

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA Y ARQUITECTURA UNIDAD ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN

MECÁNICA DE FRACTURA FRACTAL EN ALUMINIO ESTRUCTURAL

PARA OBTENER EL GRADO DE

S

S

16

Ε

Eat

MAESTRO EN CIENCIAS

CON ESPECIALIDAD EN ESTRUCTURAS

Ε

Ν

JAIME RETAMA VELASCO

DIRECTOR DE TESIS: FRANCISCO CASANOVA DEL ANGEL

S

MÉXICO D. F.

Р

R

Dedicatoria

Dedicada con todo mi amor, respeto y admiración a mi madre *Esperanza Velasco Gallegos* \uparrow , quién incondicionalmente siempre estuvo a mi lado y a mi hermana *Guadalupe Retama Velasco* por su apoyo desinteresado.

Agradecimientos

Agradezco al Instituto Politécnico Nacional por haberme formado dentro de sus aulas y por el apoyo económico recibido para culminar esta etapa de mi vida académica.

Quiero agradecer especialmente al Dr. Francisco Casanova del Angel por sus enseñanzas, apoyo y orientación a lo largo de toda la maestría y especialmente en la realización de la presente tesis.

Agradezco a los siguientes profesores: Ing. José Gerardo Minutti Piloni de la ESIME Azcapotzalco, Dr. Orlando Susarrey Huerta de la ESIME Zacatenco y al Ing. Alfonso Espinoza Picazo de la ESIME Ticomán por apoyarme en la realización del ensaye de laboratorio.

Mecánica de fractura fractal

Contenido general

Pág.

Resumen

Abstract	
Capítulo I. Introducción a la mecánica de fractura fractal I.1 Reseña teórico-histórica I.1.1 Descripción del tema I.1.2 Antecedentes teóricos I.1.2.1 Desarrollo de la mecánica de fractura I.1.2.2 Concepción de la geometría fractal I.1.2.3 Fractura y fractales I.2 El aluminio en la construcción I.3 Justificación I.4 Objetivo I.5 Metas	1 2 3 7 11 12 14 15 15
Capítulo II. Diseño del experimento de laboratorio y ensaye II.1 Introducción II.2 Aluminio 6061-T6 II.3 Diseño de la probeta II.3.1 Tipo de probeta a utilizar II.3.2 Geometría de la probeta a utilizar II.4 Maquinado de la probeta II.4.1 Corte del material II.4.2 Muesca maquinada II.4.3 Grieta por fatiga II.5 Diseño de la instrumentación II.6 Descripción del ensaye de laboratorio II.7 Reporte del ensaye de laboratorio	 17 18 19 20 20 22 24 24 24 24 25 28 30 31
 Capítulo III. Análisis fractal de grietas en aluminio 6061-T6 III.1 Cálculo del factor de intensidad de esfuerzos crítico III.2 Relación entre el K_{IC} y K_{IIC} III.3 Cálculo de la dirección de propagación III.3.1 Criterio del esfuerzo principal máximo III.3.2 Teoría de la tasa máxima de energía liberada III.3.3 Teoría de la tasa mínima de densidad de energía de deformación 	33 34 37 38 38 39 39

	Pág.
 III.4 Cálculo de la dimensión fractal III.5 Comportamiento fractal de la grieta en el aluminio III.6 Dirección de propagación fractal de la grieta III.7 Mecánica de fractura y geometría fractal III.7.1 Parámetros de la geometría fractal III.7.2 Parámetros de mecánica de fractura III.7.3 Relación entre <i>D</i>, <i>K</i>_{I/C} y <i>K</i>_{I/C} 	40 43 46 48 48 50 51
Conclusiones, recomendaciones y trabajos futuros	53
Referencias bibliográficas	59
 Apéndice A. Mecánica de fractura A.1 Definición de fractura A.2 Mecanismos de falla A.3 Tipos de falla A.4 Teoría de Griffith A.4.1 Razón de energía liberada <i>G</i> A.4.2 Factor de intensidad de esfuerzos <i>K</i> A.4.3 La integral <i>J</i> 	65 66 66 68 71 71 74
Apéndice B. Geometría fractal B.1 Introducción B.2 Definición de fractal B.3 Generación de fractales B.4 Dimensión fractal B.4.1 Formulación directa B.4.2 Método de conteo de cajas	75 76 76 77 77 78 79
Anexo 1. Proceso fotográfico del estudio	81
Anexo 2. Resultados numéricos del ensaye de laboratorio	85
Anexo 3. Cálculo de la dimensión fractal	103

Lista de figuras

Figura I.1.	Curva abierta de Koch	2
Figura I.2.	Comportamiento fractal de las grietas en el concreto	3
Figura I.3.	Experimentos realizados por Leonardo da Vinci	4
Figura I.4.	Conjunto de Cantor	8
Figura I.5.	Pilón de transmisión de aluminio, construido en 1952	12
Figura I.6.	Puente de aluminio, construido en 1947	13
Figura I.7.	El aluminio en la construcción	13
Figura I.8.	Edificio construido en Australia	14
Figura II.1.	Probetas establecidas en la norma ASTM E 399-90	21
Figura II.2.	Geometría de la probeta tipo SENB	21

		Pág.
Figura II.3.	Geometría de la muesca inducida mediante maguinado	23
Figura II.4.	Geometría final de la grieta	23
Figura II.5.	Geometría real de la probeta	24
Figura II.6.	Grieta maguinada	25
Figura II 7	Máquina de ensaves mecánicos-dinámicos MTS	26
Figura II 8	Onda tipo senoidal	26
Figura II 9	Aplicación de la carga cíclica	27
Figura II 10	Dispositivo para aplicar la carga	27
Figura II 11	Dispositivo de soporte	28
Figura II 12	Croquis del dispositivo de filación	29
Figura II 13	Proheta con el dispositivo de filación	29
Figura II 14	Probeta en la máquina de ensaves Instron	30
Figura II 15	Gráfica carga-apertura de grieta	32
Figura III 1	Cálculo de la carga $P_{\rm c}$	35
Figura III 2	Componentes del esfuerzo en la cercanía de la nunta de la	00
rigura m.z.	drieta	39
Figura III 3	Comportamiento fractal de la grieta	40
Figura III 4	Gráfica nara el cálculo de la dimensión fractal	42
Figura III 5	Grieta en el aluminio aleación 6061-T6 vista como un fractal	44
Figura III 6	Comportamiento seccionado de la grieta en aluminio aleación	
rigara m.o.	6061-T6	45
Figura III 7	Estructuras geométricas del comportamiento seccionado de	10
i iguru iiir i	la grieta en aluminio aleación 6061-T6	45
Figura III.8.	Obtención de la dirección de propagación fractal de la grieta	46
Figura III.9.	Modelado de la dirección de propagación mediante la GF	48
Figura A.1.	Tipos de fractura	67
Figura A.2.	Tipos de fractura de acuerdo a la extensión de la zona	•
	plástica	67
Figura A.3.	Modos de desplazamiento de superficies de fractura	68
Figura A.4.	Placa agrietada centralmente de dimensión infinita	68
Figura A.5.	Desplazamiento de la grieta de longitud 2a en la placa de	
	dimensión infinita	69
Figura A.6.	Gráfica <i>U-a</i>	70
Figura A.7.	Sistema de coordenadas alrededor de una grieta	72
Figura A.8.	Placa agrietada de espesor unitario sometida a la tracción T	74
Figura B.1.	Fractal de Mandelbrot	77
Figura B.2.	Procedimiento de cálculo de la dimensión fractal por el	
0	método de conteo de cajas	79
Figura B.3.	Obtención de la dimensión fractal	80
Figura 1.1.	Geometría de la probeta sin grieta	81
Figura 1.2.	Geometría de la probeta con grieta maguinada	82
Figura 1.3.	Dispositivo para fijación del extensómetro	82
Figura 1.4.	Aplicación de la carga por fatiga	83
Figura 1.5	Ensave de laboratorio	83
Figura 1.6.	Probeta en el proceso de carga	84
-		

		Pág.
Figura 1.7.	Aparición de la grieta en una de las caras	84
Figura 1.8.	Propagación de la grieta con forma fractal	84
Figura 3.1.	Grieta girada 0°	103
Figura 3.2.	Gráfica para calcular la dimensión fractal con $\theta = 0^{\circ}$	103
Figura 3.3.	Grieta girada -45º	104
Figura 3.4.	Gráfica para calcular la dimensión con $\theta = -45^{\circ}$	104
Figura 3.5.	Grieta girada 45º	104
Figura 3.6.	Gráfica para calcular la dimensión con $\theta = 45^{\circ}$	105
Figura 3.7.	Grieta girada 90º	105
Figura 3.8.	Gráfica para calcular la dimensión con $\theta = 90^{\circ}$	105
Figura 3.9.	Grieta girada 135º	106
Figura 3.10.	Gráfica para calcular la dimensión con $\theta = 135^{\circ}$	106

Lista de tablas

Tabla I.1.	Más de un siglo de fractales	9
Tabla II.1.	Principales componentes del aluminio aleación 6061-T6	19
Tabla II.2.	Propiedades físicas y mecánicas del aluminio aleación	
	6061-T6	20
Tabla II.3.	Dimensiones de la grieta maquinada tipo Chevron	23
Tabla II.4.	Características del ensaye de laboratorio	31
Tabla III.1.	Dimensión fractal para cada rotación de la grieta	41
Tabla III.2.	Dimensión fractal para la rotación de la grieta cuando	
	$\theta = -45^{\circ} \circ \theta = 135^{\circ}$	41
Tabla III.3.	Dirección de propagación	47
Tabla III.4.	Factor de intensidad de esfuerzos crítico para el modo I y II	52

Simbología

MFLE GF σ_{f}	Mecánica de fractura lineal elástica Geometría fractal Esfuerzo de fractura
Ε Ε' ν σ _{γs}	Módulo de elasticidad para esfuerzo plano Módulo de elasticidad para deformación plana Relación de Poisson Esfuerzo de fluencia del material
$\sigma_{\scriptscriptstyle max}$	Esfuerzo máximo en la punta de grieta
$ ho \ \sigma_{ij}$	Radio de curvatura en la punta de grieta Tensor de esfuerzos
r, θ γ_e	Coordenadas polares en la punta de grieta Energía elástica de superficie del material

γ_{s}	Energía de superficie por unidad de área
γ _p	Energía plástica de superficie del material
γ.	Energía total de superficie del material
$\mathbf{x}(\mathbf{r},\varphi)$	Serie de Williams
$X_e(r,\varphi)$	Componente simétrico de la serie de Williams
$\mathbf{x}_{o}(\mathbf{r}, \varphi)$	Componente antisimétrico de la serie de Williams
K K _{IC}	Factor de intensidad de esfuerzos Factor de intensidad de esfuerzos crítico para el modo I
K _{IIC}	Factor de intensidad de esfuerzos crítico para el modo II
K _{IIIC}	Factor de intensidad de esfuerzos crítico para el modo III
G G _c	Razón de energía liberada Razón de energía liberada crítica
J	Integral J definida por Rice
U	Energía total
U _o	Energía elástica de la placa cargada sin grieta
U_{a}	Cambio en la energía elástica causada por la aparición de la grieta
U_{γ}	Cambio en la energía de superficie por la propagación de la grieta
F P dF/da	Trabajo realizado por fuerzas externas Fuerza requerida para inducir un desplazamiento total de 2ν Cambio en la energía debido al trabajo de las fuerzas externas <i>F</i>
dU _a /da	Variación de la energía elástica debido al trabajo externo
$R \ \sigma_{x}, \sigma_{y}, \tau_{xy}$	Resistencia del material en la grieta Esfuerzos normales y tangenciales en coordenadas cartesianas
W _f	Energía de fractura
W	Densidad de la energía de deformación
T_i	Trabajo realizado por una fuerza externa
P _{max}	Carga máxima soportada por la probeta
W	Peralte de la probeta
В	Ancho de la probeta
а	Longitud de grieta
L	Longitud de la probeta
S	Separación de apoyos
N	Apertura inicial de la grieta
D	Dimension fractal
d	Dimension euclidiana Número de ecies intersectados por la surve
JV D	Longitud total dal objeto
Z I	Longitud total del objeto Longitud de los segmentos
n	Factor de reducción

Resumen

En el presente trabajo de investigación se relacionan las propiedades de fractura, factor de intensidad de esfuerzos crítico para los modos I (K_{IC}) y II (K_{IIC}), y la dimensión fractal para el aluminio estructural aleación 6061-T6 utilizando la teoría de mecánica de fractura lineal elástica (MFLE) y la geometría fractal (GF). Para esto, se determina de manera experimental el K_{IC} de acuerdo a la norma E 399 de la American Society for Testing and Materials (ASTM); la probeta que se utilizó fue tipo SENB (viga de tres puntos, por sus siglas en ingles). Con ayuda de resultados experimentales obtenidos por otros investigadores (Vaughan, 1998) se relaciona el $K_{\rm \tiny IC}$ con el $K_{\rm \tiny IIC}$ y se determina numéricamente la dirección de propagación de la grieta. Para obtener la dimensión fractal de la grieta en el material en estudio, se lleva a cabo mediante la teoría de la geometría fractal y utilizando un programa de computadora (AutoCad). Posteriormente se presenta la teoría sobre la relación existente entre la MFLE y la GF al relacionar el K_{IC} y K_{IIC} con la dimensión fractal y finalmente se concluye que es posible relacionar estas propiedades del material, ya que la topología de la línea de fractura (rugosidad) influye de manera directa en los parámetros de fractura del material.

Abstract

Presently investigation work is related the fracture properties, fracture toughness for mode I (K_{IC}) and II (K_{IIC}), and the fractal dimension for the aluminum alloy 6061-T6 using the theory of lineal elastic fracture mechanics (MFLE) and the fractal geometry (GF). For this, it is determined in an experimental way the K_{IC} according to the norm E 399 of the American Society for Testing and Materials (ASTM); the specimen used was type SENB (beam of three points, for its initials in English). With the help of experimental results obtained by other investigators (Vaughan, 1998) the K_{IC} and K_{IIC} are related and numerically the direction of propagation is obtained. To obtain the fractal dimension of the crack in the material in study, it is carried out by means of the theory of the fractal geometry and using a computer program (AutoCad). Later on the theory is presented on the existent relationship between the MFLE and the GF when relating the K_{IC} and K_{IIC} with the fractal dimension and finally a relation between the fracture propreties and the fractal dimension is obtained, since the topology of the line fracture (ruggedness) influences in a direct way in the fracture parameters of the material.

Capítulo I Introducción a la mecánica de fractura fractal

Contenido

Resumen

En el presente capítulo, se exponen los conceptos fundamentales de mecánica de fractura y geometría fractal, así como algunos desarrollos realizados por diferentes investigadores a lo largo de la historia. Posteriormente, se establece la justificación y se definen los objetivos principales del trabajo así como las metas a las que se desea llegar al término del mismo.

Capítulo I Introducción a la mecánica de fractura fractal

I.1 Reseña teórico-histórica

I.1.1 Descripción del tema

Hasta hace poco tiempo, en la ingeniería se tenía una concepción del mundo de tal manera que su configuración geométrica sólo podía ser descrita por medio de la geometría hasta entonces conocida, la geometría euclidiana, la cual sólo describe estructuras de forma regular en una dimensión, dos dimensiones y tres dimensiones como son: líneas, áreas y volúmenes continuos, y está compuesta por las áreas de aritmética, álgebra, geometría y cálculo (Balankin, 1999).

Sin embargo, a lo largo de varios años de investigación en diferentes áreas del conocimiento, los investigadores se han encontrado con problemas comunes que no pueden ser descritos completamente por medio de la geometría euclidiana, ya que se trata de fenómenos no lineales. En el siglo XIX se empieza a investigar sobre ciertas formas geométricas que se les conocían como monstruos matemáticos; pero no fue hasta 1904 cuando el matemático sueco Koch H, dio a conocer una interesante y molesta curva, desde el punto de vista matemático con propiedades indiscutiblemente sorprendentes (Gardner, 1990; Talanquer, 2002), tales como:

- no es posible trazar una tangente en un punto de su perímetro,
- la longitud entre dos puntos cualesquiera de su perímetro es infinita y
- la curva limita en su interior con un área finita

Figura I.1. Curva abierta de Koch.

Con éste y otros trabajos de diferentes investigadores de la época, se empieza a desarrollar una nueva rama de las matemáticas denominada *geometría fractal*, con la cual es posible describir formas complejas y comunes en la naturaleza como son: la línea costera de alguna playa, árboles, la estructura alveolar de los pulmones, el crecimiento demográfico de una localidad, propagación de incendios y el comportamiento de una grieta en un sólido, entre otros. Durante toda la historia de la humanidad, las matemáticas han sido el lenguaje con el cual es posible describir de manera racional los fenómenos que ocurren en la naturaleza, es por ello que recientemente las matemáticas de la geometría fractal han sido una herramienta alternativa en la comunidad de ingenieros, especialmente en aquella que busca nuevos modelos para una amplia gama de aplicaciones.

Actualmente se está tratando de explicar, con la ayuda de la *geometría fractal*, la propagación de grietas en un sólido ya que este es un problema de interés común en diferentes áreas del conocimiento y que ha provocado que se lleven a cabo diversos trabajos con el fin de obtener resultados que tomen en cuenta todas las posibles variables involucradas en el problema de propagación de grietas en un sólido. En los análisis tradicionales de la mecánica de fractura, las grietas se consideran ideales, es decir con los bordes lisos, pero en realidad, esta suposición dista mucho del problema real. Por otro lado al aplicar la geometría fractal se consideran todas las posibles rugosidades que puedan presentar las grietas, figura I.2.

Figura I.2. Comportamiento fractal de las grietas en el concreto.

I.1.2 Antecedentes teóricos

I.1.2.1 Desarrollo de la mecánica de fractura

Toda estructura se construye para cumplir con ciertos requisitos: de servicio, estético, de funcionalidad y buen comportamiento estructural de los elementos que lo conforman, este último es el que nos interesa como estructuristas, ya que uno de los requerimientos fundamentales de una estructura en ingeniería es que ésta no falle en condiciones normales de servicio para las cuales fue diseñada. Sin embargo es de

esperarse que una estructura pueda fallar en servicio bajo condiciones extraordinarias para las cuales no fue diseñada, en tal caso se diseña a la estructura para que presente una falla dúctil y no frágil. Gordon dijo que el peor pecado de un material de ingeniería no es la falta de resistencia o la falta de rigidez, sino la falta de tenacidad a la fractura, es decir, la falta de resistencia a la propagación de las grietas (Gordon, 1968). El diseño de estructuras capaces de evitar la fractura, se remonta a la época neolítica. A lo largo de la historia se han construido estructuras que hoy en día siguen en pie debido a su forma geométrica, pero mas que nada a que fueron diseñadas de de manera sobrada.

Las pruebas o ensayes en materiales, llevaron a los investigadores a mejorar sus aproximaciones en el estudio de los problemas de resistencia y fractura, siendo los primeros pioneros Leonardo da Vinci (1452-1519) y Galileo Galilei (1564-1642). Leonardo da Vinci fue el primero en realizar experimentos para determinar la capacidad de carga de alambres de acero, figura I.3. Por otro lado Galileo Galilei fue el primero en formular que la carga de fractura de una barra en tensión es directamente proporcional al área de su sección transversal e independiente de su longitud (Anderson, 1995; Balankin, 2000).

Figura I.3. Experimentos realizados por Leonardo da Vinci.

La revolución industrial del siglo XIX trajo consigo un incremento en la demanda de metales, particularmente del hierro y acero en la industria de la construcción, por lo tanto esta gran expansión en el consumo de metales fue acompañada por una frecuencia mayor de fallas en estructuras de ingeniería, de hecho, la fractura de vías de ferrocarril fue algo común. Posteriormente en 1900 con la aparición del automóvil y los aeroplanos, se incrementó el empleo de factores de seguridad adecuados y la necesidad de entender de manera más clara el fenómeno de ruptura. Sin embargo, la respuesta fue dirigida principalmente a la mejora de materiales, perfeccionando los procesos de fabricación y de inspección. En la primera mitad del siglo XX se desarrollaron distintas investigaciones sobre fractura, las cuales ayudaron a la formulación de la mecánica de fractura de manera formal (Balankin, 2000; Ortúzar, 1999).

Los orígenes de la mecánica de fractura se remontan a un artículo publicado por Griffith A. A. en 1920, el artículo es esencialmente su tesis doctoral. Demostró por primera vez que la resistencia real a la tensión de materiales frágiles es significativamente menor que la resistencia predicha teóricamente debido a la presencia de grietas. La ecuación derivada del artículo de Griffith ha sido la ecuación que relaciona el esfuerzo de fractura σ_r con el tamaño de grieta:

$$\sigma_{f} = \sqrt{\frac{2E\gamma_{e}}{\pi a}}$$
 I.1

La ecuación I.1 proporciona el esfuerzo crítico para un estado de esfuerzo plano en una placa que experimenta tensión uniforme y además es aplicable únicamente para fractura frágil debido a la extensión de la zona plástica en la punta de la grieta.

Inglis proporcionó una expresión simple para calcular el esfuerzo máximo en la punta de la grieta para una placa de dimensión infinita que presenta una grieta central en forma de elipse, ver apéndice A. Demostró que la ecuación del esfuerzo máximo presenta la forma:

$$\sigma_{\max} = \sigma \left[1 + 2\sqrt{\frac{a}{\rho}} \right]$$
 I.2

También demostró que, cuando la elipse se aproximaba a una grieta lineal, los esfuerzos en la punta tienden a infinito. Debido a este hecho, Griffith (1920-1924) concluyó que, en la presencia de una grieta, el valor de un esfuerzo no puede ser usado como criterio de falla, debido a que el esfuerzo en la punta de grieta es infinito aun cuando se aplique una carga pequeña. Esto llevó a proponer un criterio de energía de falla (Anderson, 1995; Balankin, 2000).

En el periodo de 1920 a 1940 los problemas relacionados con fractura y resistencia fueron de particular interés para la antigua Unión Soviética, sin embargo, en los años 40 del siglo XX las ideas de Griffith se convirtieron en la piedra angular de la mecánica de fractura lineal elástica (MFLE), estimulada por algunas fallas en estructuras metálicas que se encontraban sin una adecuada solución debido a que los problemas eran atribuidos a la mala calidad de los materiales y no al mal comportamiento estructural de éstos debido a la aplicación de teorías no adecuadas para tales casos.

Durante la segunda guerra mundial, los Estados Unidos de Norteamérica tuvieron grandes problemas debido a la presencia de grietas en los denominados barcos Liberty. Durante esta guerra se construyeron aproximadamente 2700 buques con el casco ensamblado por placas totalmente soldadas. De este número de buques, uno de cada siete presentaba fracturas, de los cuales, 90 estaban en muy malas condiciones, 20 totalmente fracturados y alrededor de 10 se partieron en dos. Nuevamente la mecánica de fractura trató de explicar la causa de estos accidentes catastróficos (Anderson, 1995).

Introducción a la mecánica de fractura fractal

En 1956 Irwin consideró que la energía necesaria para la creación de nuevas superficies de falla durante la extensión de la grieta provenía de la pérdida de energía de deformación del sólido elástico completo, por lo que definió esta rapidez de liberación de energía como *G* en honor a Griffith y consideró que este parámetro medía la intensidad del campo de esfuerzos en la punta de la grieta siempre y cuando la deformación plástica esté limitada a una pequeña región cerca de la punta de la grieta y estableció el criterio de tenacidad a la fractura *G*_c el cual dice que la grieta se propagará cuando *G* alcance un valor crítico igual a *G*_c (Hayashida, 1997; Anderson, 1995):

$$G = -\frac{dU}{da}$$
 I.3

El segundo logro más importante en los fundamentos de la mecánica de fractura fue en 1957 gracias a los trabajos realizados por Irwin, quien introdujo el concepto de factor de intensidad de esfuerzos K, como un parámetro para la medición de los esfuerzos cerca de la punta de la grieta:

$$\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f_{ij}(\theta)$$
 I.4

donde

$$K = \sigma_{\sqrt{\pi a}}$$
 I.5

Así como Irwin estuvo trabajando en la realización de una teoría modificada de Griffith, otros investigadores como Orowan realizaron el mismo trabajo pero con propósitos meramente académicos, quien al contrario de Irwin, la enfocó de manera práctica (Provan, 2001). Los trabajos realizados por estos dos investigadores no fueron completamente independientes ya que habían intercambiado ideas llegando a una ecuación modificada de la que planteó Griffith para un sólido con falla plástica:

$$\sigma_f = \left(\frac{2E(\gamma_s + \gamma_p)}{\pi a}\right)^{\frac{1}{2}}$$
 I.6

donde γ_s , es la energía elástica de superficie y γ_p corresponde a la energía plástica de superficie del material.

Originalmente la ecuación I.6 se estableció para metales, pero es posible generalizar el modelo de Griffith para determinar la disipación de energía para algún otro tipo de material mediante la siguiente ecuación, (Anderson, 1995):

$$\sigma_f = \sqrt{\frac{2 E w_f}{\pi a}}$$
 I.7

donde el término w_f es la energía de fractura el cual puede incluir comportamiento plástico, viscoelástico o viscoplástico dependiendo de las propiedades del material.

Apoyándose en el método semi-inverso desarrollado por Westergan, Irwin publicó un artículo en 1957 en el cual, relacionó G con el campo de esfuerzos en la punta de la grieta y estableció una relación entre la rapidez de energía liberada y el factor de intensidad de esfuerzos:

$$K^2 = GE$$
 I.8

En 1957 Williams desarrolló un análisis del campo de esfuerzos alrededor de la punta de la grieta mediante series. Cuando las series se presentaban en partes simétricas y asimétricas, dieron resultados para las cargas de apertura y cortante (Modo I y Modo II) los cuales podían relacionarse con los factores de intensidad de esfuerzos K_i y K_{ii} . Estas soluciones sólo se aplican a problemas en el plano. La ecuación a la que llegó es la siguiente:

$$x(r,\varphi) = x_e(r,\varphi) + x_0(r,\varphi)$$
 I.9

La ecuación I.9 se conoce como la serie de Williams y describe el campo de esfuerzos en la vecindad de la grieta con un ángulo de cero grados.

El siguiente gran paso en el desarrollo de la mecánica de fractura fue realizado de manera independiente por G. Cherepranov en 1967 y J. Rice en 1968, desarrollando una aproximación energética basada en el concepto de una integral invariante, la cual es conocida como *Integral-J*. Dicha integral proporciona una herramienta útil para un comportamiento no lineal y se ha convertido en la piedra angular de la mecánica de fractura elastoplástica, la cual aborda la fractura de materiales dúctiles.

$$J = \int_{\Gamma} W \, dy - \int_{\Gamma} T_i \, \frac{\partial u_i}{\partial x} \, ds \quad \forall \ i = 1,2$$
 I.10

I.1.2.2 Concepción de la geometría fractal

El matemático griego Euclides, quien vivió alrededor del año 300 a. C., escribió los *Elementos*, una de las obras más conocidas de la literatura mundial. En ella se presenta de manera formal el estudio de las propiedades de líneas y planos, círculos y esferas, triángulos y conos, es decir, de las formas regulares (Guerrero *et al.*, 2001a). A lo largo del tiempo este tipo de conocimientos se han utilizado en diferentes ramas del conocimiento para explicar los fenómenos que presenta la naturaleza; esta geometría se denomina *geometría euclidiana*.

Sin embargo, las ideas de Euclides son aproximaciones de la realidad, ya que supone que un punto no tiene tamaño; que una línea es un conjunto de puntos que no tienen ancho ni espesor, solamente longitud; que una superficie no tiene espesor. Debido a este punto de vista, un punto tiene dimensión cero, una línea tiene dimensión uno, una superficie tiene dimensión dos y finalmente un sólido tiene dimensión tres; por lo tanto, las únicas dimensiones que existen en la geometría euclidiana son los números enteros: 0, 1, 2 y 3 (Braun, 1999).

Sin embargo, no se tenía una definición clara de una curva, y no fue hasta el siglo XVII cuando la geometría analítica dio una definición precisa, pero quien le dio una definición más rigurosa fue el cálculo diferencial donde se reservó la palabra curva para las gráficas correspondientes a funciones continuas. Las formas encontradas en la naturaleza, como montañas, franjas costeras, sistemas hidrográficos, nubes, hojas, árboles, vegetales, copos de nieve, fracturas en un sólido y un sinnúmero de otros objetos no son fácilmente descritos por la geometría tradicional y es aquí donde entra la geometría fractal. Esta geometría provee una descripción y una forma de modelo matemático para las aparentemente complicadas formas de la naturaleza las cuales, poseen a veces una remarcable invariancia de simplificación bajo los cambios de amplificación, propiedad que caracteriza a los fractales.

Los fundamentos matemáticos de la teoría de grupos fueron realizados por el matemático alemán Georg Cantor (1845-1918); cuyo trabajo fue publicado por primera vez en 1883. Actualmente se le conoce como conjunto de Cantor y es caracterizado como uno de los fractales más famosos por poseer una dimensión fractal menor a la unidad (Peitgen, Jurgens and Saupe. part one. 1993).

Figura I.4. Conjunto de Cantor.

Posteriormente se realizaron muchos otros trabajos como los de los matemáticos franceses Henri Poincaré en 1890, Gaston Julia y Pierre Fatuo en 1918 (Mandelbrot, 1997). En el año 1890, el italiano Giuseppe Peano demostró que un único punto que se moviera de forma continua sobre un cuadrado podía, en un tiempo finito, pasar al menos una vez por cada uno de los puntos del cuadrado y de su contorno, en el límite, la curva se convierte en un cuadrado macizo. La curva de Peano es un diagrama legítimo correspondiente a una función continua, sin embargo es imposible trazarle una tangente en alguno de sus puntos, porque en ningún instante podemos especificar en qué dirección se está moviendo el punto generador.

Otro suceso de gran importancia fue en 1904; cuando el matemático sueco Helge von Koch dio a conocer una interesante curva desde el punto de vista matemático con propiedades indiscutiblemente sorprendentes, figura I.1. Se trabajó mucho en

este campo durante varios años, pero el estudio quedó congelado en los años 20 del siglo XX. El estudio fue renovado a partir de 1974 en IBM y fue fuertemente impulsado por el desarrollo de la computadora digital.

El matemático francés B. Benoit Mandelbrot acuñó la palabra fractal en la década de los años 70 del siglo XX, derivándola del adjetivo latín *fractus* del correspondiente verbo latino *frangere* que significa romper, crear fragmentos irregulares. Por tal motivo Mandelbrot, de la Universidad de Yale, con sus experimentos de computadora, es considerado como el padre de la geometría fractal. En honor a él, uno de los conjuntos que desarrolló lleva su nombre.

A continuación se resume en una tabla el desarrollo de los fractales a través de la historia (Casanova, 2000).

	Los prodigiosos objetos irregulares o complejos		
1872	El conjunto de Cantor		
1875	La curva continua no diferenciable por ninguna parte de Weierstrass.		
1906	Movimiento browniano		
	El copo de nieve de von Koch		
1909	Observación microscópica del movimiento browniano por Jean Perrin		
	Comportamiento de escala		
1919	La dimensión de Hausdorff, F. de objetos complejos geométricos		
1940	Guttman, L. con sus estructuras de orden prueba que métricas internas,		
	aparte del rango de orden, se involucran en el patrón de escalas		
1951	Leyes de Hurst, H. E. para el comportamiento de escala de las descargas del Rio Nilo		
1956	La ley de Gutenberg, B Richter, C. F. para la distribución de magnitudes de temblores		
1961	Las leyes de escala de Richardson, L. F. en la medición de curvas naturales complejas tales como litorales		
1963	El diagrama de Stommel, H. que describe las escalas espaciales y temporales de la dinámica oceánica en espacio y tiempo		
1969	Extensión de los trabajos de Hurst, H. E. en hidrología por Mandelbrot, B. B. Wallis, J. R.		
	La ciencia de los fractales (excepto para dinámica)		
1975	Creación de la palabra fractal por Mandelbrot, B. B.		
1977	Fractales de Mandelbrot: forma, casualidad y dimensión		
1980	Función fractal de Weierstrass-Mandelbrot, la geometría natural de los prodigiosos de Weierstrass de 1875		
1982	Modelos fractales aplicados a ecología y patrones de nubes o teoría de Lovejoy, S. Revisión de la monografía de Mandelbrot, B. B. la geometría fractal de la naturaleza		

1988	Sistema de funciones iteradas de Barnsley et al.		
	Fractales y dinámica		
1981	Introducción del concepto de agregación de difusión limitada por Witten, T.A. y Sander, L. M.		
1983	Fractales relacionados y atractores desconocidos de Hentschel, H. G. E. y Procaccia, I.		
1984	Dinámica de autómatas celulares de Wolfram		
1987	Autoorganización crítica de Bak, P. Tang, C. y Weisenfeld, K.		
1991	Fractales y multifractales en geofísica de Schertzer, D, y Lovejoy, S.		
Fractales a finales del siglo XX			
1991	Más de 400 publicaciones sobre el tema		
1992	Estructura fractal del universo de la distribución de temblores		
1998	Arquitectura fractal de Kalicosmia de Díazinfante Núñez, J. J. y Casanova del Angel, F.		

Es difícil definir con claridad el concepto de fractal pero se puede decir que un fractal es el producto final que se origina a través de la iteración de un proceso geométrico. Éste, suele ser de naturaleza muy simple y da lugar en las sucesivas iteraciones a conjuntos de determinada dimensión fija a lo largo del proceso; que se modifica al convertir la iteración en infinita. Matemáticamente un fractal es una figura geométrica que es compleja y detallada en estructura a cualquier nivel de amplificación. A menudo los fractales son semejantes a sí mismo; esto es, poseen la propiedad de que cada pequeña porción del fractal puede ser visualizada como una réplica a escala reducida del todo. La característica que fue decisiva para llamarlos fractales es su dimensión fraccionaria. No tienen dimensión uno, dos o tres como la mayoría de los objetos a los cuales se está acostumbrado. Los fractales tienen una dimensión fraccional.

Es por ello que la medición de formas fractales (fronteras, poligonales, etc,) ha obligado a introducir conceptos nuevos que van más allá de los conceptos geométricos clásicos. Dado que un fractal está constituido por elementos cada vez más pequeños, el concepto de longitud no está claramente definido. La noción de dimensión fractal provee una manera de medir qué tan rugosa es una curva. Normalmente se considera que los puntos tienen dimensión 0, las líneas 1, las superficies 2 y los volúmenes 3. A esta idea de dimensión se le llama dimensión topológica. Sin embargo, una curva rugosa que recorre una superficie puede ser tan rugosa que casi llene la superficie en la que se encuentra. Es posible, entonces, pensar en la rugosidad como un incremento en la dimensión: una curva rugosa tiene una dimensión fractal queda definida como (Peitgen, Jurgens & Saupe. part one. 1992):

$$D = \frac{\log(\mathcal{N})}{\log(\mathcal{L}/\ell)}$$
 I.11

donde \mathcal{N} es el número de cuadros intersectadas por la curva, \mathscr{L} es la longitud total de la malla y ℓ la longitud de las subdivisiones de la misma.

I.1.2.3 Fractura y fractales

La propagación de grietas es un problema de interés científico y tecnológico que ha generado que se realice una gran cantidad de investigaciones en torno al tema con el fin de comprender el comportamiento de grietas en un sólido, (Carpinteri *et al.*, 2001). En la mecánica de fractura tradicional, las superficies de falla se consideran lisas, lo cual dista de lo observado, figura I.2.

La descripción cuantitativa de la rugosidad de las superficies de fractura ha sido uno de los parámetros que ha conducido a tratar a las fracturas como fractales utilizando un análisis fractográfico cuantitativo (Guerrero *et al.*, 2001b). Diversos trabajos han confirmado que la morfología de la superficie de la grieta representa un mosaico complejo de microestructuras, siendo las características principales: el modo de fractura y especialmente, la microestructura del material. El efecto de la rugosidad fractal de la grieta lleva a un cambio fundamental en el comportamiento de esfuerzos en el vértice de la grieta (Balankin *et. al.*, 2000; Saouma, 2000).

En el primer estudio de superficies de falla, Mandelbrot mostró que no únicamente se presentan fracturas en los metales pero que su dimensión fractal es inversamente proporcional al impacto de energía determinado por el ensayo de impacto Charpy.

Aun cuando en un modelo numérico de fractura para un polímero realizado por Termonia y Meakin (1989) mostraron que para una superficie de falla simétrica la dimensión fractal tiene un valor universal de $D = 1.27 \pm 0.02$; posteriormente Peng y Tian, (1990) mostraron que para un modelo teórico cinético el cual simula la propagación de grieta, la superficie de fractura resultante es un fractal y que su dimensión depende de las constantes elásticas del material.

Mecholsky (1989) concluyó que la tenacidad se incrementa con la rugosidad y que la tenacidad a la fractura está directamente relacionada con la dimensión fractal:

$$K_{IC} = Ea_0^{1/2}D^{*1/2}$$
 I.12

donde D^* es la parte fraccionaria de D, E es el módulo de elasticidad y a_0 un parámetro en unidades de longitud. Recientemente Mecholsky y Freiman (1991) mostraron que hay una variación de D a lo largo de la grieta mostrando una iniciación de grieta y después en microrramificaciones.

Cahn (1983) notó ciertas discrepancias entre los resultados obtenidos y observó que la relación entre la rugosidad de la fractura característica de la dimensión fractal y la tenacidad a la fractura es diametralmente opuesta para una falla dúctil y para una falla frágil.

Mecánica de fractura fractal

Por otro lado, Bouchaud (1990) hace notar que existe un valor universalmente válido para la dimensión fractal de (2.1 < D < 2.3) para superficies fracturadas. Esta hipótesis fue apoyada más tarde por Maloy (1992) quien realizó ensayes en materiales dúctiles y frágiles y reportó una dimensión fractal de $D = 2.11 \pm 0.006$, (Saouma, 2000). Basado en los trabajos de Griffith-Orowan-Irwin, Nagahama demostró que la relación entre *K* y *D* se puede obtener a partir del grado de ductilidad del material utilizado. Se encontró que *K* decrece cuando *D* aumenta, en el caso de materiales dúctiles (Anchieta *et. al.*, 1998).

I.2 El aluminio en la construcción

El aluminio era relativamente nuevo cuando fue introducido por primera vez como material estructural. La selección de aleaciones fue limitada y las técnicas de fabricación eran muy primitivas comparadas con las de hoy en día. A pesar de estos hechos, la aplicación del aluminio como material estructural fue satisfactoriamente introducida en diversas áreas como en la industria marina, en el transporte y en la ingeniería civil, entre otras. La introducción del aluminio en la ingeniería civil como material estructural, empezó en la década de los años 30 del siglo XX (Broli, 1994). Su aplicación fue dirigida principalmente hacia varias clases de cubiertas en naves industriales, escaleras, escaleras de torres, pasillos, silos, grúas y torres, entre otras, figura I.5. Además, recientemente un gran número de aplicaciones en el área militar se han dado en puentes transportables, tanques y cañones.

Figura I.5. Pilón de transmisión de aluminio, construido en 1952.

Durante la década de los años 40 del siglo XX, el aluminio fue introducido en los puentes carreteros, particularmente en USA. En 1963, aproximadamente 20 puentes habían sido construidos en USA, el mayor con un claro de 100 m, y un total de

aproximadamente 40 en el resto del mundo. Estos puentes fueron más costosos que sus equivalentes en acero, sin embargo, este costo se pretendió absorber con un mayor periodo de vida útil y un mantenimiento menor; sin embargo debido a la mala fabricación del aluminio utilizado en esa época, se tuvieron problemas de corrosión reduciendo la vida útil de los puentes; de esta forma los puentes estuvieron en servicio por un periodo de 30 a 40 años, figura I.6.

Figura I.6. Puente de aluminio, construido en 1947.

Actualmente la utilización del aluminio como material estructural, va más allá del área civil, ya que se utiliza en la industria automotriz, aeronáutica, aeroespacial, tuberías de hidrocarburos, plataformas marinas, barcos y telescopios, entre otros figura I.7 y figura I.8.

a) b) Figura I.7. El aluminio en la construcción. a) De automóviles y b) Aviones.

El uso del aluminio en la construcción de obra civil, reduce sustancialmente el peso de la estructura y gracias a sus propiedades mecánicas, durabilidad, resistencia a la corrosión y la posibilidad de ser reciclado, actualmente el aluminio es utilizado en la construcción de edificios, figura I.8.

Figura I.8. Edificio construido en Australia.

I.3 Justificación

Actualmente existe una gran demanda de buen comportamiento estructural de los materiales utilizados en obras de ingeniería con el fin de reducir costos, pero sin afectar la seguridad estructural, por tal motivo se deben estudiar todos los factores que afectan el comportamiento de los materiales.

Mediante un análisis de fractura determinista, se puede entender y predecir de manera confiable el comportamiento de una estructura; la cual presenta grietas ocasionadas por diversas causas tales como fatiga, flujo plástico y temperatura, entre otras. Sin embargo no se considera la influencia del tamaño y forma de las grietas en las propiedades de fractura del material debido a que considera los bordes lisos, cosa que dista mucho de la realidad.

Un enfoque alternativo de la mecánica de fractura se presenta al considerar la topología de la grieta y su influencia en las propiedades de fractura mediante la introducción de la geometría fractal; ya que ésta da una descripción cuantitativa de la rugosidad de los bordes caracterizándolos mediante la dimensión fractal.

I.4 Objetivo

El objetivo general del presente trabajo de investigación, es el de relacionar el factor de intensidad de esfuerzos crítico en modo I (K_{IC}) y modo II (K_{IIC}) del aluminio estructural aleación 6061-T6, y la dimensión fractal característica de la grieta en el material visto como un cuerpo sólido.

I.5 Metas

Las principales metas que se establecen en la realización del presente trabajo, son las siguientes:

- investigar las propiedades mecánicas del aluminio estructural,
- definir la geometría de las probetas y la instrumentación a utilizar,
- realizar las pruebas de laboratorio,
- analizar la geometría de las superficies de falla,
- determinar la dimensión fractal de las grietas,
- obtener el factor de intensidad de esfuerzos crítico en los modos I (K_{IC}) y II (K_{IIC}),
- determinar la dirección de propagación de acuerdo a la MFLE y a la GF y
- relacionar K_{IC} y K_{IIC} con la dimensión fractal.

Capítulo II Diseño del experimento de laboratorio y ensaye

Contenido

	Pág.
II.1 Introducción	18
II.2 Aluminio 6061-T6	19
II.3 Diseño de la probeta	20
II.3.1 Tipo de probeta a utilizar	20
II.3.2 Geometría de la probeta a utilizar	22
II.4 Maquinado de la probeta	² 24
II.4.1 Corte del material	24
II.4.2 Muesca maquinada	24
II.4.3 Grieta por fatiga	25
II.5 Diseño de la instrumentación	28
II.6 Descripción del ensaye de laboratorio	30
II.7 Reporte del ensaye de laboratorio	31

Resumen

En este capítulo, se presenta el diseño del ensaye de laboratorio necesario para obtener el factor de intensidad de esfuerzos crítico para el modo I (K_{IC}) basado en la norma ASTM E399. Posteriormente se presentan los resultados obtenidos en laboratorio.

Capítulo II Diseño del experimento de laboratorio y ensaye

II.1 Introducción

La prueba para determinar la tenacidad a la fractura en deformación plana, denotada por K_{IC} para el modo I de desplazamiento de abertura de grieta, ha sido normalizada con el fin de obtener resultados válidos en todo el mundo; por tal motivo existen diversas organizaciones que publican procedimientos estandarizados para medir dicha propiedad, como *the American Society for Testing and Materials (ASTM)*, *the British Standards Institution (BSI)*, *the International Institute of Standards (ISO)* y *the Japan Society of Mechanical Engineers (JSME)*. Las primeras normas para obtener *K* y *J* fueron desarrolladas por ASTM en 1970 y 1981, respectivamente, mientras que BSI publicó el primer método de ensayo para obtener *CTOD* en 1979 (Anderson, 1995).

Además de los estándares emitidos por estas organizaciones, existen muchos otros métodos para obtener los parámetros de fractura de materiales en laboratorio que son utilizados por investigadores en el área. De manera general, a continuación se describen algunos de ellos dependiendo de los parámetros que miden (McMeeking, 1990).

Métodos para medir la longitud de grieta. Una medición aproximada de la longitud de grieta, *a*, es un requisito para la obtención de la tenacidad a la fractura y para la medición de la propagación de la grieta por fatiga. Además de los métodos ópticos utilizados para determinar donde la grieta penetra la superficie, existen métodos que miden las longitudes de grieta generando un historial de estas mediciones. Algunos métodos utilizados para medir la longitud de grieta son los de caída de potencial y los acústicos, entre otros.

Métodos para calcular K_{IC} . Debido a que se aplica un esfuerzo normal a un espécimen que contiene una grieta, en su punta se genera un estado de esfuerzos singular. Debido a la problemática de que los esfuerzos crecen infinitamente en la punta, se recurre a métodos ópticos como la fotoelasticidad, métodos de estéreoimagen utilizando la exploración microscópica de electrones y métodos elásticoacústicos, entre otros. En el presente trabajo se utilizarán las normas E 399-90 y B 645-91 de la ASTM para obtener el factor de intensidad de esfuerzos crítico en modo I (K_{IC}) bajo un estado de deformación plana. Cabe mencionar que el K_{IC} únicamente es válido en el intervalo elástico lineal.

II.2 Aluminio 6061-T6

Este grupo de aleación tratado térmicamente, utiliza una combinación de magnesio y silicio para proporcionar el tratamiento térmico. Estas aleaciones poseen gran resistencia de trabajo, resistencia a la corrosión, poca deformación, entre otras. Las aleaciones más comunes incluidas en este grupo son: 6061, 6063 y 6082 utilizadas en la construcción de edificios y en la industria del transporte.

Las aleaciones de aluminio son utilizadas en aplicaciones especiales (la industria automotriz, la aeroespacial, entre otras) debido a la combinación de características como: alta resistencia, baja densidad, durabilidad, por sus propiedades mecánicas, disponibilidad, entre otras. Estos aspectos hacen al aluminio un material con grandes ventajas respecto de otros.

Algunas de las aplicaciones que actualmente se le dan a esta aleación, son las siguientes: Accesorios para aeronaves, lentes para cámara, accesorios para aplicaciones marinas, piezas eléctricas, pistones de frenado, pistones hidráulicos, válvulas y sus partes, marcos para bicicletas, motocicletas.

En la tabla II.1 se muestran las principales componentes químicas del aluminio en porcentajes del peso total.

Componente	Wt %		
Al	95.8 - 98.6		
Cr	0.04 - 0.35		
Cu	0.15 – 0.4		
Fe	Valor máximo 0.7		
Mg	0.8 – 1.2		
Mn	Valor máximo 0.15		
Si	0.4 - 0.8		
Ti	Valor máximo 0.15		
Zn	Valor máximo 0.25		

Tabla II.1. Principales componentes del aluminio aleación 6061-T6.

En la tabla II.2 se presentan algunas de las propiedades mecánicas y físicas de mayor importancia. La información que se presenta se obtuvo de la página Web de *MatWeb*. En esta página se encuentran las propiedades de mayor importancia para una gran cantidad de materiales, *MatWeb* (www.matweb.com/index).

Propiedad	Sistema métrico	Sistema ingles	Comentario		
Físicas					
Densidad	2.7 gr/cm ³	0.0975 lb/in ³	Valor típico		
Mecánicas					
Esfuerzo de tensión último	310MPa	45000 psi	Valor típico		
Esfuerzo de fluencia en tensión	276 MPa	40000 psi	Valor típico		
Módulo de elasticidad	68.9 GPa	10000 psi	El módulo a compresión es mayor al de tensión en 2%.		
Relación de Poisson	0.33	0.33	Según varios tipos de aleaciones ensayadas por el grupo de investigación <i>MatWeb.</i>		
Esfuerzo de fatiga	96.5 MPa	14000 psi	500,000,000 de ciclos		
Tenacidad a la fractura	29 MPa-m ^{1/2}	26.4 ksi-in ^{1/2}	K _{IC} con orientación TL		
Módulo de cortante	26 GPa	3770 ksi	Valor típico		
Esfuerzo cortante	207 MPa	30000 psi	Valor típico		

Tabla II.2. Propiedades físicas y mecánicas del aluminio aleación 6061-T6.

II.3 Diseño de la probeta

A continuación se ve la definición del tipo de probeta a utilizar así como su geometría para cumplir con lo que marca la norma E 399-90 para un estado de deformación plana.

II.3.1 Tipo de probeta a utilizar

Existen cinco tipos de geometrías que la norma ASTM recomienda. Las geometrías permitidas en dicha norma son la viga de tres puntos o viga de flexión (SENB), la probeta compacta, probeta en forma de arco sujeta a tensión, probeta en forma de arco sujeta a flexión y la probeta en forma de disco compacto sujeta a tensión, figura II.1. Estas geometrías y sus limitantes se encuentran en la norma (E 399-90, 1991).

Aquí cada tipo de probeta tiene tres dimensiones características; la longitud de grieta a, el espesor B, y el peralte W, figura II.1. Todas estas dimensiones están definidas en la norma ASTM E 399-90 en la cual se establecen las relaciones entre estas dimensiones y las propiedades mecánicas del material, con el fin de garantizar que la zona plástica en la punta de la grieta sea muy pequeña en comparación con las dimensiones de la probeta. Todas estas limitantes conllevan a un comportamiento elástico-lineal del material.

Figura II.1. Probetas establecidas en la norma ASTM E 399-90.

La gran mayoría de ensayes para obtener la tenacidad a la fractura del material son realizados con probetas tipo SENB y/o probetas compactas con orientación SE(B)(L-S). Las probetas compactas requieren de menos material por lo tanto son más económicas. Por otro lado, las probetas tipo SENB requieren un poco de más material, pero se tiene la ventaja de que su instrumentación es más viable en laboratorios donde no se cuenta con suficiente equipo; por tal motivo, en el presente trabajo se utilizarán probetas tipo SENB ya que se cuenta con equipo para realizar ensayes a flexión. En la figura II.2 se muestran las dimensiones características para este tipo de probeta.

II.3.2 Geometría de la probeta a utilizar

Ahora se dimensiona la probeta de acuerdo a las limitantes que establece la norma para la geometría de la probeta a utilizar con el fin de establecer una primera geometría tentativa acorde a las propiedades mecánicas del aluminio estructural aleación 6061-T6.

Para que los valores obtenidos puedan considerarse válidos según este método, se requiere que se cumplan las relaciones de la ecuación II.1 (E 399-90, 1991).

$$a, B \ge 2.5 * (K_{IC} / \sigma_{YS})^2$$

 $1 \le W/B \le 4$ II.1
 $S = 4 * W$
 $L = 4.2 * W$

donde, a es la longitud de grieta, B es el espesor, W es el peralte, S es la separación entre apoyos y L es la longitud total de la viga.

De acuerdo a las propiedades físicas y mecánicas del material en estudio especificadas en la tabla II.2, se llega a las siguientes dimensiones de la probeta:

- longitud de grieta, *a*, de 50 mm,
- espesor, *B*, de 50 mm,
- peralte, *W*, de 100 mm,
- separación entre apoyos, *S*, de 400 mm y
- longitud total de la viga, *L*, de 420 mm.

La norma ya referida establece que la longitud total de grieta consta de una longitud inducida mediante un maquinado especial más otra provocada por una carga de fatiga; todo esto garantiza un comportamiento elástico-lineal del material.

La grieta maquinada es tipo Chevron con una longitud total de a-0.025W. A continuación se presentan las medidas con las que debe cumplir la grieta maquinada, así como sus dimensiones finales, figuras II.3 y II.4.

Figura II.3. Geometría de la muesca inducida mediante maquinado.

Figura II.4. Geometría final de la grieta.

En la tabla II.3, se tienen las dimensiones de la grieta maquinada. Todas estas dimensiones se manejan como tentativas debido a que deben cumplir con otras especificaciones contenidas en la norma, las cuales sólo podrán ser verificadas después de realizar el ensaye correspondiente.

Variable	Relación	Valor seleccionado
Longitud de grieta	a-0.025W	48 mm
N	N < (W/10)	9 mm
α		60°

En lo referente a la grieta provocada por fatiga, ésta se inducirá por carga cíclica; la cual está normada dependiendo del tipo de material a utilizar. La longitud de la grieta por fatiga es de 0.025*W*.

La carga aplicada al inicio de grieta, no debe de exceder del 80% de la tenacidad del material y en el resto del 60%. La carga cíclica es aplicada con una frecuencia variable dependiendo de la velocidad de propagación de la grieta. En la figura II.4 se definen las dimensiones finales de la grieta, maquinada más inducida por fatiga, para la probeta en estudio.

II.4 Maquinado de la probeta

En las siguientes tres subsecciones se define el proceso de maquinado que se ha realizado para la obtención de la probeta para que cumpla con la geometría y tipo de grieta dispuesta por la norma E 399-90.

II.4.1 Corte del material

Para obtener la geometría deseada, se investigó en el mercado y en manuales de la *European Aluminium Association (EAA),* los diferentes tipos de perfiles existentes que cumplieran con las medidas de la probeta; esto se hizo con la finalidad de reducir costos, tiempo en la fabricación de la pieza y garantizar que el material ensayado cumpliera con las propiedades de homogeneidad e isotropía, entre otras. Por tal motivo, se seleccionó una vigueta aleación 6061-T6 que cumplió con las medidas deseadas sin tener que realizar algún corte extra para llegar a obtener las medidas de la probeta final. En la figura II.5, se tiene una fotografía de la probeta con las dimensiones estipuladas.

Figura II.5. Geometría real de la probeta.

II.4.2 Muesca maquinada

Una vez que se obtuvo la probeta con las medidas antes definidas, se procedió a realizar la muesca o entallado mediante un maquinado especial. Es importante mencionar que debido a la alta precisión requerida en las medidas, se diseñaron cortadores especiales para su maquinado, ya que no se contaba con los aditamentos necesarios para el maquinado de la punta de muesca (tipo Chevrón).

Un aspecto relevante fue el terminado que se le dio a la punta de la muesca. Se trató de dar el menor radio de giro posible, para garantizar que la grieta por fatiga que se induce posteriormente, se presente con mayor facilidad y reduciendo al mínimo la zona plástica en la punta de grieta, figura II.6.

Figura II.6. Grieta maquinada.

II.4.3 Grieta por fatiga

Antes de realizar el ensaye definitivo, es necesario provocar una grieta por fatiga en la punta de la muesca maquinada; cuyo objetivo es garantizar que su radio de curvatura tienda a cero y de esta manera reducir la zona plástica en la misma al momento que se propague la grieta.

Para provocar la grieta por fatiga, como lo marca la norma, se utilizó una máquina universal de ensayes mecánicos-dinámicos con capacidad para realizar pruebas por fatiga, con las siguientes características: marca MTS, modelo 850 y capacidad de la celda de carga de 25 KN, figura II.7.

Para hacer que aparezca la grieta, la norma marca que al inicio se debe aplicar una carga cíclica correspondiente hasta el 80% de la tenacidad a la fractura del material ensayado, aproximadamente 37 KN, y en el resto del crecimiento el correspondiente hasta el 60% de la misma propiedad, del orden de 28 KN. Como se puede observar la celda de carga de la máquina disponible no cubría estos rangos de carga; por tal motivo, se procedió a retirar la celda de carga y controlar los desplazamientos en lugar de la carga, con lo cual se estimó una capacidad disponible de la máquina de 30 KN.

Figura II.7. Máquina universal de ensayes mecánicos-dinámicos MTS.

La carga se aplicó dinámicamente con una variación de tipo senoidal con las siguientes características: onda tipo senoidal, frecuencia de 1.5 Hz y amplitud de onda de 0.5 mm, figura II.8.

El número de ciclos necesarios para provocar la grieta por fatiga, fue de 235578 los cuales, se llevaron a cabo en varias sesiones por limitantes en los tiempos de trabajo de la máquina, figura II.9.

Figura II.9. Aplicación de la carga cíclica.

En esta parte del ensaye, se diseñó un dispositivo especial para poder colocar la probeta en la mesa de la máquina ya que no se contaba con los dispositivos necesarios para las pruebas en flexión. En las figuras II.10 y II.11 se detallan las características de dicho dispositivo.

Figura II.10. Dispositivo para aplicar la carga.

Figura II.11. Dispositivo de soporte.

II.5 Diseño de la instrumentación

Para llevar a cabo la prueba de laboratorio como lo marca la norma, es necesario medir carga contra apertura de grieta; esta última es medida en dirección normal a la aplicación de la carga.

El extensómetro utilizado en laboratorio no contaba con los aditamentos necesarios para llevar a cabo una medición en la dirección deseada, como tampoco para probetas con sección transversal rectangular; por tal motivo se tuvo que diseñar un dispositivo especial para poder sujetar el extensómetro a la probeta y de esta forma poder medir en la dirección de apertura de grieta.

La carrera del extensómetro es de 50 mm, por tal motivo se le tomaron medidas para aprovechar toda su carrera y minimizar el juego que pudiese existir entre éste y el dispositivo de medición, figura II.12.

Figura II.12. Croquis del dispositivo de fijación.

Para sujetar las placas fijas a la probeta, se utilizaron brocas especiales tipo *gavilán* para no dañar la probeta y garantizar que el terminado en el fondo del barreno fuera plano. En cuanto a las placas móviles, el barreno que se construyó para introducir el tornillo se hizo con la misma filosofía que la utilizada en los barrenos de las placas fijas. Las perforaciones fueron en forma de óvalo lo que permitió que las terminaciones del extensómetro entraran sin dificultad y poder así recorrer la placa hasta que quedase justa sin permitir ningún movimiento. En la fotografía que a continuación se presenta se ve claramente la forma en como se fija el dispositivo de medición a la probeta, figura II.13.

Figura II.13. Probeta con el dispositivo de fijación.

II.6 Descripción del ensaye de laboratorio

Una vez que se indujo la grieta por fatiga como lo marca la norma, se procedió a ensayar la probeta para obtener el factor de intensidad de esfuerzos crítico, tenacidad a la fractura del material en estudio.

Para poder llevar la probeta a la falla así como medir la carga aplicada y la apertura de grieta, a continuación se menciona el equipo utilizado, así como las características de los mismos:

- Máquina universal de ensayes mecánicos-dinámicos marca Instron, modelo 8502 con capacidad de la celda de carga de 250 KN.
- Extensómetro marca Instron, tipo estático con carrera de 25 mm y longitud calibrada de 50 mm y precisión de 0.0001.

Figura II.14. Probeta en la máquina de ensayes Instron.

Para colocar la probeta en la mesa de ensayes de la máquina, se construyó un dispositivo especial, debido a que los aditamentos con que se cuenta en el laboratorio no cumplían la separación necesaria de apoyos. Antes de colocar la probeta en la mesa de ensayes, se instaló el extensómetro en la parte inferior de la misma, figura II.14.

La máquina utilizada cuenta con una consola y una computadora desde la cual se dan los parámetros del ensaye (velocidad de prueba, tipo de prueba, unidades de fuerza y longitud, entre otras), y una vez que se inicia la prueba la computadora se encarga de registrar todos los puntos de la gráfica carga-apertura de grieta sin necesidad de tomar lecturas en forma manual. Esto es de gran ayuda para evitar errores humanos en la apreciación de lectura y aumentar el grado de precisión. En la tabla II.4 se muestran las características del ensaye en laboratorio que se programó en la computadora.

Tabla II 4	Características	del ensave	e de laboratorio
1 4014 11.4.	Caracteristicas	uci chisayi	

Test Module Version: 75000	Version Date: 15 April 98
Sample I.D.: FRACT4	Test Date: 07 July 05
Test Type: Flexural	Method: 3
Operator: Jaime Retama Velasco	Edit Date:
Unit Type: Metric	Geometry: Rectangular
Number of specimens: 1	# of channels: 2
Machine type: 8500	Robot mode: No
Sample Rate: 10.000000 pts/sec	Extensometer: Disabled
Crosshead Speed: 1.000 mm/min	2nd Crosshead Speed:
Temperature: 19 Deg C	Humidity: 50 %
Auto-start: Enabled	Separate Dimension Entry: Disabled

Specimen Number: 1

Width: 100.000008 mm Depth: 50.000004 mm Span: 400.000031 mm

Number of points: 1693 Max Load point: 929 Max Extension point: 1693

Maximum Load: 47325.403913 N Maximum Extension: 9.782001 mm

II.7 Reporte del ensaye de laboratorio

En este punto se presenta un reporte completo del ensaye de laboratorio como lo recomienda la norma y todo el historial que compone la curva carga-apertura de grieta se da en el anexo 3.

- Código de la configuración de la probeta ensayada SE(B)(L-S)
- La probeta se obtuvo de una solera de 2"x4"
- Espesor de la probeta de 50 mm
- Peralte de la probeta de 100 mm
- Longitud de grieta de 50 mm
- Temperatura ambiental de 19°C
- Humedad relativa de 50%
- Apariencia de la fractura tipo frágil
- Comportamiento fractal
- Esfuerzo de fluencia del material de 276 MPa

En la gráfica de la figura II.15 se presenta el comportamiento del material a lo largo de la prueba y a partir de la cual, se procede a calcular el factor de intensidad de esfuerzos crítico en modo I.

Figura II.15. Gráfica carga-apertura de grieta.

Capítulo III Análisis fractal de grietas en aluminio 6061-T6

Contenido

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
III.1 Cálculo del factor de intensidad de esfuerzos crítico	34
III.2 Relación entre el K_{IC} y K_{IIC}	37
III.3 Cálculo de la dirección de propagación	38
III.3.1 Criterio del esfuerzo principal máximo	38
III.3.2 Teoría de la tasa máxima de energía liberada	39
III.3.3 Teoría de la tasa mínima de densidad de energía de deformación	39
III.4 Cálculo de la dimensión fractal	40
III.5 Comportamiento fractal de la grieta en el aluminio	43
III.6 Dirección de propagación fractal de la grieta	46
III.7 Mecánica de fractura y geometría fractal	48
III.7.1 Parámetros de la geometría fractal	48
III.7.2 Parámetros de mecánica de fractura	50
III.7.3 Relación entre <i>D</i> , <i>K_{IC}</i> y <i>K_{IIC}</i>	51

Resumen

Pág.

En este capítulo se obtiene el K_{IC} a partir del ensaye de laboratorio y se relaciona con el K_{IIC} , posteriormente se calcula la dirección de propagación de la grieta de acuerdo a la MFLE así como su dimensión fractal y se estudia su comportamiento por medio de la geometría fractal.

Capítulo III Análisis fractal de grietas en aluminio 6061-T6

III.1 Cálculo del factor de intensidad de esfuerzos crítico

En este trabajo únicamente se ensayó una probeta debido a limitantes económicas. A continuación se procede a determinar el factor de intensidad de esfuerzos crítico (modo I) a partir de los resultados de laboratorio al aplicar, la teoría de mecánica de fractura lineal elástica bajo un estado de deformación plana.

Para poder establecer un K_{lc} válido, primero se debe calcular un valor preliminar K_{Q} el cual se condiciona por diferentes puntos que marca la norma. Si este último valor cumple con tales requisitos, se establece como el K_{lc} del material y la prueba se acepta.

De la gráfica carga-apertura de grieta, primero se dibuja una línea secante en la parte ascendente de ésta, línea OA, y posteriormente se disminuye su pendiente en un 5%, línea OP₅, figura III.1.

La carga máxima que soportó la probeta es de $P_{max} = 47325.403913 N$ y la carga de la línea disminuida 5% es $P_{q} = 45861.75 N$. Para que se pueda proceder a calcular el factor de intensidad de esfuerzos crítico provisional, K_{q} , se debe cumplir la siguiente condición (E 399-90, 1991):

$$\frac{P_{\max}}{P_Q} \le 1.10$$
 III.1

sustituyendo valores en III.1 se obtiene que:

$$\frac{47325.403913}{45861.75} = 1.032 < 1.1$$

el cual cumple con la limitante de la norma, y es por lo tanto un valor correcto. Esto quiere decir que está dentro de la teoría de MFLE.

Figura III.1. Cálculo de la carga P_5 .

Como se puede observar, la primera condición se cumple y se puede proceder a calcular el valor K_{Q} para posteriormente con ayuda de este valor, revisar que las dimensiones de la probeta ensayada sean las correctas.

Para calcular el valor provisional del factor de intensidad de esfuerzos crítico, se debe utilizar la ecuación III.2 cuya aplicación es de forma particular para el tipo de probeta ensayada (E 399-90, 1991):

$$K_{Q} = \left(\frac{P_{Q}S}{BW^{\frac{3}{2}}}\right) f\left(\frac{a}{W}\right)$$
 III.2

La función f(a/W) depende de las características geométricas de la probeta en estudio y su forma es:

$$f\left(\frac{a}{W}\right) = \frac{3(a/W)^{1/2} \left[1.99 - (a/W)(1 - a/W)(2.15 - 3.93(a/W) + 2.7(a^2/W^2))\right]}{2(1 + 2a/W)(1 - a/W)^{3/2}}$$
III.3

Mecánica de fractura fractal

donde P_Q es la carga determinada en el párrafo anterior, *B* es el espesor de la probeta, *S* es la separación de apoyos, *W* es el peralte de la probeta y *a* es la longitud de la grieta.

Los cálculos para poder obtener el valor de la constante K_{o} son:

$$\frac{a}{W} = \frac{48.5}{100} = 0.485$$
 sustituyendo en III.3 $f\left(\frac{a}{W}\right) = 2.54$

Aplicando la ecuación III.2, se tiene:

$$K_{Q} = \left(\frac{45861.75 * 400}{50 * (100)^{3/2}}\right) * 2.54 = 931.911 \ N/mm^{3/2}$$
$$= 29.47 \ MPa\sqrt{m}$$

Para que este valor pueda ser considerado como el factor de intensidad de esfuerzos crítico del material, se debe cumplir la condición III.4:

$$B_{actual} \ge B_{requerida}$$
 III.4

para calcular la dimensión $B_{requerida}$, se aplica la ecuación III.5:

$$B_{requerida} = 2.5 \left(\frac{K_{Q}}{\sigma_{YS}}\right)^{2}$$
 III.5

$$B_{requerida} = 2.5 * \left(\frac{29.47}{275.889}\right)^2 = 0.02853 \ m = 28.52 \ mm$$

 $B_{actual} = 50 \ mm$

de donde se concluye que se cumple la ecuación III.4 con lo cual, el valor provisional K_{q} se considera como el valor del factor de intensidad de esfuerzos crítico del aluminio estructural 6061-T6. Por tal motivo se concluye que la prueba de laboratorio es válida.

Para el predimensionamiento se tomaron en cuenta las limitantes y condiciones que tiene la norma E-399, la cual regula el cálculo de la tenacidad a la fractura en un estado de deformaciones planas para el modo I de falla en metales, sin embargo la

Mecánica de fractura fractal

norma B 645-91 regula el cálculo de la tenacidad a la fractura bajo las mismas condiciones pero para el aluminio, estableciendo que el valor del espesor debe ser del doble al estipulado en E-399. Bajo el conocimiento de esta condición se dimensionó la probeta con el doble de las dimensiones obtenidas.

Por lo anterior se establece que el factor de intensidad de esfuerzos crítico para el modo I de falla del aluminio 6061-T6 es:

$$K_{Q} = K_{IC} = 29.47 \ MPa\sqrt{m}$$

III.2 Relación entre K_{IC} y K_{IIC}

El efecto de un modo mixto de carga para fractura y fatiga, está siendo estudiado con gran interés ya que en la realidad es difícil que un material falle únicamente por alguno de los modos de falla de manera independiente. Sin embargo el modo más estudiado es el modo I, a continuación se menciona la relación entre los modos I y II, la cual fue estudiada experimentalmente por Henry Vaughan (Vaughan, 1998).

Para un material que falla de acuerdo al criterio del esfuerzo principal máximo para el modo I, modo II o una combinación de éstos, si la condición de carga es únicamente en el modo I, la falla ocurre cuando:

$$(\sigma_{\theta})_{\max} = \frac{K_{IC}}{\sqrt{r}}$$
 III.6

donde K_{IC} es el factor de intensidad de esfuerzos crítico para el modo I.

Para el caso en que la condición de carga provoque un deslizamiento de las superficies de falla, modo II, la falla ocurre si:

$$\left(\sigma_{\theta}\right)_{\max} = \frac{2K_{IIC}}{\sqrt{3r}}$$
 III.7

donde K_{IIC} es el factor de intensidad de esfuerzos crítico para el modo II (Vaughan, 1998).

Igualando la ecuación III.6 con la III.7, se obtiene una relación entre el factor de intensidad de esfuerzos crítico entre los modos I y II cuya forma se tiene en la ecuación III.8.

Sustituyendo valores en la ecuación III.8, se obtiene el factor de intensidad de esfuerzos crítico para el modo II de falla.

$$K_{IIC} = \frac{\sqrt{3}}{2} (29.47) = 25.52 \text{ MPa}\sqrt{m}$$

III.3 Cálculo de la dirección de propagación

En la literatura existen tres métodos para calcular la dirección de propagación de la grieta: criterio del esfuerzo principal máximo, la teoría de tasa máxima de energía liberada y la teoría de tasa mínima de la densidad de energía de deformación (Juárez, L., 2002).

III.3.1 Criterio del esfuerzo principal máximo

Este criterio establece que la grieta se propaga en dirección perpendicular a la dirección del esfuerzo máximo $\sigma_{\theta\theta \max}$. La propagación inicia cuando el esfuerzo tangencial máximo $\sigma_{\theta\theta\max}$, alcanza el valor crítico $\sigma_{\theta\theta\max}$ del material considerado (Erdogan y Sih, 1963).

Los esfuerzos $\sigma_{\theta\theta}$ y $\sigma_{\theta r}$ para un sistema en coordenadas polares, figura III.2, están dados por las siguientes expresiones:

$$\sigma_{\theta\theta} = \frac{1}{\sqrt{2\pi r}} \cos^2\left(\frac{\theta}{2}\right) \left[\kappa_1 \cos\left(\frac{\theta}{2}\right) - 3\kappa_{11} \sin\left(\frac{\theta}{2}\right) \right]$$
 III.9

$$\sigma_{\theta r} = \frac{1}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left[K_{I} \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) + K_{II} \left(1 - 3 \sin^{2}\left(\frac{\theta}{2}\right)\right) \right]$$
 III.10

El esfuerzo $\sigma_{\theta\theta}$ alcanza un valor máximo cuando las ecuaciones III.9 y III.10 cumplen con lo siguiente:

$$\frac{\partial \sigma_{\theta\theta}}{\partial \theta} = 0$$

$$\sigma_{\theta r} = 0$$
III.11
$$\frac{\partial^2 \sigma_{\theta\theta}}{\partial \theta^2} \le 0$$

Igualando la ecuación III.10 a cero y despejando a θ , se obtiene la dirección de propagación de la grieta, ecuación III.12.

$$\theta = \tan^{-1} \left[\frac{K_{I} \pm \sqrt{K_{I}^{2} + 8K_{II}^{2}}}{4K_{I}} \right]$$
 III.12

Sustituyendo valores en la ecuación III.12, se tiene que:

$$\theta = \tan^{-1} \left[\frac{29.47 + \sqrt{29.47^2 + 8 \cdot 25.52^2}}{4 \cdot 29.47} \right] = 42.35^{\circ}$$

La dirección de propagación de la grieta obtenida de manera experimental es de 36°, la cual comparada con la obtenida por la ecuación III.12, presenta una variación de 6.35°.

Figura III.2. a) Componentes de esfuerzo en la cercanía de la punta de la grieta. b) dirección de propagación de la grieta obtenida en laboratorio

III.3.2 Teoría de la tasa máxima de energía liberada

La teoría indica que la grieta se propaga en la dirección donde la energía liberada es máxima. La propagación de la grieta inicia cuando la razón de energía liberada alcanza un valor crítico G_c , que es una constante del material (Husaain, 1974).

III.3.3 Teoría de la tasa mínima de densidad de energía de deformación

La densidad de energía de deformación (el producto interno del esfuerzo local, por el vector de desplazamientos) es la medida de energía de deformación disponible para la propagación de la grieta. El factor de densidad de energía de deformación $S(\theta)$, se define como $S(\theta)/r = \partial U/\partial V$, donde U, es la energía de deformación y V, es el volumen. La grieta inicial se propaga en la dirección local del mínimo $S(\theta)$ (Sih, 1974). La extensión de la grieta inicia cuando $S(\theta)$, alcanza un valor crítico $S(\theta)_c$, definido como una constante del material.

III.4 Cálculo de la dimensión fractal de la grieta

Para proceder a calcular la dimensión fractal para la grieta generada, se utiliza el método de conteo de cajas, el cual se aplica a fractales fragmentados o cuando éstos se han generado por procesos naturales. El método se aplica de manera gráfica y el procedimiento se encuentra descrito en el apéndice B.

Para este caso, la grieta original se rotó a diferentes grados para así poder determinar de manera confiable la dimensión fractal (D), ya que ésta debe de ser la misma para todos los casos. El proceso que se realizó para determinar D, es el siguiente: primero se eligió una fotografía en la cual se presentara con claridad la grieta con el mayor número de detalles posibles y la que se tomó fue la que se muestra en la figura III.3.

Figura III.3. Comportamiento fractal de la grieta.

Posteriormente esta imagen se exportó a un programa en el cual se pudiera vectorizar el contorno de la grieta, de aquí en adelante fractal. Para este caso se utilizó el AutoCad 2004, y de esta forma poder trabajar con mayor exactitud sobre ella. Una vez el contorno trazado, se delimitó el fractal en un rectángulo, para posteriormente realizar los mallados necesarios para el cálculo de la dimensión fractal.

Una vez que se realizado el mallado, se realizaron los cálculos, aplicando la ecuación I.11, y se graficaron los resultados, tabla III.1, donde \mathcal{N} es el número de cajas intersectadas por la curva fractal, $D_{\theta^{\circ}}$ es la dimensión fractal, \mathcal{L} es la longitud total del objeto y ℓ es la longitud de cada segmento, por lo que el cociente de \mathcal{L}/ℓ significa el número de subdivisiones que contiene cada lado de la malla.

Con rotación de 0º					
\mathcal{N} Log (\mathcal{N}) $\mathcal{L}\mathcal{U}$ Log (\mathcal{S})					
3	0.47712	2	0.30103		
5	0.69897	4	0.60206		
8	0.90309	5	0.69897		
19	1.27875	10	1.00000		
31	1.49136	15	1.17609		
42	1.62325	20	1.30103		
57	1.75587	25	1.39794		
165	2.21748	50	1.69897		

Con rotación de 45º				
N	$Log(\mathcal{N})$	LIL	$Log(\mathscr{L}\mathscr{H})$	
3	0.47712	2	0.30103	
7	0.84510	4	0.60206	
10	1.00000	5	0.69897	
21	1.32222	10	1.00000	
33	1.51851	15	1.17609	
48	1.68124	20	1.30103	
63	1.79934	25	1.39794	
175	2.24304	50	1.69897	
_				

D_{0°} = 1.2558

D_{45°} = 1.2295

Con rotación de 90º					
N	$Log(\mathcal{N})$	LIl	$Log(\mathcal{L}\mathcal{H})$		
3	0.47712	2	0.30103		
7	0.84510	4	0.60206		
9	0.95424	5	0.69897		
20	1.30103	10	1.00000		
33	1.51851	15	1.17609		
51	1.70757	20	1.30103		
66	1.81954	25	1.39794		
171	2.23300	50	1.69897		
		-	4 9 4 - 9		

Tabla III.1. Dimensión fractal para cada rotación de la grieta.

D_{90°} = 1.2450

Tabla III.2. Dimensión fractal para la rotación de la grieta cuando $\theta = -45^{\circ}$ o $\theta = 135^{\circ}$.

Con rotación de -45°				
\mathcal{N} Log(\mathcal{N})		LIl	$Log(\mathscr{L}\mathscr{R})$	
4	0.60206	2	0.30103	
7	0.84510	4	0.60206	
10	1.00000	5	0.69897	
20	1.30103	10	1.00000	
33	1.51851	15	1.17609	
50	1.69897	20	1.30103	
65	1.81291	25	1.39794	
182	2.26007	50	1.69897	
D_45° = 1.1842				

Con rotación de 135º				
${\mathcal N}$	$Log(\mathcal{N})$	LIl	$Log(\mathcal{L}ll)$	
4	0.60206	2	0.30103	
7	0.84510	4	0.60206	
10	1.00000	5	0.69897	
21	1.32222	10	1.00000	
33	1.51851	15	1.17609	
51	1.70757	20	1.30103	
64	1.80618	25	1.39794	
182	2.26007	50	1.69897	

D_{135°} = 1.2437

Para el caso de rotación $\theta = -45^{\circ}$ o $\theta = 135^{\circ}$ se presentó una disyuntiva, la que consistió en el número de cajas intersectadas por la curva en el mallado inicial, es decir, cuando $\mathscr{L}/\ell = 2$. En esta rotación la curva parece tocar la cuarta caja, intersección que se nota solamente al hacer un acercamiento o *zoom* a la zona en análisis. En la tabla III.2 se muestran los cálculos para ambas rotaciones con la

consideración de que para la rotación $\theta = -45^{\circ}$ se tomó que la curva intersecta las cuatro cajas y para la rotación $\theta = 135^{\circ}$ la curva sólo intersecta tres cajas.

Cálculo de la dimensión fractal

Figura III.4. Gráfica para el cálculo de la dimensión fractal.

Para obtener la dimensión fractal a cada curva graficada, se calculó una línea de tendencia y se extrapoló hacia atrás de donde se calculó su ecuación y de esta manera se obtuvo su respectiva pendiente. Ésta es la dimensión fractal de la grieta y en la figura III.4 se pueden observar dichas gráficas (Talanquer, 2002; Peitgen *et al.,* 1993).

En el presente capítulo únicamente se incluyen las tablas y figuras de mayor interés para la investigación. Las restantes figuras utilizadas en los cálculos se encuentran en el anexo 3.

Para la obtención de la dimensión definitiva, *D*, se ha calculado un promedio de las dimensiones calculadas en cada una de las cuatro rotaciones que se le han aplicado a la curva fractal, concluyendo que la dimensión fractal para una grieta en aluminio aleación 6061-T6 es:

$$D = (D_{0^{\circ}} + D_{45^{\circ}} + D_{90^{\circ}} + D_{135^{\circ}})/4 =$$
$$= (1.2558 + 1.2295 + 1.2450 + 1.2437)/4 = 1.2435$$

Por lo que la dimensión fractal de las grietas en aluminio estructural aleación 6061-T6, tiene un valor de 1.2435.

El valor de la dimensión fractal obtenido anteriormente, es utilizado en la sección III.7 para relacionar la MFLE con la GF al determinar el factor de intensidad de esfuerzos crítico para los modos I y II a partir de la teoría de la GF utilizando la dimensión de la grieta para el aluminio estructural aleación 6061-T6.

III.5 Comportamiento fractal de la grieta en el aluminio

En 1975 Benoit Maldelbrot denominó *fractales* (del latín fractus, irregular) al conjunto de formas que generados normalmente por un proceso de repetición, se caracterizan por poseer detalles a toda escala; bajo esta definición podemos considerar fractales a todos los objetos o formas que encontramos en la vida diaria; sin embargo dos años más tarde delimitó a los objetos euclidianos de los fractales al asignarles a estos últimos una dimensión fraccionaria (Talanquer, 2002)

Debido a las características que poseen los cuerpos fractales, numerosos investigadores han tratado de explicar el comportamiento de las grietas en un sólido desde el punto de vista de la geometría fractal. En 1984 Mandelbrot, Passoja y Paullay realizaron estudios para caracterizar a las superficies de falla en metales mediante la teoría fractal; estudios similares fueron desarrollados por Saouma, Barton y Gamaleldn en 1990 y los aplicaron al concreto (Bažant, 1997).

Mas recientemente en nuestro país, el grupo de investigadores de mecánica de fractura de la ESIME-IPN Zacatenco ha estudiado el comportamiento fractal de grietas en diferentes materiales utilizando el concepto de grietas auto-afines (Balankin *et. al.*, 1999; Balankin, 1997).

A continuación se presenta el comportamiento fractal de la grieta en el aluminio aleación 6061-T6 y se justifica el tratamiento de ésta como un cuerpo fractal. Para hacerlo se utilizará el concepto de auto-afinidad diagonal, utilizado en la teoría de los fractales, el cual nos dice que un cuerpo auto-afín fractal al ser visto de forma reducida es del todo idéntico, de manera exacta o solamente estadística, a toda la parte más reducida entendida dentro del tiempo (Mandelbrot, 1997) pp. 47.

En la figura III.5 se aprecia que la grieta en el aluminio posee la propiedad de autoafinidad que caracteriza a los cuerpos fractales generados mediante un proceso natural de propagación de una grieta. Como se puede observar existe un patrón que se repite a lo largo de la grieta, comportamiento detectable al hacer un acercamiento de ella. Partiendo del punto medio de la base de la grieta, se han trazado líneas rectas hasta los puntos medios de cada una de las curvaturas que ésta presenta a todo lo largo de su recorrido obteniéndose una curva fraccionada, denotada mediante una línea gruesa en color gris figura III.5. Al momento de la identificación de un cambio en el comportamiento en su recorrido, se han trazado líneas horizontales. Este comportamiento seccionado se manifiesta hasta en cuatro ocasiones a lo largo de su trayecto, figura III.6.a, y cada cambio de comportamiento consta de una línea quebrada dividida en tres segmentos. Los cuatro comportamientos muestran afinidad en su trayectoria. Al trazo mejor delineado, se le ha definido como el generador de la curva y su forma ideal se muestra en la figura III.6.b.

Las líneas horizontales que identifican el inicio de un nuevo generador, figura III.5, muestran la característica de proporcionalidad d tal que:

$$d = \mathcal{L}^* sen(\beta)$$
 donde $sen(\beta) = \mathcal{L}/d$ y $cos(\beta) = k/\mathcal{L}$

Figura III.5. Grieta en el aluminio aleación 6061-T6 vista como un fractal.

Como \mathcal{L} es la longitud del generador y ℓ la longitud de cada segmento, \mathcal{L}/ℓ es el número de subdivisiones que contiene el generador, tres en este caso. Para ver el comportamiento futuro (o ideal) de la trayectoria, se ha definido una relación de escala como el promedio de longitudes de generadores contiguos, es decir, $(\mathcal{L}_1 + \mathcal{L}_2)/2$. El conjunto de valores obtenidos es $\{2.275, 2.193, 2.440\}$. También se ha obtenido el factor de escala de todas las rotaciones que ha sufrido la grieta, denotado *s*, y definido como:

$$\mathbf{s} = \log_{10}\left(\mathcal{N}\right) \quad \forall \quad \mathcal{N} \to \infty$$
 III.13

Para el caso en estudio, el valor de \mathcal{N} es el promedio del número máximo de cada una de las cuatro rotaciones, es decir: $\mathcal{N} = (165+175+171+182)/4 = 173.25$, por lo que $s = \log_{10}(173.25) = 2.2387$. A partir de aquí, se obtiene el factor de escala del generador, definido como el inverso de s, que aplicado se obtiene la estructura geométrica dada en las figuras III.7.a y III.7.b, cuyo valor es de 0.44668.

Figura III.6. a) Comportamiento seccionado de la grieta en aluminio aleación 6061-T6. b) generador ideal.

Figura III.7. Estructuras geométricas del comportamiento seccionado de la grieta en aluminio aleación 6061-T6. a) Escalada, b) con espejo y c) real.

En la figura III.7.a se presenta el modelado fractal de la grieta al aplicar un proceso iterativo que consta de copiar el generado primario de la figura III.6.a a su extremo superior y posteriormente aplicar el factor de escala de 0.44668 obtenido anteriormente. Este proceso se repitió 4 veces ya que en la grieta original el generador se presenta igual número de veces. La figura III.7.b consta del mismo proceso iterativo descrito anteriormente sólo que aquí a las iteraciones pares se les aplicó un proceso de espejo sobre su línea de acción. La figura III.7.c muestra el comportamiento real de la grieta obtenido en laboratorio notándose la similitud con la figura III.7.b.

III.6 Dirección de propagación fractal de la grieta

En la sección III.3, se determinó numéricamente la dirección de propagación de la grieta mediante la teoría de mecánica de fractura lineal elástica al considerar que ésta se propaga en dirección perpendicular al esfuerzo principal máximo $\sigma_{\theta\theta max}$.

A continuación se presenta gráficamente la obtención de la dirección de propagación de la grieta mediante la geometría fractal. La línea de tendencia de la dirección de propagación de la grieta se llevó a cabo bajo la filosofía de compensación de rugosidad a ambos lados de la misma.

Figura III.8. Obtención de la dirección de propagación fractal de la grieta. a) Con el generados impar en espejo y b) con el generador sin rotar.

La dirección de propagación fractal de la grieta se ha determinado bajo las siguientes dos consideraciones, figura III.8.

- Caso en el cual al generador se le aplica un efecto *espejo* en las iteraciones pares, determinándose un ángulo de propagación de $\theta = 39^{\circ}$ respecto a la vertical, figura III.8.a, y
- Caso donde el efecto espejo en las iteraciones pares no es aplicado, obteniéndose un ángulo de propagación de $\theta = 29^{\circ}$ respecto al eje vertical.

Como se puede observar en la primera condición se obtiene un mejor modelado del comportamiento de la grieta, ya que experimentalmente se obtuvo un $\theta = 39^{\circ}$.

En la tabla III.3 se encuentran los resultados obtenidos al modelar la dirección de propagación de la grieta mediante la mecánica de fractura lineal elástica (MFLE) y la geometría fractal (GF).

Modelado	Modelado $ heta^{\circ}$		Variación (%)	
Experimental	36			
MFLE	42.35	6.35	17.63	
GF con espejo	39	3	8.33	
GF sin espejo	27	9	33.33	

Tabla III.3. Dirección de propagación.

De la tabla III.3 se puede observar que al modelar la dirección de propagación de la grieta mediante la geometría fractal, caso espejo, se obtiene una muy buena aproximación del comportamiento real de ésta y su correspondiente modelado mediante la MFLE.

De acuerdo al modelado de la grieta mediante la GF, caso espejo, es posible predecir el comportamiento de la misma y su posible dirección de propagación utilizando un proceso iterativo de autosimilitud, característica de los fractales, de acuerdo al patrón de generación de la figura III.6.a y al factor de escala (reducción) obtenido en la sección III.5.

El proceso se realizó con ayuda de un programa de computadora (AutoCad), el cual ya fue definido en la sección III.5 sólo que para este caso los cálculos se realizaron hasta la vigésima octava iteración. La geometría obtenida de estos cálculos se trasladó a la punta de la grieta obtenida experimentalmente. De esta forma se establece un posible comportamiento de ésta ante posibles cargas que la sigan propagando. El resultado se presenta en la figura III.9 donde se muestra la grieta obtenida en laboratorio y su correspondiente modelado mediante la teoría fractal.

Figura III.9. Modelado de la dirección de propagación mediante la GF.

En la figura III.9, la línea de color gris representa la propagación de la grieta obtenida experimentalmente y que ha sido modelada mediante la teoría fractal, y la de color negro, arriba de la línea horizontal, el comportamiento fractal esperado de ésta; la cual define un ángulo de propagación a futuro de 39.10°, respecto a la vertical, a partir de la punta de la grieta experimental.

III.7 Mecánica de fractura y geometría fractal

La importancia de conocer el comportamiento de diversos materiales ante problemas de fractura, es un tema de investigación en diversas áreas del conocimiento. La obtención de los parámetros de fractura a partir de la MFLE ha dado lugar a la determinación de estas propiedades por medio de nuevas técnicas de modelado. Mandelbrot propuso una nueva forma de caracterizar las superficies de fractura mediante conceptos de la teoría fractal al relacionar la tenacidad a la fractura y la dimensión fractal (Mandelbrot *et. al.*, 1984).

Antes de relacionar las propiedades de fractura, factor de intensidad de esfuerzos crítico en modo I y II, con la dimensión fractal, primero se exponen algunos conceptos de la geometría fractal y la MFLE para posteriormente a partir de éstos, obtener la relación que se busca.

III.7.1 Parámetros de la geometría fractal

Un punto importante de la geometría de una línea fractal, es que su longitud real depende de la exactitud con que ésta sea medida (Anchieta *et. al.,* 1998). Es posible demostrar que después de cada iteración, la longitud total real de la línea se incrementa de acuerdo a la siguiente relación:

donde *j* es el número de iteraciones, \mathcal{N} el número de elementos en el generador base (*j* = 1) y *n* es el factor de reducción aplicado. De donde la longitud real de la línea fractal (*L*_{*i*}) después de *j* iteraciones esta dada por:

$$L_{j} = L_{p} * \varepsilon_{j}^{(d-D^{*})}$$
 III.15

donde $\varepsilon_j = n^j$ representa la mínima unidad de medición, la que para propósitos prácticos, estará asociada con la precisión del microscopio utilizado para hacer las mediciones o con la longitud relativa de un segmento de la línea fractal. El parámetro d representa la dimensión euclidiana del objeto (d es igual a 1 para una línea o igual a 2 para una superficie), D^* es la parte fraccionaria de la dimensión fractal D y L_p es la longitud de la grieta de extremo a extremo sin considerar su rugosidad.

Esta teoría se basa en un cuerpo fractal ideal generado a partir de un algoritmo iterativo (Anchieta *et. al.,* 1998); sin embargo, para aplicarla a casos en el que el fractal se ha generado a partir de un proceso natural, es conveniente despejar a ε_j de la ecuación III.15, ya que los parámetros restantes se pueden obtener de los estudios realizados en las secciones anteriores.

$$\varepsilon_{j} = (d-D^{*}) \sqrt{\left(\frac{L_{j}}{L_{p}}\right)}$$
 III.16

Esta última ecuación es la que se aplica para el caso en estudio debido a que el cuerpo fractal que se está estudiando se generó a partir de un proceso natural, propagación de una grieta en un cuerpo sólido.

La dimensión euclidiana *d* para una línea vale uno, la dimensión fractal del objeto estudiado obtenida en la sección III.4 es de D = 1.2435 y por lo tanto $D^* = 0.2435$. De la figura III.7.c se obtienen las longitudes L_j y L_p , cuyos valores son: 113.0989 y 87.0268 respectivamente.

Estos últimos dos valores se toman en unidades de longitud independientemente del sistema de unidades utilizado, y se determinaron de la siguiente forma. Para L_j , se midió considerando las entradas y salidas de la línea y L_p es la distancia de extremo a extremo de la figura ya referida.

Sustituyendo estos valores en la ecuación III.16, se tiene:

$$\varepsilon_j = (1-.2435) \sqrt{\left(\frac{113.0989}{87.0268}\right)} = 1.41396$$

III.7.2 Parámetros de mecánica de fractura

Primero se presentan algunas relaciones importantes entre los diferentes parámetros de fractura. De la ecuación I.8, se sabe que existe una relación entre el factor de intensidad de esfuerzos y la razón de energía liberada:

$$K^2 = GE$$
 I.8

La ecuación I.8 es válida para un estado de esfuerzo plano; para aplicar la ecuación referida al presente problema, bajo un estado de deformación plana, es necesario sustituir a E por E', donde este último valor esta dado por la ecuación III.17:

Si además en la ecuación I.8 se toma valores críticos para el modo I, se llega a la ecuación III.18 que relaciona el factor de intensidad de esfuerzos crítico con la razón de energía liberada crítica, en modo I, bajo un estado de deformación plana:

$$G_{lC} = \frac{K_{lC}^2}{E'}$$
 III.18

Por otro lado, se tiene una relación entre el factor de intensidad de esfuerzos crítico con el esfuerzo crítico, dada por la ecuación A.17, la cual es válida bajo un estado de deformación plana:

$$\sigma_{IC} = \sqrt{\frac{2E\gamma_t}{\pi a(1-\nu^2)}}$$
 A.17

reordenando términos en la ecuación A.17 y considerando que $K_{IC} = \sigma_{IC} \sqrt{\pi a}$, se obtiene la ecuación III.19:

$$\frac{K_{lC}^2}{E'} = 2 * \gamma_t \qquad \qquad \text{III.19}$$

igualando la ecuación III.18 con la ecuación III.19 se obtiene que:

$$G_{lC} = 2 * \gamma_t \qquad \qquad \text{III.20}$$

donde γ_t es la suma de la energía elástica de superficie γ_e , y la energía plástica de superficie en la vecindad de la punta de grieta γ_p .

Sustituyendo valores para el aluminio aleación 6061-T6, tabla II.2, en las ecuaciones III.17 y III.18, se obtienen las constantes de mecánica de fractura E' y G_{IC}.

$$E' = \frac{68972.29}{(1 - 0.33^2)} = 77401.29 \ N/mm^2$$

$$G_{IC} = \frac{(931.911)^2}{77401.29} = 11.22 \text{ N/mm}$$

III.7.3 Relación entre D, K_{IC} y K_{IIC}

Relaciones básicas importantes que describen la relación entre la geometría fractal y la mecánica de fractura se pueden encontrar en trabajos de Lin y Lai (Lin y Lai, 1993), Mu y Lung (Mu y Lung, 1998), Tanaka (Tanaka, 1996), Xin (Xin *et. al., 1995)*, Nagahama (Nagahama, 1994) y Lung (Lung, 1986).

Anchieta y Pandolfelli reportan una relación entre la ecuación III.16 y III.20 cuya forma es la siguiente (Anchieta *et. al.,* 1998):

$$G_{IC} = 2 * \gamma_t \approx 2 * \left(\gamma_e + \gamma_p\right) * \varepsilon_j^{(d-D^*)} \approx \frac{K_{IC}^2}{E'}$$
 III.21

De la ecuación III.21 podemos obtener a K_{IC} en función de la dimensión fractal D, dando como resultado:

$$K_{IC} = \sqrt{G_{IC} * E' * \varepsilon_{j}^{(d-D^{*})}}$$
 III.22

Al sustituir valores en la ecuación III.22, se llega a:

$$K_{IC} = \sqrt{11.22 * 77401.29 * 1.4205^{(1-.2435)}} = 1062.36 \text{ N/mm}^{3/2}$$
$$= 33.59 \text{ MPa}\sqrt{m}$$

Para obtener el factor de intensidad de esfuerzos crítico para el modo II, se sustituye la ecuación III.22 en III.8, de donde se obtiene:

$$K_{IIC} = \sqrt{\frac{3 * G_{IC} * E' * \varepsilon_j^{(d-D^*)}}{4}}$$
III.23

por lo que al sustituir valores en III.23, se llega a:

$$\mathcal{K}_{IIC} = \sqrt{\frac{3*11.22*77401.29*1.4133^{(1-.2435)}}{4}} = 920.03 \ \text{N/mm}^{3/2}$$
$$= 29.09 \ \text{MPa}\sqrt{\text{m}}$$

Los factores de intensidad de esfuerzos críticos obtenidos anteriormente, consideran la influencia de la rugosidad de los bordes de la grieta, situación que no se toma en cuenta en un análisis de mecánica de fractura de acuerdo a la teoría de Griffith.

En la tabla III.4 se presentan los resultados comparativos de la obtención de los factores de intensidad de esfuerzos críticos para los modos I y II obtenidos a partir de la teoría de la MFLE y la GF.

Modelado	$\mathcal{K}_{_{\mathit{IC}}}\left(MPa\sqrt{m} ight)$	$K_{''c} \left(MPa\sqrt{m} \right)$	Variación <i>K_{ic}</i>	Variación (%) <i>K</i> _{/c}	Variación <i>K_{iic}</i>	Variación (%) <i>K</i> _{//c}
Reportado*	29	25				
Experiment al	29.47	25.52	0.47	1.62	0.52	2.08
Geom. Fract.	33.59	29.09	4.59	15.83	4.09	16.36

Tabla III.4. Factor de intensidad de esfuerzos crítico para los modos I y II.

 Éstos corresponden a los valores obtenidos de la página de Internet MatWeb, base de datos para diversos materiales, (www.matweb.com) y los citados por el programa Nasgro 3.0 en su documentación correspondiente.

Como se puede observar, de los cálculos realizados para obtener el factor de intensidad de esfuerzos crítico mediante la geometría fractal, se toma en cuenta de manera indirecta el tamaño ínter granular del material, ya que la forma (rugosidad) de la fractura depende del tamaño de los granos que componen al aluminio. Por lo que se concluye que el factor de intensidad de esfuerzos depende de este parámetro. Para calcular este valor de acuerdo a la MFLE, únicamente se toma en cuenta el estado de esfuerzos en la punta de la grieta sin importar el comportamiento de ésta en el proceso de propagación y no es de importancia la rugosidad que pueda presentar a lo largo de la misma.

Conclusiones

- * Es viable obtener el factor de intensidad de esfuerzos crítico para el modo l utilizando probetas tipo SENB.
- * Se observó que es importante realizar este tipo de ensaye en laboratorios que cuenten con equipo controlado por medio de software.
- * El error obtenido al determinar en laboratorio el factor de intensidad de esfuerzos crítico para el modo I, fue de 1.62% respecto a los reportados en la literatura.
- * La obtención de la dirección de propagación aplicando la MFLE, presenta una variación de 17.63% respecto a la obtenida en laboratorio.
- * La dimensión fractal para el aluminio aleación 6061-T6 es de D = 1.2435.
- * La grieta en aluminio estructural aleación 6061-T6, presenta un comportamiento fractal auto-afín diagonal cuyo factor de escala es de 1/s = 0.44668.
- * La dirección de propagación fractal de la grieta, caso espejo, tiene una variación de 8.33% respecto a la experimental.
- * La obtención del factor de intensidad de esfuerzos para el modo I obtenido al aplicar la GF, da una variación de 15.83% respecto al reportado en la literatura.
- * El factor de intensidad de esfuerzos es inversamente proporcional a la dimensión fractal de la grieta para el aluminio aleación 6061-T6 para este caso.
- * El tamaño granular del material, influye directamente en las propiedades de fractura del material.
- * Es posible estudiar el problema de fractura en aluminio aleación 6061-T6 utilizando un análisis en conjunto de MFLE y GF.

Discusión de conclusiones

La obtención de la tenacidad a la fractura utilizando probetas tipo SENB no presenta problemas en cuanto al maquinado de éstas y su correcta instrumentación en laboratorio, sin embargo la desventaja es que necesita más material que las probetas compactas sujetas a tensión.

La norma recomienda que la precisión en las lecturas para la apertura de grieta sea de ± 0.0005 mm, lo cual no es posible si el ensaye se realiza en laboratorios donde el equipo utilizado no cuenta con un software que realice las lecturas de manera automática y de esta forma eliminar el error humano. Para el presente trabajo de investigación, la precisión en la lectura de la carga fue de una millonésima de kilogramo y para la apertura de grieta de una diezmilésima de milímetro.

El error obtenido al determinar experimentalmente la tenacidad a la fractura, sección III.1, para el aluminio aleación 6061-T6 fue de 1.62%; esto se logró al apegarse estrictamente a la geometría de las probetas como lo marca la norma y de esta forma, garantizar un estado de deformación plana.

La determinación numérica de la dirección de propagación mediante la MFLE, se llevó a cabo únicamente utilizando la teoría del esfuerzo principal máximo, el cual se basa en la teoría del factor de intensidad de esfuerzos, debido a que uno de los objetivos en este trabajo de investigación es obtener experimentalmente el factor de intensidad de esfuerzos crítico.

La obtención de la dimensión fractal se realizó utilizando el método de conteo de cajas, realizando varias rotaciones de la malla con el objetivo de establecer un valor válido; ya que teóricamente la dimensión debe ser la misma para cualquier rotación de malla. En este caso se determinó la dimensión fractal para cinco rotaciones con una variación de ± 0.011 .

Una de las propiedades de los fractales es su auto-afinidad, la cual nos dice que un fractal al ser visto de forma reducida es del todo idéntico, de manera exacta o solamente estadística, a toda la parte más reducida. Esta propiedad es la que presenta la geometría de la grieta en el aluminio aleación 6061-T6, ya que en la sección III.5 se obtuvieron parámetros que justifican este hecho. Un de ellos es el factor de reducción el cual establece la relación entre el todo y las partes del objeto fractal. Además se determinó un patrón de generación que se repite a varios niveles de amplificación.

En la sección III.6 se determinó la dirección de propagación utilizando la teoría fractal, caso espejo; la cual comparada con la obtenida experimentalmente presenta una variación de 8.33% que es menor a la que se presenta utilizando la teoría de MFLE (17.63%). De esta conclusión se puede observar que el modelado mediante la GF describe apropiadamente el comportamiento de grietas ya que toma en cuenta la influencia de la topología de estas.

El objetivo principal de este trabajo de investigación fue relacionar la MFLE con la GF utilizando los parámetros de factor de intensidad de esfuerzos crítico y la dimensión fractal. Esta teoría se presenta en la sección III.7 en la cual se determinó la tenacidad a la fractura a partir de la dimensión fractal dando una variación de 15.83%; parámetro que toma en cuenta la influencia de la rugosidad de los bordes de la grieta, por lo que la variación no se considera como un error ya que el obtenido experimentalmente, con el que se está comparando, se basa en la teoría de MFLE la cual no considera la topología de la grieta.

Recomendaciones

Un punto muy importante observado al momento de aplicar la carga cíclica, es el conocer la calidad del material utilizado ya que puede tener imperfecciones que afecten directamente la propagación de la grieta. Es necesario conocer el origen del material del cual se fabricó la probeta; si es un perfil laminado en frío o fundido con la geometría final. Se recomienda que la probeta provenga de un perfil laminado para así garantizar la homogeneidad e isotropía del material.

La norma E 399-90 recomienda que la precisión en las lecturas de laboratorio sea del orden de 0.00005 mm. Sin embargo, durante el ensaye se observó que esto es difícil de garantizar si la forma de tomar las lecturas es manual (una persona toma las lecturas de acuerdo a su apreciación); por tal motivo se recomienda que el equipo de laboratorio a utilizar cuente con un dispositivo para tomar y almacenar las lecturas de manera automática. Para este caso se midió con una precisión de una millonésima de Newton para la carga y de una diezmilésima de milímetro para la apertura de grieta.

En la presente tesis únicamente se determinó la dimensión fractal por el método de conteo de cajas, sin embargo es importante su obtención por varios métodos para hacer una correcta validación de este parámetro.

Se recomienda disminuir la geometría de las probetas a la mitad pero respetando las limitantes que establece la norma E 399 y de esta forma tener una familia de especímenes para poder llevar a cabo un análisis estadístico de la información para posteriormente determinar las propiedades deseadas.

De lo observado en laboratorio, se recomienda que el radio de curvatura en la punta de la grieta maquinada tienda a cero y que la frecuencia para aplicar la carga cíclica sea del orden de 2 Hz.

Una alternativa para relacionar la dimensión fractal con los parámetros de fractura del material, es llevar a cabo un análisis estadístico de la información (con seis probetas como mínimo) para posteriormente realizar una regresión lineal y de esta forma encontrar la relación que se busca.

Trabajos futuros

En la sección III.7 se estudió la relación existente entre la tenacidad a la fractura y la dimensión fractal para el aluminio aleación 6061-T6, donde se estableció un parámetro ε_j que depende del tamaño intergranular del material y que en el presente trabajo se obtuvo de manera indirecta. Sin embargo para corroborar este valor, es necesario realizar mediciones en laboratorio con ayuda de un microscopio para medir el tamaño intergranular del material, quedando este estudio como un trabajo futuro.

Sería conveniente llevar a cabo ensayes de laboratorio utilizando varias geometrías (tres probetas por geometría) respetando las limitantes que establece la norma E 399 mediante probetas compactas sujetas a tensión para el aluminio estructural aleación 6061-T6. También establecer la obtención del módulo de elasticidad para el material mediante ensayes de laboratorio de acuerdo a la normatividad de la ASTM con el fin de tener datos experimentales para el dimensionamiento de las probetas.

Con la información obtenida de los ensayes de laboratorio para la obtención de la tenacidad la fractura, se debe realizar un análisis estadístico para relacionar este parámetro con la dimensión fractal del material mediante algún tipo de regresión. Este es otra forma alternativa de relacionar estos dos parámetros.

Por último la determinación de la dimensión fractal se realizará mediante la aplicación de otros métodos reportados en la literatura con el fin de comparar los resultados obtenidos de la aplicación de éstos.

Referencias bibliográficas

Libros

Α

Anderson, T. L. 1995. *"Fracture mechanics", Fundamentals and applications.* Ed. CRC Press, Second edition. Florida, USA. ISBN: 0-8493-8974-7.

В

Bažant, Z. P. and Planas, J. 1997. *"Fracture and size effect in concrete and other quasibrittle materials"*. Ed. CRC Press. New York, USA. ISBN: 0-8493-8284-X. **Braun, E. 1999.** *"Caos, fractales y cosas raras"*. Ed. Fondo de cultura económica. Núm. 150. Segunda edición. México. ISBN: 968-6060-9.

G

Gardner, M. 1990. *"Mosaicos de penrose y escotillas cifradas"*. Ed. Labor. Primera edición. Barcelona, España. ISBN: 84-335-5220-1.

Gordon, J. E. 1968. *"The new science of strong materials"*. Penguin Books. London, England.

Gonzáles Velázquez, J. L. 1998. *"Mecánica de fractura", Bases y aplicaciones*. Ed. Limusa. Primera edición. México. ISBN: 968-18-5544-2.

Μ

Mandelbrot, B. B. 1997. "Fractales, hasard et finance". Ed. Flammarion. Paris, France. ISBN: 2-08-08132-X.

McMeeking, R. M. 1990. "Recent advaces in fracture mechanics". University of California, USA.

0

Oller S. 2001. *"Fractura mecánica". Un enfoque global.* Centro Internacional de Métodos Numéricos en Ingeniería (CIMNE). Primera edición. España. ISBN: 84-89925-76-3

Ρ

Peitgen, H.O., Jürgen, H. and Saupe, D. 1993. *"Fractals for the classroom", Introduction to fractals and chaos.* Ed. Springer-Verlag. Second edition, Part one. New York, USA. ISBN: 3-540-97041-X.

Peitgen, H.O., Jürgen, H. and Saupe, D. 1993. *"Fractals for the classroom", Introduction to fractals and chaos.* Ed. Springer-Verlag. Second edition, Part two. New York, USA. ISBN: 3-540-97041-X.

S

Saouma, V. E. 2000. *"Lecture notes in fracture mechanic".* Dept. of civil environmental and architectural engineering. University of Colorado. USA.

Т

Talanquer, V. 2002. *"Fractus, fracta, fractales", Fractales de laberintos y espejos.* Ed. Fondo de cultura económica. Núm. 147. Segunda edición. México. ISBN: 968-16-6367-4.

Tesis de grado

Η

J

Hayashida, K.K. 1997. *"Determinación de la estabilidad de propagación direccional de fractura por medio del análisis de las series de Williams".* Tesis de Maestría, SEPI-ESIA-IPN. México.

James, M. A. 1998. "A plane stress finite element model for elastic-plastic mode I/II crack growth". A dissertation requirement for the degree of Doctor of Philosophy. Department of mechanical and engineering. Kansas State University. Kansas, USA. Juárez Luna, G. 2002. "Aplicación de la mecánica de fractura a problemas de la geotecnia". Tesis de maestría, SEPI-ESIA-IPN. México.

Artículos

A

Anchieta Rodrigues, J. and Pandolfelli, V. C. 1998. "Insights on the fractal-fracture behaviour relationship". Materials Research. Vol. 1, No. 1, pp. 47-52. Brazil.

В

Balankin, A. S. 1997. "Physics of fracture and mechanics of self-affine cracks". Eng. Fracture Mechanic, Vol. 57, pp. 135-204. Great Britain.
Balankin, A. S. 1999. "Mecánica fractal del sólido". Academia, Año 4, No. 22, pp. 45-53. México.

Referencias Bibliográficas

Balankin, A. S., Hernández, L. H, Urriolagoitia, G., Susarrey O., González, J. M. and Martínez, J. 1999. "*Probabilistic mechanics of self-affine cracks in paper sheets*". The Royal Society. pp. 2565-2575. Great Britain.

Balankin, A. S., Oleshko, K., Bravo Ortega, B., Susarrey, O. y otros. 2000. "Comportamiento fractal de sistemas complejos". Revista Científica. México.

Balankin, A. S., 2000. "Mecánica de fractura: Pasado, presente y futuro". Revista Científica. México.

Broli, A. 1994. *"State of the Art"*. TALAT Lecture 2201.01. European Aluminium Association.

С

Casanova del Angel F. 2000. *"La dimensión fractal de las estructuras".* El Portulano de la Ciencia. Año 1, Vol. 1, Núm. 2, pp. 49-60, Enero-abril. México.

Carpinteri, A., Landini, A. and Spagnoli, A. 2001. *"Theoretical interpretation os size effect in fatigue".* VII Summer School of Fracture Mechanic-Current Research on Fatigue and Fracture. Pokrzywna (Poland) 18-22.06.2001.

Ε

G

Erdogan, F. and Shi, G. C. 1963. *"On the crack extension in plates Ander plane loading and transversal shear".* Journal of Basic Engineering, vol. 85, pp. 519-527.

Guerrero, C. y González, V. 2001a. *"Fractales: fundamentos y aplicaciones (parte I: Concepción geométrica en la ciencia e ingeniería)"*. Ingenierías. Vol. 4, Núm. 10, pp. 53-59. México.

Guerrero, C. y González, V. 2001b. *"Fractales: fundamentos y aplicaciones (parte II: Aplicaciones en ingeniería de materiales)"*. Ingenierías. Vol. 4, Núm. 12, pp. 15-20. México.

Η

Μ

Hussain, M. A. 1974. *"Strain energy release rate for crack under combined mode I y II"*. ASTM STP 560, pp. 2-28. EUA.

Hornbogen, E. 1989. "Fractals in microstructure of metals". Int. Mat. Rev., vol. 34, no. 6, pp. 277-296.

Ling, G. M. and Lai, J. K. L. 1993. "Fractal characterization of fracture surfaces in resin-based composite". J. Mat. Sci. Let., vol. 12, pp. 470-472. Lung, C. W. 1986. "Fractals and the fracture of cracked metals". Fractals in Physics, Elsevier Science Publ., pp. 189-192.

Mandelbrot, B.B., Passoja, D.E. and Paullay, A.J. 1984. "Fractal character of fracture surfaces of metals". Nature, vol. 308, no. 19, April, pp. 721-722.

Mu, Z. Q. and Lung, C. W. 1988. *"Studies on the fractal dimension and fracture thoughness of steel"*. J. Phys. D: Appl. Phys., vol. 21, pp. 848-850.

Ν

Nagahama, H. 1994. *"A fractal criterion for ductile and brittle fracture"*. J. Appl. Phys., vol. 75, no. 6, pp. 3220-3222.

0

Ortúzar Maturana, R. 1999. *"Mecánica de fractura en estructuras navales"*. XVI Congreso panamericano de ingeniería naval, transporte marítimo e ingeniería portuaria. Cartagena de Indias, Colombia.

Ρ

Provan, J. W. 2001. *"Fracture, fatigue and mechanical reliability"*. Part. I. Department of mechanical engineering, University of Victoria. Victoria, BC, Canada.

S

Sih, G. C. 1974. *"Strain energy density factor applied to mixed mode crack problems"*, International Journal of Fracture Mechanics, vol. 10, pp. 305-321.

Т

Tanaka, M. 1996. *"Fracture toughness and crack morphology in indentation fracture of brittle materials".* J. Mat. Sci., vol. 31, pp.749-755.

V

Vaughan, H. 1998. *"Crack propagation and the principal tensile-stress criterion for mixed-mode loading".* Journal of Engineering Fracture Mechanic, No. 3, pp. 393-397, Elsevier Science Ltd. Great Bretain.

Χ

Xin, Y. B., Hsia, K. J. and Lange, D. A. 1995. "Quantitative characterization of the fracture surface of Si single crystals by confocal microscopy". J. Am. Ceram. Soc., vol. 78, no. 12, pp. 3201-3208.

Normas de la American Society for Testing and Materials (ASTM)

- **B 645-91. 1991.** *"Standard Practice for Plane-Strain Fracture Toughness Testing of Aluminum Alloys"*. Annual Book of ASTM Standards, Vol. O3.01. Easton, USA.
- **B 646-87. 1987.** *"Standard Practice for Fracture Toughness Testing of Aluminum Alloys".* Annual Book of ASTM Standards, Vol. O3.01. Easton, USA.

- E 399-90. 1991. "Standard Test Method for Plane-Strain Fracture Toughnes of Metallic Materials". Annual Book of ASTM Standards, Vol. 03.01. Easton, USA.
- E 616-89. 1989. "Standard Terminology Relating to Fracture Testing". Annual Book of ASTM Standards, Vol. O3.01. Easton, USA.

Páginas Web consultadas y referenciadas en el texto http://www.matweb.con/index. Febrero de 2005.

Páginas Web consultadas y no referenciadas en el texto

http://nis-www.lanl.gov/~mgh/mand.shtml. Marzo de 2002. http://www.mathstat.usouthal.edu/~lynn/dynamics/title.html. Marzo de 2002. http://perso.wanadoo.fr/charles.vassallo/. Marzo de 2002. http://www.chez.com/fractals/galeries/fr index.html. Marzo de 2002. http://philippe.boiteau.free.fr/. Marzo de 2002. http://fractals.iuta.u-bordeaux.fr/. Marzo de 2002. http://www.sdv.fr/pages/casa/html/fractales.html. Marzo de 2002. http://www.oni.escuelas.edu.ar/olimpi99/fractales/principal.htm. Marzo de 2002. http://www.agujero.com/tierramedia/fractales/fractales.shtml. Marzo de 2002. http://mariefrance.hellot.free.fr/mfh/images.html. Marzo de 2002. http://www.calodox.org/dake/articles/fractale/intro fractales.htm. Marzo de 2002. http://mariefrance.hellot.free.fr/mfh/Classique1.html. Marzo de 2002. http://perso.club-internet.fr/dreamp/gal1.htm. Marzo de 2002. http://www.sdv.fr/pages/casa/html/fractales.galerie.html. Marzo de 2002. http://www.revistamarina.cl/revistas/2000/1/ortuzar.pdf. Abril de 2002. http://www.fractalus.com. Enero de 2003. http://personales.unican.es/gutierjm. Junio de 2003. http://www.planetside.co.uk. Junio de 2003. http://www.fc.uni.edu.pe\labosin\. Julio de 2003.
Apéndice A Mecánica de fractura

Contenido	
No. In	Pág.
A.1 Definición de fractura	66 66
A.3 Tipos de falla	66
A.4 Teoría de Griffith	68
A.4.1 Razón de energía liberada <i>G</i>	71
A.4.2 Factor de intensidad de esfuerzos K	72
A.4.3 La integral J	74
and	
C = +i	

Resumen

En el presente apéndice, se exponen los conceptos teóricos de mecánica de fractura, tales como: enfoque energético de Griffith, diferentes modos de falla, tipos de fractura, razón de energía liberada, factor de intensidad de esfuerzos y la integral J.

Apéndice A Mecánica de fractura

A.1 Definición de fractura

Fractura se define como la culminación del proceso de deformación plástica. Se manifiesta por la separación o fragmentación de un cuerpo sólido en dos o más partes bajo la acción de un estado de cargas.

La construcción de los primeros buques de acero soldados, después de una época de cascos remachados, trajo consigo serios problemas estructurales por la aparición de grandes grietas que hacían que la estructura colapsara. Estas situaciones fueron atribuidas a fractura frágil, que simplemente agrietaba cubiertas y mamparos, sin una explicación clara de lo ocurrido. Así, el incremento del porcentaje de carbono en los aceros fue el más económico e importante elemento de aleación requerido para alcanzar altas resistencias en el acero. Sin embargo, este aumento de carbono aumenta sensiblemente las propiedades de soldabilidad del acero y muy especialmente la tenacidad de éste; o sea la capacidad para resistir una mayor cantidad de esfuerzo sin deformarse plásticamente.

A.2 Mecanismos de falla

Existe una amplia clasificación de tipos de fallas que involucran la iniciación y propagación de grietas, siendo la siguiente clasificación la más general:

- fatiga
- flujo plástico
- corrosión-fatiga
- corrosión-esfuerzo
- fractura frágil
- fractura dúctil

A.3 Tipos de falla

Tomando en cuenta la deformación localizada en el material que rodea al vértice durante la propagación de la grieta, la fractura se puede clasificar, por su forma de falla, en dos grupos: fractura frágil y fractura dúctil.

Fractura frágil. Es aquella que se propaga con muy poca deformación plástica en el vértice de la grieta. Está generalmente asociada a la propagación rápida de grietas bajo un estado de esfuerzos por debajo del esfuerzo de fluencia del material, figura A.1

Fractura dúctil. Es aquella que progresa como consecuencia de una intensa deformación plástica asociada al extremo de la grieta. Este tipo de fractura es lenta y la trayectoria de falla es generalmente irregular, figura A.1.

Existen varias metodologías de análisis de componentes agrietados, dependiendo de la extensión de la deformación plástica que precede a la fractura (Gonzáles, 1998). De acuerdo con la extensión de la deformación plástica se tiene la fractura linealelástica, elasto-plástica y el colapso total, figura A.2.

Si durante la propagación de la grieta, ésta puede detenerse al disminuir o desaparecer los esfuerzos, se dice que la propagación es *estable* y si la grieta se

propaga de manera rápida, autoacelerada y es prácticamente imposible de detener, entonces la propagación es *inestable*.

La figura A.3 muestra los tres modos básicos de desplazamiento de las superficies de fractura de una grieta, que pueden ocurrir en un cuerpo agrietado al aplicar una carga.

Figura A.3. Modos de desplazamiento de superficies de fractura.

A.4 Teoría de falla de Griffith

Uno de los conceptos fundamentales de la mecánica de fractura que se desarrolló matemáticamente a partir de un planteamiento energético fue establecido por Griffith tomando como base un análisis de Inglis y lo aplicó a materiales muy frágiles como el vidrio. Partió del hecho de que un cuerpo deformado elásticamente, almacena una energía potencial y propuso que esta energía elástica almacenada es la fuerza impulsora del crecimiento de grietas, siempre y cuando la demanda de energía para la extensión de la grieta sea satisfecha por la conversión de la energía elástica almacenada. Griffih propuso que la energía elástica se convierte en energía de superficie de fractura, haciendo crecer la grieta (Gonzáles, 1998). Considérese una placa de dimensión infinita, de espesor unitario y con una grieta central de longitud 2a, la cual es sometida a esfuerzos σ tal como se muestra en la figura A.4.

La energía total U de la placa agrietada, se puede escribir como:

$$U = U_0 + U_a + U_{\gamma} - F \tag{A.1}$$

en donde U_0 es la energía elástica de la placa cargada sin grieta (es constante), U_a es el cambio en la energía elástica causada por la aparición de la grieta, U_{γ} se define como el cambio en la energía de superficie por la propagación de la superficie agrietada y *F* es el trabajo ejecutado por fuerzas externas, éste se resta debido a que no es parte de la energía potencial de la placa. Para deducir el valor de U_a , se considera la figura A.5.

Figura A.5. Desplazamiento de la grieta de longitud 2*a* en la placa de dimensión infinita.

Los desplazamientos de la superficie de grieta bajo un estado de esfuerzo plano y/o de deformación plana, están dados por las siguientes expresiones respectivamente:

esfuerzo plano:

$$\nu = \frac{2\sigma}{E} \sqrt{a^2 - x^2}$$
 A.2

deformación plana:

$$\nu = \frac{2\sigma}{E} \left(1 - \nu^2 \right) \sqrt{a^2 - x^2}$$
 A.3

La energía de deformación elástica necesaria para propagar la grieta es:

$$U_a = \frac{P(2\nu)}{2} = P\nu \tag{A.4}$$

donde *P* es la fuerza requerida para inducir un desplazamiento total de 2v, y es la sumatoria de los esfuerzos a lo largo de la grieta. Por lo tanto, para problemas de esfuerzo plano, sustituyendo A.2 en A.4 se tiene:

$$U_a = \frac{\pi \sigma^2 a^2}{E}$$
 A.5

De igual manera se procede para los problemas de deformación plana, U_a se obtiene al multiplicar la expresión A.5 por $(1-\nu^2)$, esto es:

$$U_a = \left(1 - \nu^2\right) \frac{\pi \sigma^2 a^2}{E}$$
 A.6

La energía elástica de superficie U_{γ} , está dada por:

$$U\gamma = 2(2a\gamma_e)$$
 A.7

donde γ_e es la energía elástica de superficie del material y 2(2*a*) es la superficie de la grieta. De la figura A.6 se observa que para una placa de espesor unitario, la energía total *U* está en función de la longitud de la grieta *a*, además se deduce que la inestabilidad de la grieta ocurrirá cuando *U* deja de aumentar debido al incremento de la longitud de la grieta, es decir, cuando:

Sustituyendo la ecuación A.1 en la ec. A.8 y reordenando términos, se tiene:

$$\frac{d}{da}(F - U_a) \ge \frac{dU_{\gamma}}{da}$$
 A.9

A.4.1 Razón de energía liberada G

El término del lado izquierdo de la ecuación A.9 dF/da, representa la energía debida al trabajo de la fuerza externa *F* por extensión de grieta unitaria; dU_a/da es la variación de la energía elástica debido al trabajo externo dF/da. En consecuencia, $d(F - U_a)/da$ es la cantidad de energía elástica disponible para la extensión de la grieta, y se define como la razón de energía liberada por unidad de espesor, esto es:

$$G = \frac{d}{da} (F - U_a)$$
 A.10

El lado derecho de la ecuación A.9, representa la energía elástica cedida en el sistema para hacer crecer la superficie, y es la energía necesaria para que la grieta crezca, y se define también como la resistencia de la grieta por unidad de espesor, esto es:

$$R = \frac{dU_{\gamma}}{da}$$
 A.11

Sustituyendo las ecuaciones A.10 y A.11 en la A.9, se llega a la condición necesaria para que la grieta crezca y se torne inestable; la cual está dada por:

$$G \ge R$$
 A.12

Al realizar sustituciones y reordenando términos, se llega a las ecuaciones de G_c para esfuerzo plano y deformación plana respectivamente así como para R.

$$G_c = \frac{\pi \sigma_c^2 a}{E}$$
 Esfuerzo plano A.13

$$G_c = \frac{\pi \sigma_c^2 a}{E} (1 - v^2)$$
 Deformación plana A.14

$$R = \frac{\partial U_{\gamma}}{\partial a} = 4\gamma_e$$
 A.15

Igualando G_c con R; de tal manera que al sustituir las ecuaciones A.13, A.15 y posteriormente A.14, A.15 en la ecuación A.12, se llega a las ecuaciones de esfuerzo crítico para el caso de esfuerzo plano y deformación plana respectivamente.

$$\sigma_c = \sqrt{\frac{2E\gamma_e}{\pi a}}$$
 Esfuerzo plano A.16

$$\sigma_c = \sqrt{\frac{2E\gamma_e}{\pi a(1-v^2)}} \text{ Deformación plana}$$
A.17

A.4.2 Factor de intensidad de esfuerzos *K*

Para realizar el análisis de la fractura, el primer problema es el cálculo del campo de esfuerzos alrededor de una grieta, ya que estos esfuerzos son los que realizan el trabajo de deformar el material y crear las nuevas superficies de falla. Sea una grieta en modo I, en una placa de espesor uniforme, sometida a un esfuerzo de tensión también uniforme. En un punto cualquiera situado en una posición (r, θ) de la punta de la grieta, hay un estado de esfuerzos particular σ_{ij} , como muestra la figura A.7. Las componentes de esfuerzo plano en un punto son: σ_{xx}, σ_{yy} y τ_{xy} .

Figura A.7. Sistema de coordenadas alrededor de una grieta.

El procedimiento de cálculo para esfuerzos alrededor de una grieta, en una placa delgada de dimensiones infinitas deformada elásticamente, fue establecido en la década de 1950 por Irwin basándose en la teoría elástico-lineal.

El problema consiste en encontrar una función de esfuerzo que satisfaga simultáneamente las ecuaciones de movimiento y constitutivas del caso en estudio. Esto se logra con una función ψ tal que:

$$\sigma_{x} = \frac{\partial^{2} \psi}{\partial y^{2}} \quad \sigma_{y} = \frac{\partial^{2} \psi}{\partial x^{2}} \quad \tau_{xy} = \frac{\partial^{2} \psi}{\partial x \partial y}$$

La combinación de estas ecuaciones lleva a la ecuación conocida como función de Airy.

$$\nabla^4 \psi = 0$$

La solución de la función de Airy para una placa infinita con una grieta central, fue encontrada por Westergard, quedando establecido que los esfuerzos alrededor de la grieta están dados por la siguiente ecuación:

$$\sigma_{ij} = \sigma_{\sqrt{\frac{a}{2r}}} f_{ij}(\theta)$$
 A.18

donde *i* y *j* pueden tomar cualquier valor x, y o z a la vez. De acuerdo con esto, para una grieta de cualquier longitud, la magnitud de los esfuerzos en una posición dada (r, θ) desde la punta de la grieta, depende únicamente del término $\sigma(\pi a)^{1/2}$, pudiendo rescribirse las ecuaciones de esfuerzo como:

$$\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f_{ij}(\theta)$$
 A.19

donde

$$K = \sigma_{\sqrt{\pi a}}$$
 A.20

El término *K* representa la magnitud de la intensificación del esfuerzo en la región de la punta de una grieta y se ha definido como el *factor de intensidad de esfuerzos* (Gonzáles, 1998).

La introducción del factor de intensidad de esfuerzos K es de enorme trascendencia en la mecánica de fractura, ya que define la magnitud de los esfuerzos alrededor de una grieta; de esta manera K se convierte en el parámetro único significativo para conocer el efecto de la introducción de una grieta en la estructura, ya que una vez conocido K, el campo de esfuerzo alrededor de una grieta queda definido por completo. Este último postulado establece el principio de similitud que es la base de toda aplicación práctica de la mecánica de fractura, K también representa la rapidez de liberación de energía de un cuerpo agrietado, por lo que también es un criterio de fractura.

Las expresiones para el factor de intensidad de esfuerzos en realidad pueden llegar a ser bastante complicadas, en particular, para cuerpos de dimensiones finitas con geometrías complicadas. Frecuentemente, los cuerpos no presentan esfuerzos uniformes en su sección transversal, de manera que K es expresado en función de la carga P en lugar del esfuerzo. En general el factor de intensidad de esfuerzos puede expresarse como:

$$K = Pg(B,W)f(a/W)$$
A.21

donde *B* y *W* son el espesor y el ancho del cuerpo respectivamente. Las funciones f(a/W) y g(B/W) presentan una gran variedad de formas, siendo las más comunes las polinomiales y las trigonométricas (Gonzáles, 1998).

A.4.3 La integral J

El factor K, es válido para una condición de fluencia en pequeña escala, es decir, aquellas en que las dimensiones de la zona plástica, asociada al vértice de la grieta, sean mucho más pequeñas que las dimensiones características de la pieza. Para tomar en cuenta las ventajas del análisis elástico-lineal, se plantea que los parámetros elástico-plásticos de la mecánica de fractura sean compatibles con lo ya definido para el caso elástico-lineal.

Cherepanov en 1967 y J. Rice en 1968, desarrollaron una aproximación energética basada en el concepto de una integral invariante, la cual es conocida como *Integral-J*. Dicha integral se ha convertido en la piedra angular de la mecánica de fractura elastoplástica, la cual aborda la fractura de materiales dúctiles.

$$J = \int_{\Gamma} W_0 \, dy - \int_{\Gamma} T_i \frac{\partial u_i}{\partial x} \, ds \quad \forall i = 1,2$$
 A.22

donde Γ es un contorno arbitrario alrededor de la punta de la grieta, W_o es la densidad de energía de deformación, T_i son las componentes del vector de tensión, u_i son las componentes del vector de desplazamiento y *ds* una diferencia del contorno Γ .

Para problemas lineales elásticos, *la integral-J* es igual a la razón de energía liberada *G*, por consiguiente, existe una relación entre *la integral-J* y el factor de intensidad de esfuerzos K_i (James, 1998), dada por:

$$J_I = \frac{K_I^2}{E'}$$
A.23

Apéndice B *Geometría fractal*

Resumen

En este apéndice se presenta un panorama general de la *geometría fractal*. Se mencionan algunos puntos de interés para el presente trabajo como lo es la dimensión fractal y se dan dos de los métodos más utilizados para su cálculo.

Apéndice B *Geometría fractal*

B.1 Introducción

En las últimas tres décadas se ha desarrollado una línea de investigación, iniciada por el matemático francés Benoit Mandelbrot, cuyo tema son los fractales. Mandelbrot es comúnmente conocido como el padre de la geometría fractal en la cual agrupó varios trabajos realizados por diversos matemáticos los cuales están caracterizados por propiedades comunes como son:

- no es posible trazar una tangente en un punto de su perímetro,
- la longitud entre dos puntos cualesquiera de su perímetro es infinita,
- poseen las propiedades de autosimilitud y autoafinidad, y
- su dimensión es fraccional

Mandelbrot acuñó la palabra *fractal* en la década de los años 70 del siglo XX, derivándola del adjetivo latín *fractus* y el correspondiente verbo latino *frangere* que significa romper, crear fragmentos irregulares. Mandelbrot se vio obligado a dar una definición de los fractales y tomado en cuenta las propiedades características de estos, enunció la siguiente definición.

B.2 Definición de fractal

Un fractal es el producto final que se origina a través de la iteración de un proceso geométrico. Éste suele ser de naturaleza muy simple y da lugar en las sucesivas iteraciones a conjuntos de determinada dimensión fija a lo largo del proceso; que se modifica al convertir la iteración en infinita. Matemáticamente un fractal es una figura geométrica que es compleja y detallada en estructura a cualquier nivel de amplificación. A menudo los fractales son semejantes a sí mismos; esto es, poseen la propiedad de que cada pequeña porción del fractal puede ser visualizada como una réplica a escala reducida del todo. La característica decisiva para llamarlos fractales, es su dimensión fraccionaria. No tienen dimensión uno, dos o tres como la mayoría de los objetos a los cuales estamos acostumbrados. Los fractales tienen una dimensión fraccional, figura B.1.

Figura B.1. Fractal de Mandelbrot.

Existen muchos otros fractales de acuerdo a sus creadores, como el conjunto de Georg Cantor (1872), Giuseppe Peano (1890), David Hilbert (1891), Helge von Koch (1904), Waclaw Sierpinski (1916), Gaston Julia (1918) entre otros (Peitgen, Jurgens & Saupe. part one. 1992).

B.3 Generación de fractales

Debido a la gran complejidad que poseen los fractales, se podría esperar que la manera de generarlos también lo sea; sin embargo, no es así ya que se pueden generar mediante un algoritmo iterativo. Debido a esta característica, ha dado lugar a que los fractales sean utilizados en diversas ramas del conocimiento. De manera general el algoritmo tiene la forma:

$$x_{n+1} = f(x_n) \tag{B.1}$$

Para generar los fractales se eligió a los números complejos. El trabajo pionero de hacer iteraciones con números complejos fue desarrollado por dos matemáticos franceses, Gaston Julia y Pierre Fatou, a principios del siglo XX. Mandelbrot retomó este análisis para generar el conjunto que lleva su nombre.

Como ya se mencionó anteriormente, los fractales poseen las propiedades de autosimilitud y autoafinidad. Se dice que un fractal es autosimilar cuando al ampliar una parte de él, se encuentra que ésta es idéntica al todo independiente de la escala de amplificación y si al aumentar la escala varia su geometría con respecto al todo, se dice que es un fractal autoafin (Talanquer, 2002).

B.4 La dimensión fractal

En la geometría euclidiana la cual contempla formas regulares y de uso común para todos (puntos, líneas, polígonos y en forma general volúmenes), se utiliza de manera cotidiana sus coordenadas para referirnos a sus correspondientes dimensiones, por ejemplo un punto tiene por dimensión *0* ya que no tiene ancho, longitud ni altura; una línea tiene dimensión *1* ya que cuenta con una longitud pero no tiene ancho ni altura; un área tiene por dimensión *2* debido a que cuenta con un ancho y una longitud pero

no con una altura y finalmente un cubo que en forma general se trata de un volumen, le corresponde la dimensión 3 por tener ancho, longitud y altura. Todas estas dimensiones que se han definido pertenecen a la dimensión euclidiana o topológica, la cual es característica de formas regulares descritas con anterioridad. Ahora bien, en el caso de los fractales debido a las propiedades particulares de éstos, hacen que sea difícil establecer un mecanismo sistemático para compararlos y clasificarlos. El primer intento para lograrlo se basa en las ideas del matemático alemán Félix Hausdorff, quien en 1919 introdujo el concepto de *dimensión* que hoy permite caracterizarlos (Talanquer, 2002).

B.4.1 Formulación directa

Esta manera de establecer la dimensión para un objeto cualquiera, se basa en un planteamiento matemático que puede ser aplicado a fractales cuya geometría no sea tan complicada y además, que sean auto-similares.

Primero se toma una línea cuya longitud es $\mathcal{L} = 1$, y posteriormente se divide en tres segmentos iguales de $\ell = 1/3$, de longitud. En este caso, el número de segmentos obtenidos es:

$$\mathcal{N} = \frac{\mathcal{L}}{\ell} = 3$$

Si se repite este proceso sobre una hoja de papel a la que consideramos como un cuadrado de lado $\mathcal{L} = 1$, seccionándolo en cuadrados más pequeños de lados $\ell = 1/2$, y área $\ell^2 = 1/4$, el número de particiones resulta ahora:

$$\mathcal{N} = \frac{\mathcal{L}^2}{\ell^2} = 4$$

La extensión de los resultados anteriores al caso tridimensional nos llevará a suponer que aquí debe cumplirse que $\mathcal{N} = (\mathcal{L}/\ell)^3$, parece que basta elevar \mathcal{L}/ℓ a una potencia igual a la dimensión del objeto, quedando de la siguiente manera para el caso general:

$$\mathcal{N} = \left(\frac{\mathcal{L}}{\ell}\right)^{D}$$
B.2

donde D es la dimensión de Hausdorff del objeto. Despejando D de la ecuación B.2, se obtiene la expresión que se busca para determinar la dimensión característica de cualquier objeto, quedando como sigue:

$$D = \frac{\log(\mathcal{N})}{\log(\mathcal{L}/\ell)}$$
B.3

Un aspecto importante a tomar en cuenta, es que la dimensión de un fractal es independiente del número de iteraciones realizadas para generarlos; es decir que su dimensión es fija a lo largo del proceso de iteración (Talanquer, 2002).

B.4.2 Método de conteo de cajas

Lo expuesto anteriormente es aplicable cuando se desea obtener la dimensión de cuerpos fractales no muy fragmentados o cuando el cuerpo fractal es generado mediante un proceso iterativo, sin embargo para obtener la dimensión para un fractal generado mediante un proceso natural, propagación de las grietas en un sólido, este método no puede ser aplicado directamente y se recurre a otro denominado "Método de conteo de cajas" que aplica de manera indirecta lo expuesto para la formulación directa.

La forma de aplicar este método es muy sencilla y sólo se requiere de ciertas mediciones gráficas; por ello es necesario que se visualice perfectamente el fractal al cual se desea obtener la dimensión. La forma de proceder en el cálculo de la dimensión fractal para cualquier objeto, es la siguiente.

Se toma la estructura de interés y se coloca en una caja de lado \mathscr{L} , sobre la que se construye una malla regular en la que cada segmento tiene una longitud ℓ , figura B.2(a). Se cuentan las cajas que contienen alguna parte de la estructura, lo que da un número \mathscr{N} . Ahora se repite el procedimiento utilizando mallas cada vez más finas registrando en cada caso la \mathscr{N} que les corresponde, figura B.2b y B.2c. Posteriormente se toma el logaritmo de ambas cantidades y se grafica $\log(\mathscr{N})$ contra $\log(\mathscr{L/\ell})$, figura B.3, es posible ajustar una línea recta cuya pendiente es la dimensión fractal del objeto (Talanguer, 2002).

Figura B.2. Procedimiento de cálculo de la dimensión fractal por el método de conteo de cajas.

El método de conteo de cajas es uno de los más utilizados en ciencias para obtener la dimensión de un objeto, ya que ofrece un camino sistemático aplicable a una gran diversidad de formas naturales (Peitgen, Jurgens & Saupe. part one. 1992).

Figura B.3. Obtención de la dimensión fractal.

Anexo 1 Proceso fotográfico del estudio

a)

Fotografía 1.1. Geometría de la probeta sin grieta. a) Vista longitudinal y b) vista transversal.

Fotografía 1.2. Geometría de la probeta con grieta maquinada. a) Vista frontal y b) vista de perfil.

Fotografía 1.3. Dispositivo para fijación del extensómetro.

Fotografía 1.4. Aplicación de la carga por fatiga. a) Máquina de aplicación de carga y b) émbolo de aplicación de carga.

a)

b)

Fotografía 1.5. Ensaye de laboratorio. a) Computadora del equipo y b) panel de control del equipo.

Fotografía 1.6. Probeta en el proceso de carga.

Fotografía 1.7. Aparición de la grieta en una de las caras.

Fotografía 1.8. Propagación de la grieta con forma fractal.

Anexo 2 Resultados numéricos del ensaye laboratorio

En el presente anexo, se presenta la base de datos de los puntos que componen la curva *carga-apertura de grieta* registrados por la computadora; los cuales podrán ser de utilidad para trabajos futuros, ya que es muy difícil encontrar datos de laboratorio para este tipo de ensaye en particular.

El ensaye se programó para que la máquina se parara a una carga máxima de 15000 kilogramos fuerza o a una apertura de grieta máxima de 250 milímetros, lo que ocurriera primero; sin embargo debido a que ninguna de estas dos condiciones sucedió, la máquina se paró cuando la probeta dejó de soportar carga.

En la primera columna de la base de datos, se tiene una numeración consecutiva; en la segunda columna se encuentran los datos referentes a las lecturas de apertura de grieta en milímetros y en la última columna se registraron las cargas aplicadas en Newtons. Como se puede observar, la precisión con que se registraron las lecturas en bastante alta. Para ver la gráfica de la curva *carga-apertura* del ensaye, referirse a la figura II.5.

	Apertura de grieta	Carga aplicada	1		Apertura de grieta	Carga aplicada
Núm.	(mm)	(N)		Núm.	(mm)	(N)
1	0.000000	402.210000		51	0.086700	3151.953481
2	0.003400	339.426961		52	0.086700	3362.868481
3	0.013800	454.203481		53	0.086700	3353.058481
4	0.013800	443.411519		54	0.086700	3274.578481
5	0.013800	381.610432		55	0.086700	3342.266519
6	0.013800	397.305000		56	0.107500	3466.855432
7	0.003400	417.906961		57	0.086700	3357.963481
8	0.024200	454.203481		58	0.086700	3248.091961
9	0.013800	464.995432		59	0.086700	3347.171519
10	0.024200	548.380432		60	0.107500	3313.818481
11	0.019000	540.531961		61	0.107500	3300.085432
12	0.024200	524.835000		62	0.107500	3350.115000
13	0.024200	678.851519		63	0.107500	3409.956961
14	0.024200	672.966961		64	0.107500	3394.260000
15	0.024200	694.548481		65	0.107500	3457.045432
16	0.034600	730.845000		66	0.112700	3464.891519
17	0.034600	808.345432		67	0.112700	3454.101961
18	0.039800	785.781961		68	0.117900	3466.855432
19	0.034600	814.230000		69	0.117900	3466.855432
20	0.034600	855.431519		70	0.117900	3584.575432
21	0.039800	877.015432		71	0.123200	3644.415000
22	0.039800	936.855000		72	0.117900	3595.365000
23	0.045000	921.160432		73	0.128400	3655.206961
24	0.055500	2015.955000		74	0.128400	3704.256961
25	0.065900	2477.025000		75	0.128400	3779.793481
26	0.045000	1986.525000		76	0.128400	3957.355432
27	0.045000	2109.150000		77	0.128400	3944.601961
28	0.045000	2013.011519		78	0.128400	3925.961519
29	0.045000	2038.518481		79	0.133600	3921.056519
30	0.055500	2143.485000		80	0.144000	3988.746961
31	0.055500	2127.790432		81	0.144000	3998.556961
32	0.055500	2220.985432		82	0.144000	4029.948481
33	0.060700	2236.680000		83	0.144000	4072.131961
34	0.060700	2226.870000		84	0.144000	4072.131961
35	0.055500	2294.560432		85	0.144000	4108.428481
36	0.065900	2370.096961		86	0.144000	4081.941961
37	0.065900	2390.696519		87	0.149200	4186.908481
38	0.071100	2486.835000		88	0.149200	4259.501519
39	0.065900	2588.860432		89	0.149200	4295.800432
40	0.076300	2557.466519		90	0.149200	4342.886519
41	0.071100	2581.011961		91	0.149200	4353.678481
42	0.076300	2612.403481		92	0.164800	4385.070000
43	0.071100	2578.068481		93	0.159600	4339.945432
44	0.076300	2664.396961		94	0.159600	4369.375432
45	0.076300	2722.275000		95	0.159600	4431.176519
46	0.081500	2791.926961		96	0.164800	4481.208481
47	0.081500	2774.268481		97	0.170000	4536.145432
48	0.086700	2849.805000		98	0.170000	4545.955432
49	0.086700	2867.463481		99	0.164800	4593.041519
50	0.086700	2904.741961		100	0.170000	4635.225000

T	Apertura de arieta	Carga aplicada			Apertura de grieta	Carga anlicada
Núm.	(mm)	(N)		Núm.	(mm)	(N)
101	0.170000	4811.805000		151	0.253300	6505.991519
102	0.170000	4885.380000		152	0.253300	6628.616519
103	0.170000	4796.110432		153	0.253300	6573.681961
104	0.180400	4921.676519		154	0.253300	6584.471519
105	0.180400	4851.045000		155	0.253300	6647.256961
106	0.180400	4905.981961		156	0.274200	6657.066961
107	0.185600	4849.083481		157	0.253300	6532.480432
108	0.180400	4913.830432		158	0.253300	6672.761519
109	0.180400	4916.771519		159	0.274200	6688.458481
110	0.185600	4916.771519		160	0.269000	6610.960432
111	0.190800	4932.468481		161	0.269000	6649.218481
112	0.185600	5009.966519		162	0.274200	6678.648481
113	0.190800	5093.351519		163	0.274200	6821.875432
114	0.190800	5143.383481		164	0.274200	6861.115432
115	0.201300	5190.471961		165	0.279400	6823.836961
116	0.196000	5166.926519		166	0.279400	6886.620000
117	0.201300	5198.320432		167	0.279400	6815.988481
118	0.201300	5218.920000		168	0.284600	6941.556961
119	0.201300	5187.528481		169	0.284600	6938.613481
120	0.206500	5281.705432		170	0.289800	7051.428481
121	0.206500	5312.115000		171	0.289800	7048.485000
122	0.201300	5319.963481		172	0.295000	7072.030432
123	0.211700	5365.090432		173	0.295000	7087.725000
124	0.211700	5421.986519		174	0.289800	7100.478481
125	0.211700	5469.075000		175	0.300200	7152.471961
126	0.216900	5604.453481		176	0.300200	7303.545000
127	0.216900	5656.446961		177	0.295000	7317.280432
128	0.216900	5630.940000		178	0.295000	7340.823481
129	0.222100	5625.055432		179	0.305400	7345.728481
130	0.222100	5630.940000		180	0.305400	7340.823481
131	0.222100	5687.838481		181	0.310600	7392.816961
132	0.227300	5727.078481		182	0.310600	7355.538481
133	0.222100	5734.926961		183	0.305400	7429.113481
134	0.227300	5706.476519		184	0.310600	7468.353481
135	0.232500	5760.431519		185	0.310600	7470.315000
136	0.232500	5774.166961		186	0.315800	7501.706519
137	0.232500	5843.816519		187	0.315800	7567.435432
138	0.232500	5948.785432		188	0.315800	7629.236519
139	0.232500	5989.986961		189	0.321000	7699.870432
140	0.232500	6024.321961		190	0.315800	7704.775432
141	0.242900	6052.770000		191	0.315800	7699.870432
142	0.242900	6063.561961		192	0.315800	7676.325000
143	0.242900	6052.770000		193	0.321000	7684.173481
144	0.242900	6068.466961	ļ	194	0.326200	7742.051519
145	0.248100	6065.523481		195	0.326200	7825.436519
146	0.248100	6156.756961		196	0.326200	7825.436519
147	0.248100	6175.395000		197	0.336600	7945.120432
148	0.248100	6167.546519		198	0.336600	7950.025432
149	0.253300	6247.990432		199	0.336600	7900.975432
150	0.253300	6310.773481		200	0.336600	8007.903481

Núm.	Apertura de grieta (mm)	Carga aplicada (N)		Núm.	Apertura de grieta (mm)	Carga aplicada (N)
201	0.336600	8200.180432		251	0.420000	9855,126961
202	0.347100	8221 761961		252	0 420000	10119 015000
203	0.336600	8195.275432		253	0.440800	10067.021519
204	0.352300	8267.868481		254	0.440800	10155.311519
205	0.352300	8299.260000		255	0.440800	10134,711961
206	0.347100	8215.875000		256	0.440800	9975,790432
207	0.347100	8302.203481		257	0.420000	10123.920000
208	0.347100	8291.411519		258	0.420000	10090.566961
209	0.352300	8366.950432		259	0.420000	9969.903481
210	0.347100	8273.755432		260	0.440800	10128.825000
211	0.357500	8341.443481		261	0.451200	10243.601519
212	0.352300	8335.556519		262	0.440800	10144.521961
213	0.357500	8471.916961		263	0.451200	10160.216519
214	0.357500	8492.516519		264	0.446000	10173.951961
215	0.357500	8539.605000		265	0.451200	10181.800432
216	0.367900	8533.720432		266	0.451200	10243.601519
217	0.367900	8560.206961		267	0.440800	10186.705432
218	0.367900	8617.105432		268	0.451200	10181.800432
219	0.367900	8648.496961		269	0.451200	10233.791519
220	0.367900	8638.686961		270	0.456400	10285.785000
221	0.373100	8659.286519		271	0.451200	10358.380432
222	0.373100	8700.490432		272	0.456400	10363.285432
223	0.373100	8778.970432		273	0.456400	10378.980000
224	0.378300	8794.665000		274	0.461600	10473.156961
225	0.378300	8880.993481		275	0.461600	10457.460000
226	0.383500	8989.885432		276	0.461600	10655.621519
227	0.383500	8992.826519	1	277	0.461600	10676.223481
228	0.388700	9032.066519		278	0.472000	10694.861519
229	0.378300	8958.491519		279	0.466800	10682.110432
230	0.393900	9076.211519		280	0.472000	10712.520000
231	0.388700	9034.030432		281	0.461600	10702.710000
232	0.388700	9128.205000		282	0.477200	10775.305432
233	0.388700	9096.813481		283	0.472000	10778.246519
234	0.393900	9156.655432		284	0.477200	10786.095000
235	0.393900	9170.388481		285	0.477200	10838.088481
236	0.399100	9159.596519		286	0.477200	10809.640432
237	0.393900	9238.076519		287	0.482400	10926.378481
238	0.399100	9346.968481		288	0.482400	10973.466961
239	0.399100	9368.550000		289	0.487600	11051.946961
240	0.404300	9368.550000		290	0.482400	11049.003481
241	0.399100	9368.550000		291	0.482400	11099.035432
242	0.409500	9397.000432		292	0.492900	11103.940432
243	0.409500	9417.600000		293	0.487600	11054.890432
244	0.409500	9477.441961		294	0.492900	11051.946961
245	0.409500	9472.536961	l	295	0.492900	11174.571961
246	0.409500	9565.731961		296	0.503300	11218.716961
247	0.414800	9595.161961		297	0.503300	11250.108481
248	0.420000	9615.761519		298	0.498100	11278.556519
249	0.420000	9639.306961		299	0.503300	11302.101961
250	0.420000	9688.356961		300	0.503300	11349.190432

1	Apertura de arieta	Carga anlicada		r	Apertura de grieta	Carga anlicada
Núm.	(mm)	(N)		Núm.	(mm)	(N)
301	0.503300	11515 960432		351	0.586600	13189 545000
302	0.503300	11567 951519		352	0.586600	13397 516519
303	0.503300	11563 046519		353	0.586600	13324 923481
304	0.518900	11646 431519		354	0.602200	13381 821961
305	0.513700	11575 800000		355	0.586600	13350 430432
306	0.503300	11617 001519		356	0.586600	13241 538481
307	0.518900	11651 336519		357	0.602200	13280 778481
308	0.518900	11594 440432		358	0.607400	13455 396961
300	0.513700	11619 945000		359	0.607400	13439 700000
310	0.518900	11640 546961		360	0.607400	13475 996519
311	0.518900	11679 786961		361	0.607400	13340 620432
312	0.524100	11734 721519		362	0.607400	13413 213481
313	0.524100	11828 898481		363	0.607400	13496 598481
314	0.524100	11012 283481		364	0.617800	13611 375000
315	0.524100	11846 556961		365	0.607400	13556 440432
316	0.529300	11006 306510		366	0.612600	13560 101510
317	0.524100	11032 885/32		367	0.012000	13637 861519
318	0.529300	11070 071510		368	0.023000	13683 070432
310	0.523500	11064 276061		360	0.617800	13604 760000
320	0.534500	11080 781510		370	0.617800	13601 816510
320	0.534500	12036 870000		370	0.623000	13783 050000
327	0.539700	12120 255000		372	0.023000	13705 551961
322	0.539700	12120.20000		373	0.023000	13781 088481
324	0.539700	12131.040301		374	0.633400	13837 086061
325	0.533700	12034.730432		375	0.000400	13802 021510
326	0.544900	12233.031519		376	0.020200	13006 008/81
327	0.544900	12349 810432		377	0.628200	14056 750432
328	0.544900	12040.010402		378	0.628200	14064 596519
329	0.544900	12329 208481		379	0.633400	14054 786519
330	0.544300	12357 656519		380	0.638700	14056 750432
331	0.555300	12412 593481		381	0.638700	14070 483481
332	0.555300	12438 100432		382	0.638700	14080 293481
333	0.560600	12493 035000		383	0.638700	14122 476961
334	0.560600	12519 521519		384	0.643900	14161 716961
335	0.565800	12563 666519		385	0.643900	14132 286961
336	0.560600	12524 426519		386	0.638700	14179 375432
337	0.565800	12566 610000		387	0.649100	14289 246961
338	0.565800	12662 748481		388	0.649100	14351 050432
339	0.565800	12735 341519		389	0.654300	14372 631961
340	0.571000	12703 950000		390	0.649100	14390 290432
341	0.571000	12758 886961		391	0.659500	14476 616519
342	0.576200	12803 031961		392	0.659500	14434 435432
343	0.576200	12777 525000		393	0.659500	14523 705000
344	0.576200	12758 886961		394	0.659500	14497 220874
345	0.576200	12829 518481		395	0.659500	14497 220874
346	0.576200	12912 903481	1	396	0.659500	14539 401961
347	0.586600	12938,410432		397	0.664700	14594,338913
348	0.581400	12954,105000		398	0.669900	14602,185000
349	0.586600	12996,288481		399	0.669900	14659.085874
350	0.586600	13068.881519		400	0.669900	14708.135874

Núm.	Apertura de grieta (mm)	Carga aplicada (N)	Núm.	Apertura de grieta (mm)	Carga aplicada (N)
401	0.669900	14846.453039	451	0.753200	16559.280000
402	0.680300	14966.136961	452	0.753200	16944.815874
403	0.675100	14987.720874	453	0.753200	16832.978039
404	0.680300	14966.136961	454	0.753200	16798.643039
405	0.669900	14880.788039	455	0.753200	16853.580000
406	0.685500	14987.720874	456	0.774000	16842.788039
407	0.690700	14964.173039	457	0.774000	16926.173039
408	0.690700	15028.920000	458	0.774000	16869.276961
409	0.680300	14989.680000	459	0.774000	16889.878913
410	0.685500	15024.015000	460	0.784500	17020.350000
411	0.685500	14997.530874	461	0.774000	16832.978039
412	0.685500	15099.553913	462	0.753200	16736.841961
413	0.690700	15123.096961	463	0.753200	16796.683913
414	0.695900	15282.020874	464	0.779200	16957.566961
415	0.690700	15297.713039	465	0.774000	16812.380874
416	0.690700	15305.563913	466	0.779200	16796.683913
417	0.695900	15227.083913	467	0.779200	16853.580000
418	0.701100	15284.961961	468	0.779200	16965.413039
419	0.701100	15388.948913	469	0.784500	16884.973913
420	0.701100	15384.043913	470	0.789700	16999.748039
421	0.706400	15409.550874	471	0.779200	16999.748039
422	0.701100	15373.251961	472	0.789700	17048.798039
423	0.711600	15456.636961	473	0.789700	17111.585874
424	0.711600	15498.818039	474	0.794900	17124.336961
425	0.711600	15544.926961	475	0.794900	17166.518039
426	0.711600	15680.303039	476	0.794900	17301.898913
427	0.716800	15727.393913	477	0.805300	17374.491961
428	0.722000	15748.973039	478	0.800100	17364.681961
429	0.722000	15714.638039	479	0.805300	17437.275000
430	0.716800	15748.973039	480	0.794900	17385.283913
431	0.722000	15703.850874	481	0.810500	17437.275000
432	0.722000	15824.511961	482	0.810500	17541.261961
433	0.727200	15821.570874	483	0.800100	17492.211961
434	0.727200	15848.055000	484	0.815700	17541.261961
435	0.727200	15832.358039	485	0.815700	17559.900000
436	0.732400	15915.743039	486	0.815700	17583.443039
437	0.732400	15915.743039	487	0.815700	17583.443039
438	0.732400	15988.340874	488	0.815700	17693.316961
439	0.732400	16051.123913	489	0.815700	17776.701961
440	0.732400	16019.730000	490	0.815700	17709.013913
441	0.737600	16139.413913	491	0.831300	17833.598039
442	0.737600	16136.468039	492	0.820900	17792.398913
443	0.742800	16183.558913	493	0.826100	17828.693039
444	0.742800	16150.205874	494	0.826100	17817.905874
445	0.742800	16165.898039	495	0.826100	17916.983039
446	0.742800	16219.853039	496	0.826100	17948.376961
447	0.748000	16290.486961	497	0.831300	17964.073913
448	0.753200	16306.183913	498	0.831300	18000.368039
449	0.748000	16332.668039	499	0.836500	18026.856961
450	0.753200	16373.871961	500	0.836500	18063.155874

Núm.	Apertura de grieta (mm)	Carga aplicada (N)		Núm.	Apertura de grieta (mm)	Carga aplicada (N)
501	0.836500	18201.473039	l	551	0.919800	19835.820000
502	0.836500	18308.405874		552	0.930300	20122.273913
503	0.846900	18376.093913		553	0.919800	20101.671961
504	0.836500	18292,708913		554	0.919800	19996.703039
505	0.846900	18360.396961		555	0.930300	20080.088039
506	0.852200	18292,708913		556	0.935500	20080.088039
507	0.846900	18324.098039		557	0.935500	20002.590000
508	0.852200	18365.301961		558	0.919800	19986.893039
509	0.852200	18344.700000		559	0.940700	20098.730874
510	0.852200	18324.098039		560	0.935500	20116.386961
511	0.852200	18370.206961		561	0.935500	20038.888913
512	0.857400	18407.483039		562	0.940700	20075.183039
513	0.857400	18513.433913		563	0.940700	20182.115874
514	0.862600	18631.153913		564	0.940700	20257.650000
515	0.857400	18599,760000		565	0.945900	20252.745000
516	0.857400	18626.248913		566	0.945900	20189.961961
517	0.857400	18594.855000		567	0.951100	20348.885874
518	0.867800	18618.398039		568	0.951100	20411.668913
519	0.873000	18735.140874		569	0.951100	20377.333913
520	0.867800	18701.783039		570	0.951100	20377.333913
521	0.867800	18777.321961		571	0.961500	20388.125874
522	0.873000	18756.720000		572	0.951100	20455.813913
523	0.873000	18766.530000		573	0.956300	20427.365874
524	0.878200	18834.218039		574	0.956300	20435.211961
525	0.878200	18892.100874		575	0.961500	20551.950000
526	0.878200	18991.178039		576	0.961500	20614.733039
527	0.888600	19084.373039		577	0.961500	20690.271961
528	0.878200	19032.381961	1	578	0.966700	20705.968913
529	0.893800	19105.956961		579	0.961500	20768.751961
530	0.888600	19063.775874		580	0.966700	20753.055000
531	0.888600	19074.563039		581	0.971900	20809.955874
532	0.888600	19144.215000		582	0.971900	20773.656961
533	0.888600	19157.948039		583	0.971900	20820.743039
534	0.888600	19162.853039		584	0.977100	20883.530874
535	0.893800	19235.450874		585	0.982300	20899.223039
536	0.899000	19272.726961		586	0.982300	20883.530874
537	0.899000	19293.328913		587	0.982300	20929.635000
538	0.899000	19363.958039		588	0.977100	20997.323039
539	0.904200	19493.451961		589	0.987500	21117.988913
540	0.904200	19460.098913		590	0.987500	21169.980000
541	0.899000	19540.538039		591	0.992700	21117.988913
542	0.904200	19415.953913		592	0.992700	21133.685874
543	0.909400	19532.691961		593	0.992700	21167.038913
544	0.909400	19475.795874		594	0.992700	21185.676961
545	0.909400	19519.940874		595	0.998000	21217.070874
546	0.909400	19554.275874		596	0.992700	21273.966961
547	0.914600	19611.171961		597	0.992700	21266.120874
548	0.914600	19619.018039		598	1.003200	21273.966961
549	0.919800	19668.068039		599	0.998000	21333.808913
550	0.919800	19725.950874		600	1.003200	21393.650874

Núm.	Apertura de grieta (mm)	Carga aplicada (N)	Núm.	Apertura de grieta (mm)	Carga aplicada (N)
601	1.003200	21503.520000	651	1.117700	23557.733039
602	1.008400	21633.995874	652	1.122900	23671.530000
603	1.013600	21635.955000	653	1.133300	24060.006961
604	1.024000	21711.493913	654	1.138500	24110.038913
605	1.003200	21635.955000	655	1.143700	24229.718039
606	1.003200	21665.385000	656	1.159400	24472.026961
607	1.003200	21583.963913	657	1.164600	24545.601961
608	1.018800	21646.746961	658	1.169800	24967.431961
609	1.018800	21607.506961	659	1.180200	24962.526961
610	1.018800	21727.190874	660	1.190600	25024.328039
611	1.018800	21745.828913	661	1.190600	25222.491961
612	1.024000	21764.466961	662	1.206200	25352.963039
613	1.024000	21826.268039	663	1.221900	25665.905874
614	1.024000	21909.653039	664	1.221900	25775.775000
615	1.024000	21951.838913	665	1.232300	25848.368039
616	1.024000	21904.748039	666	1.237500	26051.436961
617	1.029200	22024.431961	667	1.242700	26213.301961
618	1.034400	22003.830000	668	1.253100	26693.010000
619	1.029200	21980.286961	669	1.253100	26505.638039
620	1.044800	22082.310000	670	1.273900	26641.018913
621	1.034400	22035.223913	671	1.284300	26900.983913
622	1.039600	22030.318913	672	1.294800	27067.753913
623	1.039600	22110.758039	673	1.294800	27276.705000
624	1.039600	22107.816961	674	1.305200	27256.103039
625	1.044800	22212.785874	675	1.315600	27443.475000
626	1.044800	22326.578039	676	1.326000	27630.846961
627	1.044800	22420.755000	677	1.331200	27720.118913
628	1.055200	22334.428913	678	1.346800	28178.243039
629	1.055200	22459.995000	679	1.346800	28047.771961
630	1.055200	22400.153039	680	1.357200	28230.238913
631	1.050000	22447.243913	681	1.357200	28360.710000
632	1.055200	22441.356961	682	1.378100	28486.280874
633	1.055200	22425.660000	683	1.378100	28793.331961
634	1.060400	22455.090000	684	1.388500	28799.218913
635	1.060400	22562.018039	685	1.398900	28975.798913
636	1.065600	22582.620000	686	1.409300	29179.845000
637	1.065600	22608.126961	687	1.409300	29194.560000
638	1.065600	22653.253913	688	1.419700	29737.055874
639	1.065600	22738.598039	689	1.419700	29669.363039
640	1.065600	22754.295000	690	1.440600	29763.540000
641	1.076100	22738.598039	691	1.451000	29894.015874
642	1.076100	22790.593913	692	1.456200	30029.391961
643	1.076100	22796.480874	693	1.461400	30305.053913
644	1.076100	22879.865874	694	1.477000	30347.235000
645	1.076100	22858.281961	695	1.482200	30466.918913
646	1.076100	22900.463039	696	1.482200	30748.463039
647	1.081300	22960.305000	697	1.497800	30779.856961
648	1.086500	23504.760000	698	1.513500	31170.293039
649	1.102100	23463.560874	699	1.503000	31071.215874
650	1.107300	23494.950000	700	1.523900	31196.781961

	Apertura de grieta	Carga aplicada		Apertura de orieta	Carga aplicada
Núm.	(mm)	(N)	Núm.	(mm)	(N)
701	1.534300	31404.755874	751	1.945700	38369.855874
702	1.534300	31489.118039	752	1.956100	38510.136961
703	1.544700	31838.355000	753	1.961300	38739.690000
704	1.555100	31822.658039	754	1.971700	38703.395874
705	1.565500	32020.821961	755	1.982100	38827.980000
706	1.570700	32187.591961	756	1.987300	39036.935874
707	1.581100	32384.773913	757	1.992500	39120.320874
708	1.586400	32760.495000	758	2.002900	39485.250000
709	1.602000	32739.893039	759	2.002900	39479.363039
710	1.607200	32786.983913	760	2.023800	39600.028913
711	1.607200	32958.658913	761	2.029000	39766.798913
712	1.622800	33104.826961	762	2.044600	39870.785874
713	1.628000	33323.588039	763	2.044600	40100.338913
714	1.638400	33354.981961	764	2.055000	40131.728039
715	1.648800	33490.358039	765	2.060200	40147.425000
716	1.659300	33667.920000	766	2.065400	40188.628913
717	1.659300	33761.115000	767	2.081000	40272.013913
718	1.669700	34157.438039	768	2.086200	40558.463039
719	1.680100	34126.048913	769	2.086200	40934.188913
720	1.690500	34240.823039	770	2.086200	40626.155874
721	1.700900	34459.588913	771	2.122700	40819.410000
722	1.706100	34533.163913	772	2.127900	40861.595874
723	1.716500	34855.911961	773	2.127900	40923.396961
724	1.721700	34846.101961	774	2.127900	41090.166961
725	1.726900	34934.391961	775	2.148700	41247.126961
726	1.742600	35173.755000	776	2.159100	41450.195874
727	1.747800	35267.931961	777	2.169600	41564.970000
728	1.753000	35643.653039	778	2.169600	41815.125000
729	1.773800	35835.930000	779	2.169600	41856.328913
730	1.773800	35700.553913	780	2.180000	41788.640874
731	1.784200	35887.925874	781	2.190400	42038.795874
732	1.784200	36023.301961	782	2.206000	42184.963913
733	1.794600	36304.850874	783	2.211200	42373.313039
734	1.810300	36347.031961	784	2.221600	42456.698039
735	1.815500	36482.408039	785	2.226800	42487.110000
736	1.825900	36685.476961	786	2.237300	42518.503913
737	1.831100	36680.571961	787	2.247700	42664.671961
738	1.836300	37034.713913	788	2.252900	42831.441961
739	1.846700	37014.111961	789	2.252900	42706.853039
740	1.857100	37108.288913	790	2.268500	42842.233913
741	1.867500	37196.578913	791	2.278900	42675.463913
742	1.872700	37311.353039	792	2.289300	42648.975000
743	1.883200	37525.213913	793	2.299700	42862.835874
744	1.883200	37572.300000	794	2.304900	42951.125874
745	1.898800	37665.495000	795	2.315400	42883.433039
746	1.904000	37795.970874	796	2.320600	42957.008039
747	1.914400	37931.346961	797	2.331000	42623.468039
748	1.919600	38259.981961	798	2.336200	42935.428913
749	1.935200	38176.596961	799	2.346600	42790.238039
750	1.935200	38181.501961	800	2.357000	42696.065874

	Apertura de orieta	Carga aplicada	1		Apertura de grieta	Carga aplicada
Núm.	(mm)	(N)		Núm.	(mm)	(N)
801	2.367400	42826.536961		851	2.773600	44671.798913
802	2.367400	43004.098913		852	2.794400	44770.880874
803	2.377800	43248.366961		853	2.794400	44865.053039
804	2.388300	43363.145874		854	2.804800	44854.265874
805	2.398700	43425.928913		855	2.804800	44901.351961
806	2.398700	43529.915874		856	2.815200	45010.243913
807	2.414300	43207.163039		857	2.830900	45177.013913
808	2.419500	43232.670000		858	2.836100	45312.390000
809	2.419500	43201.280874		859	2.846500	45323.181961
810	2.440300	43274.855874		860	2.856900	45291.788039
811	2.450700	43207.163039		861	2.856900	45396.756961
812	2.455900	43274.855874		862	2.872500	45458.558039
813	2.461200	43311.150000		863	2.882900	45541.943039
814	2.471600	42993.306961		864	2.882900	45541.943039
815	2.476800	43081.596961		865	2.893400	45510.553913
816	2.482000	43264.063913		866	2.909000	45578.241961
817	2.497600	43284.665874		867	2.909000	45557.640000
818	2.502800	43373.933039		868	2.919400	45646.911961
819	2.513200	43274.855874		869	2.935000	45683.210874
820	2.518400	43311.150000		870	2.940200	45563.526961
821	2.523600	43160.076961		871	2.950600	45636.120000
822	2.539300	43175.773913		872	2.950600	45708.713039
823	2.544500	43331.751961		873	2.961000	45807.795000
824	2.560100	43353.335874		874	2.971500	45698.903039
825	2.560100	43353.335874		875	2.976700	45708.713039
826	2.570500	43488.711961		876	2.981900	45750.898913
827	2.575700	43279.760874		877	2.992300	45703.808039
828	2.586100	43415.136961		878	3.007900	45782.288039
829	2.596500	43509.313913		879	3.013100	45755.803913
830	2.607000	43363.145874		880	3.018300	45636.120000
831	2.617400	43509.313913		881	3.033900	45776.405874
832	2.622600	43477.920000		882	3.033900	45823.491961
833	2.627800	43633.898039		883	3.044400	45922.573913
834	2.638200	43655.481961		884	3.054800	45917.668913
835	2.643400	43686.875874		885	3.060000	45980.451961
836	2.648600	43905.636961		886	3.075600	46162.918913
837	2.659000	43822.251961		887	3.080800	46147.221961
838	2.669400	44030.225874		888	3.086000	46251.208913
839	2.679900	44082.216961		889	3.086000	46454.273039
840	2.690300	44097.913913		890	3.106800	46375.793039
841	2.690300	44244.081961		891	3.106800	46240.416961
842	2.700700	44280.380874		892	3.122500	46334.593913
843	2.711100	44478.540000		893	3.127700	46413.073913
844	2.721500	44478.540000		894	3.143300	46433.675874
845	2.726700	44259.778913		895	3.138100	46365.983039
846	2.737100	44405.946961		896	3.148500	46397.376961
847	2.747600	44453.033039		897	3.158900	46397.376961
848	2.752800	44561.925000		898	3.169300	46501.363913
849	2.752800	44833.663913		899	3.1/9700	46485.666961
850	2.773600	44770.880874		900	3.185000	46370.888039

Núm.	Apertura de grieta (mm)	Carga aplicada _(N)_		Núm.	Apertura de grieta (mm)	Carga aplicada (N)_
901	3.200600	46480.761961	I	951	3.606700	46595.540874
902	3.205800	46375.793039		952	3.617100	46584.748913
903	3.211000	46501.363913		953	3.622300	46543.545000
904	3.211000	46512.155874		954	3.627600	46704.428039
905	3.226600	46485.666961		955	3.643200	46605.350874
906	3.242200	46579.843913		956	3.648400	46532.753039
907	3.247400	46573.956961		957	3.658800	46460.160000
908	3.252600	46663.228913		958	3.658800	46438.580874
909	3.252600	46793.700000		959	3.674400	46647.531961
910	3.273500	46647.531961		960	3.679600	46480.761961
911	3.278700	46688.735874		961	3.690000	46517.060874
912	3.289100	46710.315000		962	3.700500	46611.233039
913	3.294300	46787.813039		963	3.710900	46543.545000
914	3.294300	46809.396961		964	3.716100	46584.748913
915	3.309900	46824.111961		965	3.721300	46537.658039
916	3.315100	46892.781961		966	3.726500	46501.363913
917	3.325500	46877.085000		967	3.742100	46517.060874
918	3.336000	46929.080874		968	3.752500	46490.571961
919	3.336000	46923.193913		969	3.752500	46866.293039
920	3.356800	46855.505874		970	3.773400	46397.376961
921	3.362000	46861.388039		971	3.773400	46209.023039
922	3.372400	46877.085000		972	3.752500	46084.438913
923	3.377600	46960.470000		973	3.789000	46089.343913
924	3.382800	46877.085000		974	3.799400	46292.408039
925	3.393200	46845.695874		975	3.804600	46188.425874
926	3.408900	46918.288913		976	3.815000	46230.606961
927	3.408900	46897.686961		977	3.825400	46240.416961
928	3.419300	46960.470000		978	3.830600	46251.208913
929	3.419300	47325.403913		979	3.835800	46355.195874
930	3.450500	46991.863913		980	3.846300	46209.023039
931	3.450500	46907.496961		981	3.856700	46147.221961
932	3.440100	46573.956961		982	3.867100	46157.031961
933	3.450500	46699.523039		983	3.867100	46147.221961
934	3.466100	46913.383913		984	3.887900	46271.810874
935	3.476500	46929.080874		985	3.887900	46100.135874
936	3.481800	46976.166961		986	3.898300	46115.828039
937	3.481800	46902.591961		987	3.908700	46125.638039
938	3.492200	46710.315000		988	3.913900	46063.836961
939	3.502600	46834.903913		989	3.934800	46262.000874
940	3.513000	46543.545000		990	3.934800	46016.750874
941	3.523400	46626.930000		991	3.934800	45792.098039
942	3.528600	46626.930000		992	3.950400	45834.283913
943	3.539000	46683.830874		993	3.960800	45906.876961
944	3.549500	46782.908039		994	3.960800	46042.253039
945	3.554700	46688.735874		995	3.971200	45906.876961
946	3.559900	46668.133913		996	3.981600	45854.885874
947	3.570300	46688.735874		997	3.986900	45875.483039
948	3.580700	46636.740000		998	3.997300	45829.378913
949	3.601500	46897.686961	ł	999	4.002500	45958.868039
950	3.585900	46663.228913		1000	4.012900	45708.713039

	Anertura de arieta	Carga anlicada			Apertura de arieta	Carga aplicado
Núm.	(mm)	(N)		Núm.	(mm)	(N)
1001	4.018100	45620.423039		1051	4.439900	43185.583913
1002	4.033700	45615.518039		1052	4.450300	43207.163039
1003	4.033700	45584.128913		1053	4.460700	43227.765000
1004	4.044100	45688.115874		1054	4.460700	43358.240874
1005	4.054500	45541.943039		1055	4.471100	43248.366961
1006	4.065000	45510.553913		1056	4.481500	43238.556961
1007	4.070200	45474.255000		1057	4.491900	43279.760874
1008	4.080600	45406.566961		1058	4.491900	43185.583913
1009	4.085800	45787.193039		1059	4.502400	43363.145874
1010	4.085800	45396.756961		1060	4.518000	43227.765000
1011	4.106600	45125.018039		1061	4.523200	43144.380000
1012	4.117000	45021.035874		1062	4.533600	43102.198913
1013	4.122200	45036.728039		1063	4.538800	43013.908913
1014	4.137900	45182.900874		1064	4.544000	43034.510874
1015	4.143100	45025.940874		1065	4.554400	42873.623039
1016	4.148300	44973.945000		1066	4.559600	42821.631961
1017	4.153500	44948.438039		1067	4.575300	42831.441961
1018	4.163900	44926.858913		1068	4.575300	42763.753913
1019	4.169100	45041.633039		1069	4.585700	42957.008039
1020	4.184700	44874.863039		1070	4.585700	42596.983913
1021	4.189900	44812.080000		1071	4.606500	42508.693913
1022	4.189900	44827.776961		1072	4.616900	42529.295874
1023	4.205500	44817.966961		1073	4.627300	42414.516961
1024	4.210800	44917.048913		1074	4.627300	42435.118913
1025	4.221200	44728.695000		1075	4.637700	42341.923913
1026	4.231600	44703.188039		1076	4.642900	42153.570000
1027	4.242000	44708.093039		1077	4.648200	42159.456961
1028	4.252400	44624.708039		1078	4.658600	42085.881961
1029	4.252400	44791.478039		1079	4.669000	42184.963913
1030	4.268000	44447.150874		1080	4.679400	41976.990000
1031	4.273200	44311.770000		1081	4.689800	41893.605000
1032	4.273200	44343.163913		1082	4.689800	41862.215874
1033	4.288900	44311.770000		1083	4.700200	41846.518913
1034	4.294100	44478.540000		1084	4.710600	41986.800000
1035	4.304500	44291.168039		1085	4.726300	41856.328913
1036	4.314900	44311.770000		1086	4.731500	41705.255874
1037	4.314900	44270.570874		1087	4.741900	41731.740000
1038	4.330500	44223.480000		1088	4.752300	41679.748913
1039	4.335700	44363.765874		1089	4.752300	41945.600874
1040	4.346100	44145.000000		1090	4.752300	41497.281961
1041	4.356600	44041.013039		1091	4.752300	41080.356961
1042	4.367000	44041.013039		1092	4.752300	40897.890000
1043	4.372200	44020.415874		1093	4.783500	40923.396961
1044	4.382600	44067.501961		1094	4.804400	41105.863913
1045	4.387800	43957.628039		1095	4.804400	41028.365874
1040	4.398200	43/80.0/08/4		1096	4.809600	40904./908/4
1047	4.403400	43/0/.4/3039		1097	4.820000	40944.9808/4
1040	4.413800	43003.4908/4		1098	4.030400	40024.315000
1049	4.419000	43931.143913		1099	4.833000	40990.971901
1050	4.419000	43529.915874	1	1100	4.001200	40110.210814

1	Aportura do griota	Carga aplicada	1		Aportura do griota	Carga aplicada
Núm.	(mm)	(N)		Núm.	(mm)	(N)
1101	4.856400	40600.648913		1151	5.267800	36617.788913
1102	4.861600	40611.440874		1152	5.283400	36691.363913
1103	4.866900	40548.653039		1153	5.283400	36576.585000
1104	4.877300	40663.431961		1154	5.293800	36597.186961
1105	4.887700	40496.661961		1155	5.304300	36367.633913
1106	4.892900	40319,100000		1156	5.309500	36273.456961
1107	4.903300	40287.710874		1157	5.314700	36180.261961
1108	4.918900	40240.620000		1158	5.330300	36138.080874
1109	4.929300	40480.965000		1159	5.335500	36243.045000
1110	4.934500	40152.330000		1160	5.345900	36002,700000
1111	4.939800	39980.655000		1161	5.351100	35585,775000
1112	4.939800	39911.985000		1162	5.361500	35731.943039
1113	4.950200	39907.080000		1163	5.372000	35783.938913
1114	4.965800	40037.555874		1164	5.377200	35878.115874
1115	4.971000	39911.985000		1165	5.387600	35721.155874
1116	4.976200	39823.695000		1166	5.392800	35700.553913
1117	4.981400	39787.400874		1167	5.398000	35627.960874
1118	4.991800	39704.015874		1168	5,408400	35574.983039
1119	5.002200	39886.478039		1169	5.418800	35689,761961
1120	5.017900	39782.495874		1170	5,439600	35398,403039
1121	5.017900	39485,250000		1171	5.418800	35195.338913
1122	5.028300	39474.458039		1172	5.450100	35106.066961
1123	5.038700	39453.860874		1173	5.455300	35033.473913
1124	5.043900	39537.245874		1174	5.460500	35168.850000
1125	5.054300	39370.475874		1175	5.470900	34929.486961
1126	5.059500	39287.090874		1176	5.476100	34939.296961
1127	5.069900	39244.905000		1177	5.486500	34950.088913
1128	5.075100	39276.298913		1178	5.496900	34851.006961
1129	5.085600	39411.675000		1179	5.502100	34970.690874
1130	5.085600	39177.216961		1180	5.517800	34762.716961
1131	5.106400	38870.165874		1181	5.517800	34657.748039
1132	5.106400	38755.386961		1182	5.523000	34652.843039
1133	5.116800	38765.196961		1183	5.533400	34574.363039
1134	5.132400	38812.283039		1184	5.543800	34657.748039
1135	5.137600	38530.738913		1185	5.554200	34533.163913
1136	5.142800	38453.240874		1186	5.564600	34490.978039
1137	5.158500	38363.968913		1187	5.564600	34481.168039
1138	5.158500	38145.203039		1188	5.580200	34366.393913
1139	5.168900	38187.388913		1189	5.585400	34517.466961
1140	5.168900	37785.178913		1190	5.606300	34220.225874
1141	5.184500	37655.685000		1191	5.606300	33970.070874
1142	5.189700	37618.408913		1192	5.616700	33943.581961
1143	5.205300	37566.413039		1193	5.621900	33866.083913
1144	5.210500	37535.023913		1194	5.632300	33918.075000
1145	5.226200	37306.448039		1195	5.637500	33756.210000
1146	5.226200	37180.881961		1196	5.647900	33761.115000
1147	5.241800	37175.976961		1197	5.653100	33699.313913
1148	5.247000	37034.713913		1198	5.658300	33677.730000
1149	5.252200	37180.881961		1199	5.668800	33767.001961
1150	5.273000	36910.125000		1200	5.679200	33625.738913

Núm.	Apertura de grieta (mm)	Carga aplicada (N)	Núm.	Apertura de grieta (mm)	Carga aplicada (N)
1201	5.689600	33553.145874	1251	6.106200	30863.241961
1202	5.689600	33531.561961	1252	6.116600	30811.250874
1203	5.705200	33458.968913	1253	6.121800	30842.640000
1204	5.710400	33526.656961	1254	6.127000	30930.930000
1205	5.720800	33380.488913	1255	6.137400	30811.250874
1206	5.731200	33323.588039	1256	6.142600	30811.250874
1207	5.736400	33281.406961	1257	6.158200	30836.753039
1208	5.741700	33240.203039	1258	6.163400	30789.666961
1209	5.752100	33344.190000	1259	6.168600	30836.753039
1210	5.772900	33052.835874	1260	6.179100	30759.255000
1211	5.772900	32864.481961	1261	6.189500	30613.086961
1212	5.772900	32812.490874	1262	6.199900	30680.775000
1213	5.788500	32859.576961	1263	6.210300	30633.688913
1214	5.798900	32911.568039	1264	6.210300	30675.870000
1215	5.804100	32760.495000	1265	6.220700	30613.086961
1216	5.814600	32771.286961	1266	6.225900	30561.095874
1217	5.819800	32760.495000	1267	6.231100	30523.815000
1218	5.825000	32749.703039	1268	6.241500	30466.918913
1219	5.835400	32864.481961	1269	6.252000	30539.511961
1220	5.845800	32719.295874	1270	6.252000	30425.715000
1221	5.851000	32593.725000	1271	6.272800	30331.538039
1222	5.861400	32530.941961	1272	6.283200	30357.045000
1223	5.866600	32515.245000	1273	6.293600	30315.845874
1224	5.877000	32552.525874	1274	6.293600	30305.053913
1225	5.887500	32364.171961	1275	6.304000	30169.673039
1226	5.897900	32260.185000	1276	6.309200	30153.980874
1227	5.897900	32270.976961	1277	6.324900	29940.120000
1228	5.913500	32197.401961	1278	6.330100	29987.210874
1229	5.918700	32192.496961	1279	6.335300	30049.993913
1230	5.929100	31999.238039	1280	6.345700	29987.210874
1231	5.934300	31822.658039	1281	6.350900	29894.015874
1232	5.939500	31843.260000	1282	6.366500	30013.695000
1233	5.955100	31863.861961	1283	6.371700	29924.423039
1234	5.960400	31906.043039	1284	6.376900	29966.608913
1235	5.976000	31780.476961	1285	6.387300	29856.735000
1236	5.981200	31697.091961	1286	6.397800	29862.621961
1237	5.991600	31759.875000	1287	6.403000	29820.440874
1238	5.996800	31697.091961	1288	6.413400	29768.445000
1239	6.002000	31749.083039	1289	6.418600	29820.440874
1240	6.017600	31655.888039	1290	6.439400	29726.263913
1241	6.017600	31519.530000	1291	6.439400	29460.411961
1242	6.033300	31514.625000	1292	6.439400	29460.411961
1243	6.038500	31478.330874	1293	6.455000	29486.900874
1244	6.048900	31509.720000	1294	6.460200	29523.195000
1245	6.059300	31390.040874	1295	6.470699	29445.696961
1246	6.059300	31337.063039	1296	6.475900	29434.905000
1247	6.080100	31332.158039	1297	6.491500	29471.203913
1248	6.080100	31237.985874	1298	6.491500	29403.515874
1249	6.085300	31321.370874	1299	6.501900	29445.696961
1250	6.106200	31191.876961	1300	6.517500	29362.311961

r	Aportura do griota	Cargo aplicado	l '		Aportura do griota	Cargo aplicado
Núm.	(mm)	(N)		Núm.	(mm)	(N)
1301	6.522700	29309.338913		1351	6.934099	27391,483913
1302	6.522700	29340.728039		1352	6.939300	27391.483913
1303	6.538300	29288.736961		1353	6.954900	27349.298039
1304	6.543600	29263.230000		1354	6.960099	27328.700874
1305	6.554000	29236.745874		1355	6.970500	27271.800000
1306	6.559199	29132.758913		1356	6.981000	27250.220874
1307	6.574800	29173.958039		1357	6.981000	27256.103039
1308	6.574800	29069.975874		1358	6.996599	27182.528039
1309	6.585200	29111.175000		1359	7.001800	27161.930874
1310	6.585200	29017.980000		1360	7.017400	27151.138913
1311	6.606000	28876.716961		1361	7.022599	27021.645000
1312	6.616500	28903.205874		1362	7.022599	27015.758039
1313	6.616500	28840.418039		1363	7.038200	26953.956961
1314	6.626900	28840.418039		1364	7.043400	26963.766961
1315	6.626900	28767.825000		1365	7.053900	26848.988039
1316	6.647700	28725.643913		1366	7.059099	26729.308913
1317	6.647700	28715.833913		1367	7.074700	26765.603039
1318	6.658099	28689.345000		1368	7.079900	26693.010000
1319	6.668500	28746.245874		1369	7.085099	26641.018913
1320	6.678900	28610.865000		1370	7.085099	26645.923913
1321	6.684199	28549.063913		1371	7.105900	26452.665000
1322	6.694600	28601.055000		1372	7.111099	26285.895000
1323	6.699800	28569.665874		1373	7.121599	26244.695874
1324	6.710200	28601.055000		1374	7.126800	26202.510000
1325	6.720599	28522.575000		1375	7.126800	26150.518913
1326	6.720599	28517.670000		1376	7.142400	26109.315000
1327	6.741400	28486.280874		1377	7.158000	26067.133913
1328	6.741400	28486.280874		1378	7.158000	25952.355000
1329	6.751800	28496.090874		1379	7.168400	25920.965874
1330	6.772700	28486.280874		1380	7.178800	25848.368039
1331	6.772700	28392.103913		1381	7.178800	25692.390000
1332	6.772700	28214.541961		1382	7.194400	25723.783913
1333	6.783099	28184.130000		1383	7.199700	25587.425874
1334	6.793500	28214.541961		1384	7.210099	25598.213039
1335	6.803900	28168.433039		1385	7.220500	25483.438913
1336	6.809099	28131.156961		1386	7.225700	25420.655874
1337	6.824700	28152.740874		1387	7.241300	25410.845874
1338	6.824700	28094.858039		1388	7.241300	25269.578039
1339	6.835200	28121.346961		1389	7.251700	25248.980874
1340	6.835200	28047.771961		1390	7.262099	25212.681961
1341	6.850800	27964.386961		1391	7.267400	25024.328039
1342	6.856000	27933.975000		1392	7.283000	25066.513913
1343	6.871599	27928.088039		1393	7.288200	24936.038039
1344	6.876800	27912.395874		1394	7.293400	24951.735000
1345	6.887200	27819.200874		1395	7.303800	24680.978039
1346	6.892400	27834.893039		1396	7.309000	24654.493913
1347	6.908099	27803.503913		1397	7.314200	24753.575874
1348	6.908099	27682.838039		1398	7.324599	24722.181961
1349	6.918500	27693.630000		1399	7.335000	24690.788039
1350	6.918500	27621.036961		1400	7.350700	24690.788039
	Aportura do ariota	Cargo oplicado		1	Aporturo do grioto	Cargo oplicado
------	--------------------	----------------	---	------	--------------------	----------------
Núm.	(mm)	(N)		Núm.	Apertura de grieta	(NI)
1401	7 355900	24524 018039		1451	7 772400	211/6//36061
1402	7.366300	24524.010039		1452	7 772400	21073 8/3013
1/02	7.366300	24300.203913		1/53	7 782000	21073.043913
1403	7.300300	24402.010913		1455	7.702900	21021.040039
1404	7.370700	24430.823039		1404	7.793300	21021.040039
1405	7.307099	24430.623039		1400	7.603700	21011.000074
1400	7.397500	24204.055059		1400	7.014099	20910.003913
1407	7.402700	24295.440901		1457	7.824500	20885.490000
1408	7.407900	24174.785874		1458	7.829700	20812.896961
1409	7.418400	24133.581961		1459	7.834900	20797.200000
1410	7.418400	23919.725874		1460	7.845300	20760.905874
1411	7.418400	23482.198913		1461	7.850599	20625.525000
1412	7.449599	23492.008913		1462	7.861000	20635.335000
1413	7.449599	23429.225874		1463	7.871400	20520.560874
1414	7.460000	23482.198913		1464	7.876599	20479.356961
1415	7.470400	23492.008913		1465	7.887000	20416.573913
1416	7.470400	23408.623913		1466	7.892200	20286.098039
1417	7.480800	23429.225874		1467	7.897400	20296.890000
1418	7.491300	23336.030874		1468	7.912999	20239.011961
1419	7.501700	23331.125874		1469	7.918200	20177.210874
1420	7.501700	23288.940000		1470	7.928700	20125.215000
1421	7.517300	23210.460000		1471	7.933900	19979.046961
1422	7.532900	23174.165874		1472	7.944300	19931.960874
1423	7.538099	23122.170000		1473	7.949499	19864.268039
1424	7.543300	23023.088039		1474	7.959900	19864.268039
1425	7.543300	22913.218913		1475	7.965099	19686.710874
1426	7.564200	22897.521961		1476	7.980700	19686.710874
1427	7.574599	22897.521961		1477	7.985900	19603.325874
1428	7.579800	22820.023913		1478	7.991100	19582.723913
1429	7.579800	22762.145874		1479	8.001599	19504.243913
1430	7.585000	22757.240874		1480	8.011999	19452.248039
1431	7.605800	22601.258039		1481	8.011999	19353.170874
1432	7.611000	22606.163039		1482	8.022400	19332.568913
1433	7.616200	22496.293913		1483	8.037999	19249.183913
1434	7.626599	22475.691961		1484	8.043200	19206.998039
1435	7.637099	22356.008039		1485	8.053600	19145.196961
1436	7.642300	22272.623039		1486	8.063999	18936.245874
1437	7.647500	22293.225000		1487	8.069200	18269.165874
1438	7.663099	22126.455000		1488	8.074499	18019.010874
1439	7.663099	22142.151961]	1489	8.084900	17935.625874
1440	7.668300	22063.671961]	1490	8.105700	17862.050874
1441	7.683900	21948.893039]	1491	8.116100	17685.470874
1442	7.694300	21939.083039	1	1492	8.110900	17518.700874
1443	7.699500	21824.308913	1	1493	8.121300	17518.700874
1444	7.710000	21824.308913	1	1494	8.126499	17518.700874
1445	7.720400	21720.321961	1	1495	8.136900	17550.090000
1446	7.725599	21615.353039	1	1496	8.147400	17466.705000
1447	7.741200	21574.153913	1	1497	8.152599	17383.320000
1448	7.741200	21470.166961	1	1498	8.157800	17309.745000
1449	7.751599	21375.990000	1	1499	8.168200	17294.048039
1450	7.772400	21333.808913	1	1500	8.173400	17289.143039

Núm.	Apertura de grieta (mm)	Carga aplicada (N)		Núm.	Apertura de grieta (mm)	Carga aplicada (N)
1501	8.178600	17226.360000	Ī	1551	8.600001	15016,168913
1502	8.199400	17242.056961		1552	8.606000	15083.856961
1503	8.199400	17185.160874		1553	8.616000	15016.168913
1504	8.209800	17205.758039		1554	8.626001	15011.263913
1505	8.209800	17142.975000		1555	8.637000	15047.558039
1506	8.230700	17070.381961		1556	8.642000	14948.480874
1507	8.235900	17070.381961		1557	8.647000	14995.566961
1508	8.241100	16955.603039		1558	8.658000	14937.688913
1509	8.251499	16944.815874		1559	8.668000	14917.086961
1510	8.267100	16950.698039		1560	8.668000	14932.783913
1511	8.267100	16768.235874		1561	8.684000	14838.606961
1512	8.272300	16762.348913		1562	8.694000	14870.000874
1513	8.282700	16726.050000		1563	8.699001	14808.195000
1514	8.293200	16684.850874		1564	8.710000	14761.108913
1515	8.298400	16622.063039	1	1565	8.710000	14724.810000
1516	8.308800	16585.768913	1	1566	8.720000	14703.230874
1517	8.313999	16559.280000		1567	8.731000	14682.628913
1518	8.324400	16455.293039		1568	8.741000	14578.641961
1519	8.334800	16455.293039		1569	8.746000	14421.681961
1520	8.339999	16455.293039		1570	8.772000	14515.858913
1521	8.350400	16319.916961		1571	8.772000	14411.871961
1522	8.355600	16329.726961		1572	8.783000	14286.303481
1523	8.366100	16282.640874		1573	8.788000	14234.310000
1524	8.376499	16266.943913		1574	8.793000	14250.006961
1525	8.381700	16162.956961		1575	8.798000	14245.101961
1526	8.397300	16142.355000		1576	8.809000	14130.325432
1527	8.397300	16058.970000		1577	8.814000	14166.621961
1528	8.407700	15949.100874		1578	8.824001	14098.931519
1529	8.418000	15923.593913		1579	8.835000	14056.750432
1530	8.418000	15954.983039		1580	8.845000	14015.546519
1531	8.418000	15683.248913		1581	8.850001	13837.986961
1532	8.439000	15662.646961		1582	8.856000	13880.170432
1533	8.449001	15673.438913		1583	8.866000	13843.871519
1534	8.460000	15709.733039		1584	8.876001	13806.595432
1535	8.475001	15719.543039		1585	8.887000	13806.595432
1536	8.481000	15642.045000		1586	8.892000	13/18.305432
1537	8.481000	15683.248913		1587	8.897000	13738.905000
1538	8.491000	15667.551961		1588	8.913000	13702.608481
1539	8.501001	15615.560874		1589	8.913000	13671.216961
1540	8.501001	15642.045000		1590	8.934000	13639.825432
1541	8.512000	15538.058039		1591	8.939000	13494.636961
1542	8.527001	15547.868039		1592	8.944000	13509.351961
1543	8.538000	15485.085000		1593	8.949001	13431.851519
1544	0.043000	10423.203913		1594	0.900000	13408.150432
1545	0.004000	15370.193039		1595	0.9/0000	13499.341901
1540	0.004000	15370 200013		1590	0.9/0001	13393.3330000
1547	0.009000	15349.708913		1597	0.900001	13400.400000
1540	0.074001 8 585000	15182 020012		1090	0.991000	13342.301901
1549	0.000000	15162.930913		1099	9.001001	13332 771061
1000	0.000000	10102.900910		1000	9.012000	10002.11 1901

	Apertura de grieta	Carga aplicada			Apertura de grieta	Carga aplicada
Núm.	(mm)	(N)		Núm.	(mm)	(N)
1601	9.022000	13222.900432	l	1651	9.418000	11409.030000
1602	9.027001	13265.081519		1652	9.444000	11357.036519
1603	9.038000	13202.298481		1653	9.449001	11273.651519
1604	9.043000	13181.696519		1654	9.460000	11262.861961
1605	9.048000	13181.696519		1655	9.470000	11273.651519
1606	9.059000	13129.705432		1656	9.475001	11231.470432
1607	9.064000	13129.705432		1657	9.480001	11253.051961
1608	9.074001	13046.320432		1658	9.491000	11138.275432
1609	9.079001	13009.041961		1659	9.501001	11116.691519
1610	9.085000	13035.528481		1660	9.512000	11127.483481
1611	9.105001	12889.360432		1661	9.512000	11039.193481
1612	9.111000	12884.455432		1662	9.527001	11070.585000
1613	9.116000	12848.156519		1663	9.532001	10992.105000
1614	9.121000	12826.575000		1664	9.543000	10971.505432
1615	9.137000	12868.758481		1665	9.553001	10929.321961
1616	9.137000	12816.765000		1666	9.558001	10861.631519
1617	9.152001	12848.156519		1667	9.569000	10845.936961
1618	9.158000	12795.183481		1668	9.574001	10773.341519
1619	9.168000	12764.771519		1669	9.579001	10721.350432
1620	9.184000	12795.183481		1670	9.585000	10658.565000
1621	9.184000	12697.083481		1671	9.595000	10501.605000
1622	9.194000	12733.380000		1672	9.605001	10532.996519
1623	9.199001	12681.386519		1673	9.616000	10471.195432
1624	9.204001	12587.211961		1674	9.621000	10444.706519
1625	9.220000	12639.205432		1675	9.626001	10476.100432
1626	9.225001	12623.508481		1676	9.637000	10387.810432
1627	9.230001	12654.900000		1677	9.647000	10413.315000
1628	9.241000	12555.820432		1678	9.657001	10334.835000
1629	9.251001	12576.420000		1679	9.663000	10314.235432
1630	9.262000	12618.603481		1680	9.668000	10304.425432
1631	9.272000	12467.530432		1681	9.689000	10221.040432
1632	9.277001	12493.035000		1682	9.689000	10230.850432
1633	9.288000	12431.231519		1683	9.699001	10210.248481
1634	9.293000	12445.946519		1684	9.709001	10147.465432
1635	9.298000	12420.441961		1685	9.725001	10147.465432
1636	9.314000	12389.050432		1686	9.725001	10090.566961
1637	9.314000	12384.145432		1687	9.730001	10084.680000
1638	9.324001	12263.481961		1688	9.741000	9969.903481
1639	9.329001	12258.576961		1689	9.751001	9969.903481
1640	9.345000	12326.265000		1690	9.751001	10012.086961
1641	9.350001	12263.481961		1691	9.751001	9861.011519
1642	9.355001	12222.280432		1692	9.782001	9856.106519
1643	9.366000	12149.685000		1693	9.782001	9813.925432
1644	9.371000	12128.103481				
1645	9.387000	12123.198481				
1646	9.392000	12055.510432				
1647	9.397000	12081.996961				
1648	9.413000	11992.725000				
1649	9.418000	11951.523481				
1650	9.418000	11679.786961				

Anexo 3 *Cálculo de la dimensión fractal*

Para $\theta = 0^{\circ}$

Figura 3.2. Gráfica para calcular la dimensión fractal con $\theta = 0^{\circ}$.

Para $\theta = -45^{\circ}$

Figura 3.4. Gráfica para calcular la dimensión con $\theta = -45^{\circ}$.

Para $\theta = 45^{\circ}$

Figura 3.6. Gráfica para calcular la dimensión con $\theta = 45^{\circ}$.

Anexo 3

Para $\theta = 135^{\circ}$

Figura 3.10. Gráfica para calcular la dimensión con $\theta = 135^{\circ}$.

El desarrollo de la presente tesis, se llevó a cabo como parte del proyecto de investigación (PIFI) **Mecánica de Fractura Fractal en Especímenes Estructurales,** con número de registro ante CGPI: 20040225 y 20050900.