 5

Kinetic energy = potential energy [3]

mghmv =2

2
1

 [4]

Then, we solve for v

ghv 2= [5]

From that, we state a hydrodynamic expression known as the Torricelli’s Law as follows. Let At be

the cross draining area, so the water flow that comes out from a tank is

Output flow = ghAt 2 [6]

Then, the corresponding differential equation is

ghA
dt
dV

t 2−= [7]

We are able to predict hydraulic time as we increase or decrease draining area; because, grease and

oil removing takes time.

Generally speaking, for a primary advanced process we consider four tanks: one collector, one

grease and oil removing tank, one flocculation tank, and one chlorination tank. With a properly

modification of equation [6] we model each tank of the system.

The set of equations and operating conditions produce a model at each step, from hydraulic point of

view, when 81.9=g 2sec
m , 4=h m and 0.8 is the friction constant.

Concept Model

Grease removal ()()()481.928.0 TAGR =

Flocculation ()()()381.928.0 TAF =

Chlorination ()()()281.928.0 TAC =

Table 1. Math modeling of some physical processes. Concepts and formulations.

 6

Class methodology

At the beginning of an applied math course, students form small groups (with three or four

members). Those groups propose some ideas to develop projects that should be negotiated with the

full class and professor. Then, as the course goes, thematic discussions are oriented to reach most of

project objectives. In that way, students are deeply engage with their own project and the class

progress.

An introduction to Maple6 environment and commands is necessary if students do not know them.

At this part, students frequently propose the use of other software resources, like Matlab, Statistics

or Excel, to develop their projects. So, this challenges professor’s management class because, she

must coordinate and focus class activities to reach the objectives of applied math course.

Now, let us depict a sequence of activities that we propose to develop in applied math class

sessions, repeatedly.

Classroom activities

1. Set the objective(s) of modeling a system (as an example, the wastewater treatment plant).

2. Review and analyze pertinent literature to the system (mechanics of continuous media, in this

case).

3. Select software resource(s) to build a model (Maple6).

4. Collect data (historical data from waste water treatment plant).

5. Validate and test the model (use pertinent methods to do that).

6. Make conclusions and decisions.

 7

Some remarks

The interpretative context of our didactical proposal was professional engineer work. So, from

teaching analysis and modeling activities, we suggest that mathematics curricula at engineer schools

should be reviewed to inquiry on previous three questions (see curricula and teaching section).

As our discussions took place, engineer, biologist, mathematician, and mathematics educator,

negotiated basic meanings to reach a gradual comprehension of wastewater treatment process.

Gradual formulations of the treatment process incorporated those negotiated meanings (from

arithmetic to higher mathematics). So, we agree with Jorgensen (2003, 880) that said

“...[i]ndependent lines of thinking fortuitously converge on a common ground of some algorithms

and some matrix tricks,..., the same mathematical term being assigned different names by the

different groups, and yet the discussion is about the same fundamental underlying idea…”

Finally, we think that professional activities are the source and they should inspire us to set proper

problems to discuss in a CAS-based teaching of applied mathematics.

References

Balderas-Cañas, P., Flores de la Mota, I. , and Nivón-Zaghi, A. Análisis curricular de matemáticas
en la licenciatura y maestría en ingeniería respecto a la modelación de fenómenos dinámicos.
XXXVI Congreso Nacional de la Sociedad Matemática Mexicana, Pachuca, Hgo. México, October
2003.
Gurtin, M.E. (1981) An introduction to Continuum Mechanics. London: Academic Press, Inc.
Jorgensen, P. E. T. (2003) “Matrix Factorizations, Algorithms, Wavelets”. Notices of the American
Mathematical Society, 50 (8), September.
Mase, G. T. and Mase, G.E. (1999) Continuum Mechanics for Engineers. Boca: CRC Press.

 8

Annex

Program 1. Residence Time

> #Project 41596-Y SEP-CONACYT
Researcher on Chief: Patricia E Balderas Cañas
Participants: Jacinto R Mendez Banda and Xavier Rojel Martinez
Engineering School, The National Autonomous University of Mexico

> residence_time:=proc(file,data_num::numeric, nonnegint)
> #Global variables definition
 #Local variables definition
> global f, time_hrs, time_min:
 local contador, data_array1, data_array2, v, i, c:
> data_array1:=array(1..data_num):
 data_array2:=array(1..data_num):
> v:=Vector(1..data_num):
> #Importation of data
> v:=ImportVector("a:\\octnovdicdata.txt",format=rectangular);
> #Data processing
> for contador from 1 to data_num do:
> data_array2[contador]:=v[contador]:
> end do:
> #Calculation of residence time
> with(linalg):
 for i from 1 to data_num do:
> f:=(i)->204/((0.002026*95)*0.8*sqrt((2*9.81*(v[i]))/(4*17*24*60*60)));
 end do:
 time_hrs:=Vector(data_num,f):
> time_min:=scalarmul(time_hrs,1/60); print(time_min);
> #Data plotting
> with(plots):
 pointplot({seq([i,time_min[i]],i=1..data_num)}):
> end proc;

Compilation

residence_time , ,file ::data_num numeric nonnegintproc () :=
local ;, , , , ,contador data_array1 data_array2 v i c
global ;, ,f time_hrs time_min

 := data_array1 ()array .. 1 data_num ;
 := data_array2 ()array .. 1 data_num ;

 9

 := v ()Vector .. 1 data_num ;
 := v ()ImportVector ,"a:\\octnovdicdata.txt" = format rectangular ;

for to do end docontador data_num := []data_array2 contador []v contador ;
()with linalg ;
i data_num := f → i ×1324.881800 /1 ()sqrt ×.3339460784*10^(-5) []v ifor to do

end do ;
 := time_hrs ()Vector ,data_num f ;
 := time_min ()scalarmul ,time_hrs /1 60 ;

()print time_min ;
()with plots ;

()pointplot { }()seq ,[],i []time_min i = i .. 1 data_num
end proc

Program Execution

> residence_time("a:\\octnovdicdata.txt",92);
Warning, the protected names norm and trace have been redefined and unprotected

54.29421345 47.47891233 52.97375967 51.32338243 52.20190540 52.55622105, , , , , ,[
53.89311262 57.24204212 53.38056290 50.05704412 52.75620738 51.43485417, , , , , ,
51.97444503 54.27230293 54.66520468 50.32549487 53.04517353 53.61124018, , , , , ,
49.97990797 55.01537283 61.78342643 54.12509765 55.49485643 53.61651767, , , , , ,
55.69492337 56.40029390 55.57109775 56.78511383 56.42488527 60.67521935, , , , , ,
63.01455810 61.17078832 63.88931618 64.20419888 57.44220102 62.10083005, , , , , ,
61.81575685 63.04886107 64.24956328 64.72712522 56.69129027 55.58873658, , , , , ,
57.69044548 58.04211863 58.04211863 55.75417963 54.52033690 58.33901122, , , , , ,
57.69044548 57.59207032 59.46552650 55.86728947 60.39415578 57.62480610, , , , , ,
57.77611302 59.94656445 59.96870813 57.67401462 57.67401462 56.52975858, , , , , ,
56.71001778 55.83745702 59.03107587 59.03812142 57.47468173 55.25066625, , , , , ,
55.89118993 52.95340865 59.11578922 55.50656545 55.93908298 54.00603423, , , , , ,
55.18148758 56.96150468 59.12286517 58.84179457 59.49435128 56.54832643, , , , , ,
57.13954957 55.30272133 58.38666545 57.19072697 58.21024977 58.87670930, , , , , ,
54.81123343 58.87670930 59.88763443 57.81578078 59.87292907 60.45459528, , , , , ,
60.99906953 57.84227142,]

Warning, the name changecoords has been redefined

 10

Program 2. Draining time vs outlet size

> #Project 41596-Y SEP-CONACYT
Researcher on Chief: Patricia E Balderas Cañas
Participants: Jacinto R Mendez Banda and Xavier Rojel Martinez
Engineering School, The National Autonomous University of Mexico

> #Program: DRAINING TIME VS OUTLET SIZE
>
> Outlet_size:=proc(file,data_num,data_view,intervals::numeric, nonnegint)
>
> # The procedure has the following parameters
> # Parameter 1 <<file>> Data are taken form the file
> # Parameter 2 <<data_num>> The amount of data in the file that would be processed
> # Parameter 3 <<data_view>> Ask if before data processing it should be display them
> # Parameter 4 <<intervals>> Amount of intervals to associate outlet sizes
> # Variables definition
>
> global f, dt, v, os,
> draining_time,
> draining_time_Min,
> draining_time_Max,
> upper_limit,
> lower_limit,
> result,
> points;

 11

>
> local chain,
> imported_data,
> flow,
> counter, aux_counter,
> m, Ku, M, K,
> k,
> finding;
>
> imported_data := Vector(1..data_num):
> flow := Array(1..data_num):
> draining_time := Array(1..data_num):
> lower_limit := Array(1..intervals):
> upper_limit := Array(1..intervals):
> result := Array(1..data_num):
> dt := Array(1..data_num):
> v := Vector(1..data_num):
>
> chain := `File from we take `:
> chain := cat(chain,data_num,` data: -> `):
> chain := cat(chain,file):
> print(chain) :
>
> # (1) Data importation
> imported_data:=ImportVector(file,format=rectangular);
>
> # (2)Data transformation as an array to process them
> flow:= imported_data:
>
> # (3) Charging libraries
> with(linalg):
> with(stats):
> with(plots):
> with(stats[statplots]):
>
> # (4) Draining time calculation
> # Build a vector whose components are 293760 times reciprocal of flow input
> # Set a functional operator to build
> f := x -> 293760/x:
> for counter from 1 to data_num do:
> draining_time[counter]:= convert(f(flow[counter]),float):
> # Draining_time has floating format
> end do:
>
> # (5) Block to describe data
> for counter from 1 to data_num do:
> dt:=[seq(convert(f(flow[counter]),float),counter=1..data_num)]:
> m:= describe[mean](dt):
> Ku:=describe[kurtosis](dt):
> end do:
>
> print(`Mean of draining times: `, m):
> print(`Kurtosis of draining times: `, Ku):
>
> # (6) Getting the minimun and maximun of draining times
> for counter from 1 to data_num do:

 12

> if counter = 1 then:
> draining_time_Min := draining_time[counter]:
> draining_time_Max := draining_time[counter]:
> else
> if draining_time_Min > draining_time[counter] then:
> draining_time_Min := draining_time[counter]:
> end if:
> if draining_time_Max < draining_time[counter] then:
> draining_time_Max := draining_time[counter]:
> end if:
> end if:
> end do:
>
> print(`Minimum draining time: `, draining_time_Min):
> print(`Maximun Draining time: `, draining_time_Max):
>
> # (7) Getting upper and lower limits of intervals
> for k from 1 to intervals do:
> # Lower and upper limits of k-interval
> lower_limit[k] := draining_time_Min:
> lower_limit[k] := lower_limit[k]+(k-1)*(draining_time_Max-draining_time_Min)/intervals:
> upper_limit[k] := draining_time_Max:
> upper_limit[k] := lower_limit[k]+(k)*(draining_time_Max - draining_time_Min)/intervals:
> print(`Interval`, [`k`] , `(`,lower_limit[k],`,`,upper_limit[k],`)`):
> end do:
>
> # (8) Draining time comparison and classification
> for counter from 1 to data_num do:
> finding := 0:
> for k from 1 to intervals do:
> if (draining_time[counter] > lower_limit[k]) and
> (draining_time[counter] < upper_limit[k]) and
> (finding = 0) then:
> result[counter] := 204/(0.8*(lower_limit[k]+((upper_limit[k]-
lower_limit[k])/2))*sqrt(2*9.81*3)*60):
> chain := cat(`Datum `,convert(draining_time[counter],string)):
> chain := cat(chain,` belongs to interval`, convert(k,string)):
> chain := cat(chain,` [`,convert(lower_limit[k],string),` , `,convert(upper_limit[k],string),`]`):
> chain := cat(chain,` and it is associated with `, convert(result[counter],string)):
> print(chain):
> finding := 1:
> end if:
> end do:
> if finding = 0 then:
> result[counter] := .11030318241:
> chain := cat(`Datum `,convert(draining_time[counter],string),` does not belong to any interval`):
> chain := cat(chain,` and is associated with `,convert(.1103031824,string)):
> print(chain):
> end if:
> end do:
> # (9) Block to describe data
> for counter from 1 to data_num do:
> os:=[seq(result[counter],counter=1..data_num)]:
> M:= describe[mean](os):
> K:=describe[kurtosis](os):
> end do:

 13

> print(`Outlet size range`, describe[range](os)):
> print(`Mean of outlet sizes: `, M):
> print(`Kurtosis of outlet sizes: `, K):
>
>
> # (10) Draining time vs outlet size plot
> for counter from 1 to data_num do:
> points:={seq([convert(f(flow[counter]),float),result[counter]],counter=1..data_num)}:
> end do:
> pointplot(points,title=`draining time vs outlet size`);
>
> end proc;

Compilation

Outlet_size , , , ,file data_num data_view ::intervals numeric nonnegintproc () :=
local ;, , , , , , , , , ,chain imported_data flow counter aux_counter m Ku M K k finding

f dt v os draining_time draining_time_Min draining_time_Max, , , , , , ,global
upper_limit lower_limit result points, , , ;

 := imported_data ()Vector .. 1 data_num ;
 := flow ()Array .. 1 data_num ;

 := draining_time ()Array .. 1 data_num ;
 := lower_limit ()Array .. 1 intervals ;
 := upper_limit ()Array .. 1 intervals ;

 := result ()Array .. 1 data_num ;
 := dt ()Array .. 1 data_num ;

 := v ()Vector .. 1 data_num ;
 := chain `File from we take ;̀
 := chain ()cat , ,chain data_num ` data: -> ` ;
 := chain ()cat ,chain file ;

()print chain ;
 := imported_data ()ImportVector ,file = format rectangular ;

 := flow imported_data ;
()with linalg ;
()with stats ;
()with plots ;
()with []stats statplots ;

 := f → x ×293760 /1 x;
counter data_numfor to do

 := []draining_time counter ()convert ,()f []flow counter float

 14

end do ;
counter data_numfor to do

 := dt []()seq ,()convert ,()f []flow counter float = counter .. 1 data_num ;
 := m ()[]describe mean dt ;
 := Ku ()[]describe kurtosis dt

end do ;
()print ,`Mean of draining times: ` m ;
()print ,`Kurtosis of draining times: ` Ku ;

counter data_numfor to do
 = counter 1if then

 := draining_time_Min []draining_time counter ;
 := draining_time_Max []draining_time counter

else
 < []draining_time counter draining_time_Minif then

 := draining_time_Min []draining_time counter
end if ;

 < draining_time_Max []draining_time counterif then
 := draining_time_Max []draining_time counter

end if
end if

end do ;
()print ,`Minimum draining time: ` draining_time_Min ;
()print ,`Maximun Draining time: ` draining_time_Max ;

k intervalsfor to do
 := []lower_limit k draining_time_Min;

[]lower_limit k []lower_limit k :=
()/×() − k 1 () − draining_time_Max draining_time_Min intervals + ;

 := []upper_limit k draining_time_Max;
[]upper_limit k []lower_limit k :=

/×k () − draining_time_Max draining_time_Min intervals + ;
()print , , , , , ,Interval []k `(` []lower_limit k `,` []upper_limit k `)`

end do ;
counter data_numfor to do

 := finding 0;
k intervalsfor to do

 < []lower_limit k []draining_time counter and if
 < []draining_time counter []upper_limit k = finding 0 and then

[]result counter 4.250000000× :=
/()1 ×()× + /1 2 []lower_limit k ×/1 2 []upper_limit k ()sqrt 58.86

;

 15

 := chain ()cat ,`Datum ` ()convert ,[]draining_time counter string
;
 := chain ()cat , ,chain ` belongs to interval` ()convert ,k string ;

chain cat chain ` [` ()convert ,[]lower_limit k string ` , `, , , ,(:=
()convert ,[]upper_limit k string `]`,);

chain cat chain ` and it is associated with `, ,(:=
()convert ,[]result counter string);

()print chain ;
 := finding 1

end if
end do ;

 = finding 0if then
 := []result counter .11030318241;

chain cat `Datum ` ()convert ,[]draining_time counter string, ,(:=
` does not belong to any interval`);

chain cat chain ` and is associated with `, ,(:=
()convert ,.1103031824 string);

()print chain
end if

end do ;
counter data_numfor to do

 := os []()seq ,[]result counter = counter .. 1 data_num ;
 := M ()[]describe mean os ;
 := K ()[]describe kurtosis os

end do ;
()print ,`Outlet size range` ()[]describe range os ;
()print ,`Mean of outlet sizes: ` M ;
()print ,`Kurtosis of outlet sizes: ` K ;

counter data_num points seq({ := for to do
[],()convert ,()f []flow counter float []result counter ,

 = counter .. 1 data_num)}
end do ;

()pointplot ,points = title `draining time vs outlet size`
end proc

Program Execution

> Outlet_size("a:\\octnovdicdata.txt",92,1,4);

File from we take 92 data: -> a:\octnovdicdata.txt

Warning, these names have been redefined: anova, describe, fit, importdata, random, statevalf, statplots,
transform

 16

Warning, these names have been redefined: boxplot, histogram, scatterplot, xscale, xshift, xyexchange,
xzexchange, yscale, yshift, yzexchange, zscale, zshift

,Mean of draining times: 6.540653914

,Kurtosis of draining times: 3.012731889

,Minimum draining time: 4.535433071

,Maximun Draining time: 8.429268293

, , , , , ,Interval []1 (4.535433071 , 5.508891876)

, , , , , ,Interval []2 (5.508891876 , 7.455809487)

, , , , , ,Interval []3 (6.482350682 , 9.402727100)

, , , , , ,Interval []4 (7.455809489 , 11.34964471)

Datum 5.930950939 belongs to interval2 [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

Datum 4.535433071 does not belong to any interval and is associated with .11030318\
24

Datum 5.645973477 belongs to interval2 [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

et cetera2

Datum 8.429268293 belongs to interval3 [6.482350682 , 9.402727100] and it is ass\
ociated with .6974602342e-1

Datum 7.353191489 belongs to interval2 [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

Datum 7.486238532 belongs to interval3 [6.482350682 , 9.402727100] and it is ass\
ociated with .6974602342e-1

Datum 6.731439047 belongs to interval2 [5.508891876 , 7.455809487] and it is ass\
ociated with .8545673173e-1

,Outlet size range .. .06974602342 .11030318241

,Mean of outlet sizes: .08573883853

,Kurtosis of outlet sizes: 5.715473113

2 We omitted 85 result lines due to space reduction purpose.

 17

>

	toabstr:

