IS DIRECT SEEDING A BIOLOGICALLY VIABLE STRATEGY FOR RESTORING FOREST ECOSYSTEMS? EVIDENCES FROM A META-ANALYSIS

Eliane Ceccon^{1*}, Edgar J. González², Carlos Martorell²

¹ * Correspondence author: Centro Regional de Investigaciones Multidisciplinarias - Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Circuito 2, 62210, Col. Chamilpa, Cuernavaca, Morelos, Ciudad Universitaria de la UAEM,

México. ececcon61@gmail.com

² Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, D.F. México. edgarjgonzalez@ciencias.unam.mx, martorell@ciencias.unam.mx

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ldr.2421

This article is protected by copyright. All rights reserved.

Summary

Ecological restoration has become an important technique for mitigating the human impacts on natural vegetation. Planting seedlings is the most common approach to regain lost forest cover. However, these activities require a large economic investment. Direct-seeding is considered a cheaper and easier alternative technique, in which tree seeds are introduced directly on the site rather than transplanting seedlings from nurseries. To evaluate the effectiveness of direct seeding, we conducted a comprehensive search of the literature using "restoration", "direct seeding" and "sowing" as keywords, and we performed a meta-analysis using 30 papers and 89 species. We used two different measures of restoration success: seed germination probability and success probability (the chance that a seed germinates and survives until the end of the experiment). In general, restoration attempts using direct seeding techniques were relatively unsuccessful. On average, seed germination and success probability was 0.239 and 0.114, respectively, and were not affected by climate, species successional group or the application of pre-germinative treatments. Germination and success probability increased with seed size, and the use of physical protections resulted in a nearly two-fold increase in germination probability, but this effect faded by the end of the experiments. Due to the low rate of seedling success, we suggest the use of direct seeding as a complementary technique to reduce restoration costs, particularly for species with large seeds and known high germination rates, but our results do not support direct seeding as a substitute for seedling planting.

forest restoration, seed protection, seed germination, seedling success, seed size.

Accep

INTRODUCTION

Around 13 million hectares of forests were converted to other uses or lost due to natural causes each year between 2000 and 2010 (FRA, 2010). The driving forces of land-use vary in time and space according to specific human-environment conditions. Human alteration of landscapes from natural vegetation to other uses typically results in habitat loss, fragmentation and the loss of soil functions and services (Bierregaard *et al.*, 2001; Keesstra *et al.*, 2012; Brevik *et al.*, 2015). However natural regeneration of late-successional trees in fragmented and degraded landscapes can be strongly limited (Holl, 1999; Benítez *et al.*, 2001; Ceccon *et al.*, 2003, 2004; Leitão *et al.*, 2010). The lack of natural recruitment of these species has led to concerns about their persistence in fragmented and degraded landscapes, and aggressive restoration efforts have been suggested as a necessary step to augment severely dispersal-limited species in future forests (Martinez-Garza & Howe, 2003; Dosch *et al.*, 2007). Moreover, forest recovery is the key to reduce the soil losses, increase the quality of water and the biodiversity (Keesstra *et al.*, 2007; Paix *et al.*, 2013) and there has been done a huge effort to restore soils and ecosystems to avoid high erosion rates, pollution and the soil degradation (Mekuria *et al.*, 2013; Novara *et al.*, 2013; Paz-Ferreiro *et al.*, 2014; Mekonnen, *et al.*, 2014, 2015)

In this context, ecological restoration has become an important restoration technique to mitigate the negative impacts of human activity on forest ecosystems (Chazdon, 2008; Benayas et *al.*, 2009; Ceccon, 2013). The most common approach for generating vegetative cover in degraded sites is seedling planting. The simultaneous planting of pioneer and later-successional seedlings species may accelerate the natural process of plant succession (Kageyama *et al.*, 2003; Rodrigues *et al.*, 2009). However, these activities are considered the most expensive in economic terms (Florentine, 2013). Thus, a major challenge for restoration programs is to fulfill simultaneously both ecological and economic goals, and an important aspect of planning is the choice of an efficient planting technique (Campbell *et al.*, 2002).

Direct seeding, in which tree seeds are introduced directly on the regeneration site, is considered a cheaper and easier alternative to transplanting seedlings previously produced in nurseries. Although rarely compared directly with seedling planting, the technique has been practiced in North America (Moulton & Hernández, 2000) and Europe (Nabos & Epaillard, 1995), and recently in the tropics (Engel & Parrota, 2001, Bonilla-Moheno & Holl, 2010).

The main advantages of direct seeding are the ability to sow large areas rapidly by hand or with broadcasting machinery, and lower cost (around 50% according to Heth, 1983) compared with transplanting seedlings (Engel & Parrotta, 2001; Camargo *et al.*, 2002). Additionally, field-grown plants are often less prone to toppling and have unhindered taproot formation compared with container-grown seedlings, which may develop restricted, 'cork-screw' roots and distorted taproots (Wennström *et al.*, 1999).

However, direct seeding also has a number of potential disadvantages, including difficulties in sourcing large quantities of viable seed, lack of information on optimum sowing times for many species, variability in starting and duration of germination, less flexibility to control conditions for seed germination and early seedling growth, predation of seed and seedlings, and the need to control the intense competition from existing vegetation, particularly grasses. It is imperative that seeds of selected native species be available in sufficient quantities to meet requirements and at a reasonable cost (Hooper *et al.*, 2005; Sampaio *et al.*, 2007). In fact, Derr & Mann (1971) recommended that when the viability of seeds is lower than 85%, it is best to use these seeds for sowing in nurseries, where conditions can be controlled to optimize germination, rather than directly sowing an excessive number of seeds. Derr & Mann (1971) also considered that the seedlings after direct seeding, in the first two years after germination, require more care, cleaning work, and supervision than seedlings planted from nurseries.

Merrit & Dixon (2011) made a review and found the most common explanation for direct seeding failure: a lack of research data on the phenology of seed development and maturation for most indigenous species that can lead to inappropriate timing of seed collection; a low quality and viability of collected seeds; poor storage procedures and inability to break seed dormancy that reduce the germination at the time seeds are sown. Florentine et al. (2013) also found that direct seeding success depends on the variations in environmental conditions between years required for germination and seed survival.

Some other aspects of species or management may influence seed germination or seedling success at the restoration site, which in turn could influence the efficiency of direct-seeding

techniques. Examples may include seed size, species successional group, climate of species occurrence, previous perturbation of habitat and the use of seed protectors.

The objective of this study is to review the effectiveness of the direct-seeding technique in forest restoration practices in terms of both the seed germination and success probabilities in various ecosystems using a meta-analysis. For each species found in our literature search, we scored ecological characteristics, including climate of species occurrence (tropical or non-tropical species), seed size (small, medium al large), and successional group (pioneer or non-pioneer). We also noted whether pre-germinative treatments or physical protectors were used in each field experiment. We hypothesized that while some species characteristics or techniques can improve the seed germination and success using direct seeding; this technique is viable for only a reduced number of species.

MATERIALS AND METHODS

We conducted an extensive survey of the literature published before April 2012 and after 1950 through computer searches on the databases available from Google Scholar and Web of Science at the Campus of the Universidade Federal do Parana, Brazil. Our queries included: "direct seeding" or "direct sowing" and restoration as key-words (we also included the translated key-words in Portuguese and Spanish and wildcards of restoration such as restor*), as shown in Table 1.

We found that Google Scholar gave more comprehensive results that Web of Science. In fact, all relevant results from the Web of Science core collection were found in the search at Google Scholar, so this gave us confidence that our findings were representative and non-biased with the extra advantage that Google Scholar includes studies in Spanish and Portuguese and other documents such as postgraduate thesis, technical reports, etc. A total of 5890 references were retrieved from the all four query sentences used in Google Scholar and 307 from the Web of Science (Table 1), Google scholar allows only 1000 references to be examined at any one query. To overcome this limitation, we divided the search in several time periods as to have less than 1000 results in each. For example, for the query "direct seeding" AND restoration, on the 1951-1970 range, there were 33 results. However for the range 2008-2010 there were 981 results. In this way we were able to review all results for all the query sentences used. Our oldest identified relevant study has date of 1967 and our most recent was of 2012. From that total we eliminated redundancies

systematically and also selected only those dealing with forest terrestrial ecosystems (studies dealing with shrubs, grasslands, mangroves, etc. were not considered).

A further criterion was to ignore studies on reforestation, which is very common in temperate ecosystems, since we focus on restorations approaches only. A very small number of papers were not considered because the full-text option was not available and the authors did not respond our request for reprints. The resulting publications were subsequently reviewed to determine whether they met the criteria previously established and required by the meta – analysis: the study has to report as a result from a field work, the probability of seed germination, seedling survival, or both (to obtain success probability, that means the chance that a seed germinates and survives until the end of the experiment) resulting in 125 selected studies. However for the meta- analysis, it was also necessary that these studies report the "exact" number of sown seeds. This last condition yield a total of 30 studies as reported in the Appendix 1 and 2. Many studies on temperate ecosystems presented only the amount of sowed seeds in weight rather that in number (mostly because these species have very small seeds), for consistency we chose not to include these studies. The 30 studies included a total of 89 species examined.

We systematically extracted experiment information from the text, tables and figures of the selected papers. To obtain accurate information from figures, we used Datathief (v1.6), a shareware program that extract data points from graphs (www.datathief.org). We also contacted authors for complementary information, although this allowed the inclusion of only one additional study in our analysis.

The research works included both single- and multi-species studies, and experiments varied in their use of pre-germinative treatments (seed scarification) and physical protection of sown seeds (using wood veneer or bottomless plastic cup). We considered each species and experiment as one case in the meta-analysis, resulting in 89 species and 30 direct-seeding restoration studies. Seedling survival was evaluated in only 60 species in five studies.

Variables used in the meta-analysis such as "Climate" was obtained from the methodology (study site) of the papers; however there was parsimony in the classification to facilitate the metaanalysis. For example, "tropical" climate could be humid, seasonal dry, etc. Many papers showed the seed size and the successional group of used species, otherwise we searched in the literature. We used two different measures of restoration success: germination probability and success probability. The latter was calculated as the fraction of sown seeds that germinated and survived to the end of the experiment (i.e., germination probability × survival probability).

To perform a meta-analysis we required 1) effect sizes, 2) the weights associated with them, and 3) a statistical test. An effect size is the result of an experiment measured in a way that is comparable across studies. Using the numbers of sown seeds, number of seedlings germinated, and number of survivors to the end of the experiment (if measured), we estimated the germination and success probabilities. Both measurements were arcsine-transformed to attain normality and used as effect sizes. Larger sample sizes lend more support to experimental results, thus are given more weight in meta-analyses. The effect sizes and weights were estimated using the METAFOR package (Viechtbauer, 2010) in R (R Core Team, 2012).

To determine which variables (application of pre-germinative treatments, physical protection, climate, seed size, and successional group) had an effect on germination or success probabilities, we used generalized linear mixed-effects models as the statistical test of the meta-analysis with the MCMCglmm package (Hadfield, 2010) in R. The response variable was assumed to be normally distributed and an identity link was specified. Effect-size weights were included in the analyses.

Most studies reported data for more than one species, which were subject to the same experimental protocol, study site, and climate conditions occurring during the experiment. As a result, germination and success probabilities of all species in a given study may not be independent. To account for this, we specified study as a random factor. Climate, seed size, successional group, pre-germinative treatment, and physical protection were considered as fixed factors. A separate analysis was conducted for each of these variables, as sample sizes for estimating interactions were usually too small and statistical power too low to include more than one variable at a time. We compared the posterior distributions obtained through Markov Chain Monte Carlo sampling using a non-informative prior (Hadfield, 2010).

RESULTS

Studies were carried out in 13 different countries. Brazil presented the largest number of studies (around 32.5%) followed by Australia (12.5%, Appendix 1). Most of cases were in tropical areas (71.8%), 11.8 % in temperate, 10.6% in subtropical and 5.8% in tropical altitude (Appendix 1). Most of direct seeding restoration experiments were carried out in pastures (40.74%), mining areas (14.38 %) and secondary forests (8.93 %, Figure 1).

On average, germination and success probabilities were quite small (0.239 and 0.114, respectively). Germination and success probabilities were also low (<0.2) in a large percentage of species (47% for germination, 72% for success). However, although relatively rare, some species did present a high probability (>0.41) of germination and success (14.6% and 10% respectively; Annex 1, Figure 2). These figures were virtually unchanged by different climates, application of pre-germinative treatments or successional group, suggesting that the lack of statistical differences was due to a weak effect of these explanatory variables, rather than to insufficient statistical power.

Seed size did have a significant effect on germination and success. Large seeds had a germination probability twice as large as that of small ones, while germination of intermediate-sized seeds was indistinguishable from the other two groups (Figure 3). The same pattern was observed for success probability, with an even larger difference between large and small seeds (Figure 3).

The use of physical protection of seeds resulted in a nearly two-fold increase of germination probability, but this effect faded by the end of the experiments, as no difference in success probability between protected and unprotected plots was found (Figure 4).

DISCUSSION

There was a high variability of previous perturbations events in restored habitats among the studies evaluated, however, abandoned pastures was the most commonly used for direct-seeding restoration (41%), this is because pasture establishment is a primary cause of deforestation in tropical landscapes (Ospina *et al.*, 2012). In the present study, most of the reviewed cases of direct seeding were done in tropical areas (71.8%) that are the largest affected ecosystems in the world by land use change (Aide *et al.*, 2012). In these, pasture has been regarded as an important cause of deforestation in the last decades (Fearnside, 1993).

In general, restoration attempts using the direct-seeding technique were relatively unsuccessful in terms of seed germination and success probabilities. Most of species (72%) presented a low success probability (<0.20), highlighting the risk of relying solely on direct-sown seeds in a restoration project. In fact, Kettle *et al.* (2011) suggested that only seeds that can tolerate drying and long term storage could be established, since the data that exist on seed behavior in four of the globally most important timber families indicate that, on average, 60% cannot (Kew, 2014). In this study, highest germination probability was exhibited by two non-pioneer species from the tropics, *Garcinia intermedia* (p=0.90) and *Enterolobium contorstisiliquum* (p=0.86; Appendix 1). However the average seedling success probability of the latter was very low (p=0.01). In fact, in the natural regeneration of many types of forests, seed germination is high and seedling survival is frequently low (Ceccon *et al.*, 2003, 2004, Pérez-Ramos & Marañon, 2012). Other two species that could be highly recommended for direct seeding restoration are the pioneer *Erythrina velutina* and the non-pioneer *Hymenaea corbaril* also from the tropics, due to their high germination and moderated seedling success probability. Even that the tropical pioneer species *Senna multijulga* showed a not so high germination (P=0.40) and a high seedling success (p=0.86), it could also be recommend (Appendix 1).

It is also important to consider that low germination and success rates in direct seeding restoration may imply considerable loss of the initial investment such as seed collection, seed cleaning, pre-germinative treatment, land preparation and sown of seeds in the field. These initial expenditures are also present in the restoration by seedlings; however a few comparative studies have shown a considerable higher survival in restoration using planting seedlings rather than direct seeding. In a tropical zone, Ray & Brown (1995), compared three strategies of restoration using the same group of species: direct seeding, planting seedlings, and planting rooted cuttings in a dry forest plant community at St. John, U.S. Virgin Islands. In this case, restoration from planting seedlings survived best (52%) over an initial nine-month period. Cuttings of six species rooted successfully in a shade house, but only two of these species survived the nine-month field experiment. Seed germination in direct-seeding was low, under 11%, for eight of the 10 species tested, and four species did not germinate at all. In temperate areas in Denmark and Sweden, Madsen & Löf (2005) evaluated the establishment of *Quercus robur* using direct seeding and planting seedlings. The mean establishment percentages in direct seeding varied around between 20 and 50% while in planting seedlings between 50 and 100%.

On the other hand, in direct seeding, seed size influenced seed regeneration and seedling success. Large seeds presented the highest germination and success probabilities. Larger seeded species generally have the advantage that they can germinate at a broader range of temperatures than smaller seeded species (Burton & Bazzaz, 1991). Large seeds also have large nutrient reserves and energy stock and therefore have the ability to rapidly develop a long taproot. This is turn, presumably allow them to survive short periods of drought or other stresses (Tripathi & Khan, 1993; Beckage & Clark, 2003; Willoughby *et al.*, 2004). Cerdá & García-Fayos (2002) and Wang *et al.* (2012) also found that, small seed species suffered the highest rates of washing away when compared with large seed species. Furthermore, large seeds confer seedlings with a competitive advantage (Turnbull *et al.*, 1999, 2004) particularly in systems that have become covered by grasses (41% of direct seeding cases, see Figure 1).

The use of physical protection of seeds (wood veneer or bottomless plastic cup) increased germination by nearly two-fold, since they create a microenvironment for the germination of seeds and reduce the occurrence of burial or washing away of seeds when soil is moved by rain water (Mattei 1997, Cerdá & García-Fayos, 2002; Wang *et al.*, 2012). However, sometimes seed transport by overland flow may leads to the seed redistribution. According with Bochet (2015) literature review, the directed short-distance displacement of seeds to suitable sites where they are preferentially trapped by the vegetated patches, may results in maintaining the patchiness dynamic of the system. On the other hand, seed protection helps avoiding seed predation mainly by ants and birds (Ferreira *et al.*, 2009). Seed predation may have an especially strong impact on seedling recruitment. Indeed, in stable populations of four species of long-lived perennials in sclerophyllous vegetation of southeastern Australia, seed predators were estimated to destroy an average of 95% of seeds (Andersen, 1989).

Due mainly the low seedling success for the most of species, if in a large scale restoration project, there is no alternative to direct seeding, it is strongly recommended, before the field establishment, to conduct scientific experiments with several species to identify those that have a high percentage of germination and survival in the field. However, any previous research may impact the costs of direct seeding and would possibly result in the successful restoration of only a low number of species.

Direct seeding may be recommended as a complimentary restoration technique mainly in agricultural landscapes when a large diversity of species is needed in the restoration project. An emblematic example is the case of well-known experience in Brazil (Rodrigues *et al.*, 2009). The Laboratory of Ecological Restoration (LER) of the University of São Paulo, in Brazil, after nearly 30 years of experience in restoring the Brazilian Atlantic Forest, seems to have found a very successful method for the predominant agriculture landscape of the region (Brancalion *et al.*, 2009). This research group found that at least 80 species are needed in a successful restoration project in the region. A project involving such a large number of species turns easily into an expensive enterprise and because of this, a portion of the restoration is made with planting seedlings and the diversity of species is increased using direct seeding. LER is constantly researching on the most successfully species in direct seeding (Fakin, 2005; Insernhagen, 2010).

CONCLUSIONS

Due to the low germination and seedling establishment success, direct seeding should not be recommended as the sole restoration technique. Most of species (72%) presented a low success probability (<0.20), therefore the selection of species in the direct seeding projects must be done carefully to have a favorable cost: benefit ratio. This species selection should start with those with high seed viability and large size. The use of physical protections may increase germination probability in direct seeding, though overall success may not be affected. Due to the low rate of recruitment we suggest the use of direct seeding as a complementary technique of planting seedlings to improve species diversity, when seed viability and size of the species used is previously known.

ACKNOWLEDGEMENTS:

Eliane Ceccon very much appreciates PAPIIT-UNAM Grants IN300615 and IN105015. Authors also thank to J. M. Torezan and M. Suganuma for giving us their raw data and to Marcia Marques and Natacha Sobanski for help in most of phases of the study. We also thank Lynna Kiere and Octavio Miramontes for useful comments.

REFERENCES

Aide TM, Clark ML, Grau, HR, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner MG, Andrade-Núñez MJ, Muñiz M. 2013. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). *Biotropica*, **45**(2): 262-271. DOI: 10.1111/j.1744-7429.2012.00908.x

Andersen AN. 1989. How important is seed predation to recruitment in stable populations of long-lived perennials? *Oecologia* **81**(3): 310-315.

Beckage B, Clark JS. 2003. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity. *Ecology* **84**:1849–1861. DOI: 10.1890/0012 - 9658 (2003)084 [1849: SSAGOT]2.0.CO;2.

Benayas JMR, Newton AC, Diaz A, Bullock JM. 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. *Science*, **325**(5944): 1121-1124. DOI: 10.1126/science.1172460

Benítez-Malvido J, Martínez-Ramos M, Ceccon E. 2001. Seed rain vs. seed bank, and the effect on vegetation cover on the recruitment of tree seedlings in tropical succession vegetation. *Life Forms and Dynamics in Tropical Forests*. (Eds J Cramer, S Lied), pp. 185-203. *Dissertationes Botanicae* series 346. Gebrueder Borntraeger Berlin, Stuttgart.

Bierregaard R, Gascon C, Lovejoy TE, Mesquita R (Eds.). 2001. *Lessons from Amazonia: The Ecology and Conservation of a Fragmented Forest.* Yale University Press.

Bochet E. 2015. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems. *Soil*, **1**(1): 131-146. DOI: 10.5194/soil-1-131-2015

Bonilla-Moheno M, Holl KD. 2010. Direct seeding to restore tropical mature-forest species in areas of slash-and-burn agriculture. *Restoration Ecology* **18**(s2): 438-445. DOI: 10.1111/j.1526-

100X.2009.00580.x

Brancalion, PHS, Rodrigues R, Iserhagen I, Gandolfi S. 2009. Plantio de árvores nativas brasileiras fundamentada na sucessão florestal, *Pacto para a restauração da Mata Atlântica: referencial dos conceitos e ações de restauração florestal,* (Eds RR Rodrigues, PHS Brancalion, I Iserhagen), São Paulo, Instituto BioAtlântica.

Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K. 2015. The interdisciplinary nature of soil, *Soil*, **1**: 117-129. DOI:10.5194/soil-1-117-2015.

Camargo JLC, Ferraz IDK, Imakawa AM. 2002. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. *Restoration Ecology* **10**(4), 636-644. DOI: 10.1046/j.1526-100X.2002.01044.x

Campbell ML. 2002. Getting the foundation right: a scientifically based management framework to aid in the planning and implementation of seagrass transplant efforts. *Bulletin Marine Science* **71**:1405–1414.

Ceccon E. 2013. *Restauración en bosques tropicales: fundamentos ecológicos, prácticos y sociales.* Ediciones Díaz de Santos/UNAM. México.

Ceccon E, Sánchez S, Campo J. 2004. Tree seedling dynamics in two tropical abandoned dry forests of differing successional status in Yucatán, México: a field experiment with N and P fertilization. *Plant Ecology* **170** (2): 12-26. http://www.jstor.org/stable/20146556

Ceccon E, Huante P, Campo J 2003. Effects of nitrogen and phosphorous fertilization on the survival and recruitment of seedlings of dominant tree species of two secondary tropical dry forests in Yucatán, México. *Forest Ecology Management* **182**: 387-402. DOI:10.1016/S0378-1127(03)00085-9.

Cerdà A, Garcia-Fayos P. 2002. The influence of seed size and shape on their removal by water erosion. *Catena*, 48(4), 293-301.

Chazdon RL. 2008. Beyond deforestation: restoring forests and ecosystem services on degraded lands. *Science* **320** (5882), 1458-1460. DOI: 10.1126/science.1155365

Derr HJ, Mann Jr. WF. 1971. Direct seeding pines in the South. *Agriculture Handbook* **391**. Washington, D.C.: U.S.D.A. Forest Service.

Dosch JJ, Peterson CJ, Haines BL. 2007. Seed rain during initial colonization of abandoned pastures in the premontane wet forest zone of southern Costa Rica. *Journal of Tropical Ecol*ogy **23**(2): 151-159. DOI: http://dx.doi.org/10.1017/S0266467406003853.

Engel VL, Parrotta JA. 2001. An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil. *Forest Ecology and Management* **152**(1): 169-181. DOI:10.1016/S0378-1127(00)00600-9.

Fakin DA. 2005. Avaliação da semeadura a lanço de espécies florestais nativas para recuperação de áreas degradadas. MSc Thesis. Escola Superior de Agricultura Luiz de Queiroz, USP, São Paulo.

Fearnside PM. 1993. Deforestation in Brazilian Amazonia: The effect of population and land tenure. *Ambio* 22: 537-545.

Ferreira RA, Santos PL, Aragão AG, Santos TIS, Santos Neto EM, Rezende MAS. 2009. Semeadura direta com espécies florestais na implantação de mata ciliar no Baixo São Francisco em Sergipe. *Sciecntia Forestalis* **37**(81): 37-46.

Florentine SK, Graz FP, Ambrose G, O'brien L. 2013. The current status of different age, direct-seeded revegetation sites in an agricultural landscape in the burrumbeet Region, Victoria, Australia. *Land Degradation and Development* **24**(1): 81-89. DOI: http://dx.doi.org/10.1002/ldr.1110

FRA 2005. The Global Forest Resources Assessment 2010. FAO. URL <u>http://www.fao.org/forestry/fra/fra2010/en/</u> accessed on 13 February 2013

Hadfield JD. 2010. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. *Journal of Statistical Software*, **33**: 1-22.

Holl KD. 1999. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. *Biotropica*, **31**: 229-242. http://www.jstor.org/stable/2663786

Hooper DU, Chapin Iii, FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological Monographs* **75** (1): 3-35. http://dx.doi.org/10.1890/04-0922.

Isernhagen I. 2010. Uso de semeadura direta de espécies arbóreas nativas para restauração florestal de áreas agrícolas, sudeste do Brasil. PhD Thesis. Escola Superior de Agricultura Luiz de Queiroz, USP, São Paulo.

Kageyama PY, Oliveira RED, Moraes LFDD, Engel VL, Gandara FB. 2003. Restauração ecológica de ecossistemas naturais. FEPAF. São Paulo.

Keesstra SD. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. *Earth Surface Processes and Landforms*, *32*(1): 49-65.

Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudiero E, Leistra M, van Schaik L. 2012. Soil as a filter for groundwater quality. *Current Opinion in Environmental Sustainability*, **4**(5): 507-516. DOI: 10.1016/j.cosust.2012.10.007

Kettle CJ, Burslem DFRP, Ghazoul J. 2011. An unorthodox approach to forest restoration. *Science* **333** (6038): 36-36.

Kew Royal Botanic Gardens, *Seed Information Database*, Version 7.1; http://data.kew.org/sid/. Accessed 26 June 2013.

Leitão FHM, Marques MC, Ceccon E. 2010. Young restored forests increase seedling recruitment in abandoned pastures in the Southern Atlantic rainforest. *Revista de Biologia Tropical* **58** (4): 1271-1282.

Madsen P, Löf M. 2005. Reforestation in southern Scandinavia using direct seeding of oak (*Quercus robur* L.). *Forestry*, 78(1): 55-64. DOI:10.1093/forestry/cpi005

Martínez-Garza C, Howe HF. 2003. *Journa of Applied Ecology* **40**(3): 423-429. Restoring tropical diversity: beating the time tax on species loss. DOI: 10.1046/j.1365-2664.2003.00819.x.

Mattei LV. 1997. Avaliação de protetores físicos em semeadura direta de *Pinus taeda* L. *Ciencia Florestal* **7**(1): 91-100.

Mekonnen M, Keesstra SD, Stroosnijder L, Baartman JEM, Maroulis J. 2014. Soil conservation through sediment trapping: A review. *Land Degradation and Development*. http://dx.doi.org/10.1002/ldr.2308.

Mekonnen M, Keesstra SD, Baartman JE, Ritsema CJ, Melesse AM. 2015. Evaluating sediment storage dams: structural off-site sediment trapping measures in northwest Ethiopia. Cuadernos de Investigación Geográfica, 41(1): 7-22. DOI: 10.18172/cig.2643.

Mekuria W, Aynekulu E. 2013. Exclosure land management for restoration of the soils in degraded communal grazing lands in northern ethiopia. *Land Degradation and Development*, 24 (6): 528-538. DOI: http://dx.doi.org/10.1002/ldr.1146.

Moulton RJ, Hernández G. 2000. Tree planting in the United States-1998. *Tree Planters' Notes* **49**(2): 23-36.

Nabos B, Epaillard E. 1995. Reducing the costs of afforestation by optimising working methods. *Informations Forêt* **1**: 69–83.

Novara A, Gristina L, Guaitoli F, Santoro A, Cerdà A. 2013.Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. *Solid Earth*, **4** (2):255-262. DOI: http://dx.doi.org/10.5194/se-4-255-2013.

Ospina S, Rusch GM, Pezo D, Casanoves F, Sinclair FL. 2012. More stable productivity of semi natural grasslands than sown pastures in a seasonally dry climate. *PloS one*, **7**(5): e35555. DOI: 10.1371/journal.pone.0035555.

Paix MJ, Lanhai L., Xi C., Ahmed S, Varenyam A. 2013. Soil degradation and altered flood risk as a consequence of deforestation. *Land Degradation and Development*, **24**(5): 478-485. DOI: 10.1002/ldr.1147.

Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G. 2014.Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. *Solid Earth*, **5** (1): 65-75. DOI: http://dx.doi.org/10.5194/se-5-65-2014.

Pérez - Ramos IM, Marañón, T 2012. Community - level seedling dynamics in Mediterranean forests: uncoupling between the canopy and the seedling layers. *Journal of Vegetation Science*, **23**(3): 526-540.

Ray G, Brown BJ. 1995. Restoring Caribbean dry forests: evaluation of tree propagation techniques. *Restoration Ecology* **3**(2): 86-94.

R Core Team 2012. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria.

Rodrigues RR, Brancalion PHS, Isernhagen I. 2009. Pacto pela restauração da mata atlântica: referencial dos conceitos e ações de restauração florestal. São Paulo: LERF/ESALQ: Instituto BioAtlântica.

Sampaio AB, Holl KD, Scariot A. 2007. Does restoration enhance regeneration of seasonal deciduous forests in pastures in central Brazil? *Restoration Ecology*, **15**(3): 462-471. DOI: 10.1111/j.1526-100X.2007.00242.x

Tripathi R, Khan M.1990. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of *Quercus* in a subtropical wet hill forest. *Oikos* **57**: 289–296.

Turnbull LA, Rees M, Crawley MJ. 1999. Seed mass and the competition/colonization trade - off: a sowing experiment. *Journal of Ecology* **87**(5): 899-912. DOI: 10.1046/j.1365-2745.1999.00405.x

Turnbull LA, Coomes D, Hector A, Rees M. 2004 Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. *Journal of Ecology*, **92**(1): 97-109. DOI: 10.1111/j.1365-2745.2004.00856.x

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software* **36**: 1-48.

Wang N, Jiao JY, Lei D, Chen Y., Wang DL. 2012. Effect of rainfall erosion: seedling damage and establishment problems. *Land Degradation & Development*. **25**(6): 565-572. DOI: 10.1002/ldr.2183.

Wennstrom U, Bergsten U, Nilsson JE. 1999. Mechanized microsite preparation and direct seeding of *Pinus sylvestris* in boreal forests—a way to create desired spacing at low cost. *New Forests* **18**: 179-198.

Willoughby I, Jinks RL, Kerr G, Gosling PG. 2004. Factors affecting the success of direct seeding for lowland afforestation in the UK. *Forestry*, **77**(5): 467-482. DOI: 10.1093/forestry/77.5.467

Appendix 1: Germination probability (G) and success probability (S) of species and families including

climate and functional group (FG).

REFERENCES	COUNTRY	SPECIES	FAMILY	CLIMATE	FG	G	S
Cole <i>et al.</i> 2011	Costa Rica	Garcinia intermedia	Clusiaceae	Tropical altitude	Non- pioneer	0.90	0.65
1. Klein 2005	1.Brazil	Enterolobium	Fabaceae	Subtropical	Non-	0.86	0.01
3. Ferreira <i>et al.</i>	3.Brazil	contorstistiiquum			pioneer		
2009 4 Engel & Parrota	4.Brazil 5 Brazil						
2001	0.010211		_				
Laliberté <i>et al.</i> 2008	Canada	Quercus rubra	Fagaceae	Temperate	Pioneer	0.82	
Klein 1999	Brazil	Peltophorum	Fabaceae	Subtropical	Pioneer	0.81	
Santos 2010 ^ª	Brazil	Erythrina	Fabaceae	Tropical	Pioneer	0.80	0.57
1. Ferreira et al.	Brazil	Hymenaeae	Fabaceae	Tropical	Non-	0.72	0.67
2009 2. Aragao 2009	Brazil	courbaril			pioneer		
Santos 2010 ^a	Brazil	Sapindus	Sapindaceae	Tropical	Non-	0.57	0.44
Barbosa 2008	Brazil	saponaria Eriotheca	Malvaceae	Tropical	Pioneer	0.58	0.25
Carrijo et al. 2009	Prozil	pubescens	Fabaaaa	Trapical	Dionoor	0.56	0.52
2009 2. Aragao 2009	DIAZII	Cassia granuis	Fabaceae	Tropical	Pioneer	0.56	0.52
Wang <i>et al.</i> 2011	China	Castanopsis chinensis	Fagaceae	Subtropical	Pioneer	0.54	0.21
Sunganuma et al. 2008	Brazil	Diospyros brasiliensis	Ebenaceae	Tropical	Non- pioneer	0.46	
Laliberté <i>et al.</i> 2008	Canada	Quercus macrocarpa	Fagaceae	Temperate	Pioneer	0.45	
Camargo et al. 2002.	Brazil	Caryocar villosum	Caryocaraceae	Tropical	Non- pioneer	0.42	0.21
Ferreira et al. 2007.	Brazil	Senna multijulga	Caesalpiniaceae	Tropical	Pioneer	0.40	0.87
Camargo <i>et al.</i> 2002.	Brazil	Simarouba amara	Simaroubaceae	Tropical	Non- pioneer	0.40	0.34
Hooper et al. 2002	Panamá	Ormosia macrocalyx	Fabaceae	Tropical	Non- pioneer	0.40	0.30
Hooper et al 2002	Panamá	Genipa americana	Rubiaceae	Tropical	Non- pioneer	0.40	0.25
Camargo et al. 2002	Brazil	Calophyllum	Clusiaceae	Tropical	Non- pioneer	0.40	0.24
Wang <i>et al.</i> 2009	China	Cryptocarya	Lauraceae	Subtropical	Non-	0.39	0.09
Santos 2010ª	Brazil	Bowdichia	Fabaceae	Tropical	Pioneer	0.39	0.04
Cole <i>et al.</i> 2012	Costa Rica	Ruagea glabra	Meliaceae	Tropical altitude	Non- pioneer	0.38	0.06
Hooper et al. 2002	Panamá	Dipteryx panamensis	Fabaceae	Tropical	Non- pioneer	0.37	0.29
Jinks <i>et al.</i> 2006	England	Fraxinus excelsior	Oleaeceae	Temperate	Pioneer	0.37	
Santos 2010 ^ª	Brazil	Lonchocarpus sericeus	Fabaceae	Tropical	Non- pioneer	0.36	0.30
Erefur <i>et al.</i> 2008	Norway	Picea albies	Pinaceae	Temperate	Non- pioneer	0.35	
1. Aragao 2009 2. Ferreira <i>et al.</i> 2009	1. Brazil 2. Brazil	Schinus terebinthifolius	Anacardiaceae	Tropical	Pioneer	0.35	0.20
Florentine 2013	Australia	Acacia retinodes	Fabaceae	Temperate	Pioneer	0.34	
Doust <i>et al.</i> 2008	Australia	Castanospermu m australe	Fabaceae	Tropical	Non- pioneer	0.34	
Florentine 2013	Australia	Eucalyptus viminalis	Myrtaceae	Temperate	Pioneer	0.33	
Cole <i>et al.</i> 2010	Costa Rica	Otoba	Myristicaceae	Tropical	Non-	0.31	0.05
	1	novogranatensis		annuae	pioneer	1	1

Camargo et al. 2002. Cole et al. 2012 Camargo et al. 2002. Caoper et al. 2002 al. Hooper et al. 2002 al. Santos 2010 ^a al. 2007 2. Santos 2010 ^b MoheNot & Holl 2010 Wang et al. 2011 Cole et al. 2011
Cole et al. 2012 Camargo et al. 2002. Hooper et al. 2002 Santos 2010 ^a 1. Carvalheira 2007 2. Santos 2010 ^b MoheNot & Holl 2010 Wang et al. 2011 Cole et al. 2011
Camargo et al. 2002.
Hooper et al. 2002 Santos 2010 ^a 1. Carvalheira 2007 2. Santos 2010 ^b MoheNot & Holl 2010 Wang et al. 2011 Cole et al. 2011
Santos 2010 ^a 1. Carvalheira 2007 2. Santos 2010 ^b MoheNot & Holl 2010 Wang <i>et al.</i> 2011 Cole <i>et al.</i> 2011
1. Carvalheira 2007 2. Santos 2010 ^b MoheNot & Holl 2010 Wang <i>et al.</i> 2011 Cole <i>et al.</i> 2011
MoheNot & Holl 2010 Wang <i>et al.</i> 2011 Cole <i>et al.</i> 2011
Wang <i>et al.</i> 2011 Cole <i>et al.</i> 2011
Cole <i>et al.</i> 2011
Eis 1967
Sunganuma <i>et al.</i> 2008
Engel & Parrota, 2001
Hooper <i>et al.</i> 2002
Doust <i>et al.</i> 2008
 Erefur <i>et al.</i> 2008 Nilson & Hjältén 2003 Wennström <i>et al.</i> 1998
Ferreira <i>et al.</i> 2007
1. Aragão 2009 2. Ferreira <i>et al.</i> 2009
1. Santos 2010 ^ª 2. Carvalheira 2010
Camargo <i>et al.</i> 2002
Camargo <i>et al.</i> 2002.
Sunganuma <i>et al.</i> 2008
Florentine 2013
Camargo <i>et al.</i> 2002
Camargo <i>et al.</i> 2002 Santos 2010 ^a
Camargo et al. 2002 Santos 2010 ^a MoheNot & Holl 2010
Camargo et al. 2002 Santos 2010 ^a MoheNot & Holl 2010 Jurado et al. 2006
Camargo et al. 2002 Santos 2010 ^a MoheNot & Holl 2010 Jurado <i>et al.</i> 2006 Aerts <i>et al. Et al.</i> 2006
Camargo et al. 2002 Santos 2010 ^a MoheNot & Holl 2010 Jurado <i>et al.</i> 2006 Aerts <i>et al. Et al.</i> 2006 Jurado <i>et al.</i> 2006
Camargo et al. 2002 Santos 2010 ^a MoheNot & Holl 2010 Jurado et al. 2006 Jurado et al. Et al. 2006 Jurado et al. 2006 Santos 2006 Jurado et al. 2006 Jurado et al. 2006 Jurado et al. 2006 Santos 2006 Jurado et al. 2006 Jurado et al. 2006 Jurado et al. 2006 Jurado et al. 2006
Camargo et al. 2002 Santos 2010 ^a MoheNot & Holl 2010 Jurado et al. 2006 Jurado et al. Et al. 2006 Jurado et al. 2006 1. Sun et al. 1995 2. Doust 2008 Sunganuma et al. 2008 Sunganuma et al.
Camargo et al. 2002 Santos 2010a Acres 2010a MoheNot & Holl Holl 2010 Jurado et al. 2006 Acres et al. Et al. Jurado et al. 2006 Jurado et al. 2006 Acres et al. Et al. Jurado et al. 2006 Jurado et al. 2006 Acres et al. 2006 Jurado et al. 2006 Jurado et al. 2006 Acres et al. 2008 Jurado et al. 2008 Sunganuma et al. Acres et al. 2002
Camargo et al. 2002 Santos 2010ª MoheNot & Holl

3. Carvalheira 2007							
Jurado <i>et al.</i> 2006	Mexico	Acacia berlandieri	Fabaceae	Tropical	Pioneer	0.10	
Camargo <i>et al.</i> 2002.	Brazil	Triplaris surinamensis	Polygonaceae	Tropical	Non- pioneer	0.09	0.00
1. Florentine 2013 2. Thrall <i>et al.</i> 2005	1. Australia 2. Australia	Acacia pycnantha	Fabaceae	Subtropical	Pioneer	0.08	0.08
Jurado <i>et al.</i> 2006	Mexico	Ebenopsis ebaNot	Fabaceae	Tropical	Pioneer	0.08	
Jurado et al. 2006	Mexico	Havardia pallens	Fabaceae	Tropical	Pioneer	0.08	
Engel & Parrota, 2001	Brazil	Ceiba speciosa	Malvaceae	Tropical	Pioneer	0.08	
Doust <i>et al.</i> 2008	Australia	Cryptocarya oblate	Lauraceae	Tropical	Non- pioneer	0.08	
Camargo et al. 2002		Jacaranda copaia	Bignoniaceae	Tropical	Pioneer	0.07	0.00
Hooper et al. 2002	Panamá	Annona spraguei	Annonaceae	Tropical	Pioneer	0.07	0.04
Santos 2010 ^a	Brazil	Machaerium aculeatum	Fabaceae	Tropical	Pioneer	0.06	0.04
Hooper <i>et al.</i> 2002	Panamá	Heisteria concinna	Olacaceae	Tropical	Non- pioneer	0.06	0.00
Camargo <i>et al.</i> 2002	Brazil	Cochlospermum orinoccense	Cochlospermaceae	Tropical	Pioneer	0.05	0.00
Camargo et al. 2002	Brazil	Ochroma pyramidale	Bombacaceae	Tropical	Pioneer	0.05	0.00
1. Florentine 2013 2. Thrall <i>et al.</i> 2005	 Australia Australia 	Acacia dealbata/mearsii	Fabaceae	Subtropical	Pioneer	0.04	
Doust <i>et al.</i> 2008	Australia	Flindersia brayleyana	Rutaceae	Tropical	Non- pioneer	0.04	
Thrall <i>et al.</i> 2005	Australia	Acacia paradoxa	Fabaceae	Subtropical	Pioneer	0.03	0.08
Thrall et al. 2005	Australia	Acacia acinacea	Fabaceae	Subtropical	Pioneer	0.03	0.03
Suganuma <i>et al.</i> 2008	Brazil	Annona cacans	Annonaceae	Tropical	Pioneer	0.03	
Hooper <i>et al.</i> 2002	Panamá	Hampea appendiculata	Malvaceae	Tropical	Pioneer	0.02	0.00
Suganuma <i>et al.</i> 2008	Brazil	Vitex montevidensis	Verbenaceae	Tropical	Pioneer	0.02	
Engel & Parrota 2001	Brazil	Mimosa scabrella	Fabaceae	Tropical	Pioneer	0.01	
Engel & Parrota 2001	Brazil	Croton floribundus	Euphorbiaceae	Tropical	Pioneer	0.00	

Acceb

Appendix 2: References of papers used in the meta-analysis.

Aerts R, Maes W., November E, Negussie A, Hermy Mm, Muys B. 2006. Restoring dry Afromontane forest using bird and nurse plant effects: direct sowing of Olea europaea ssp. cuspidata seeds. *Forest Ecology and Management* **230**: 23-31. DOI:10.1016/j.foreco.2006.04.001

Aragão AG de. 2009 Estabelecimento de espécies florestais nativas, em áreas de restauração ciliar no Baixo Rio São Francisco. MSc Dissertation. Universidade Federal de Sergipe.

Barbosa ACC. 2008. Recuperação de área degradada por mineração através da utilização de sementes e mudas de três espécies arbóreas do cerrado, no Distrito Federal. MSc Dissertation. Universidade de Brasília.

Bonilla-Moheno M, Holl KD. 2010. Direct Seeding to Restore Tropical Mature-Forest Species in Areas of Slash-and-Burn Agriculture. *Restoration Ecology* **18**(s2): 438-445. DOI: 10.1111/j.1526-100X.2009.00580.x

Camargo JLC, Ferraz IDK, Imakawa AM. 2002. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. *Restoration Ecology* **10**(4): 636-644. DOI: 10.1046/j.1526-100X.2002.01044.x

Carrijo C, Martins RDCC, Martins IS, Landahl DT, Matos JMDM, Nakano TYR. 2009. Estabelecimento de Eriotheca pubescens (Bombacaceae) por meio de semeadura direta e de mudas em cascalheira. *Cerne* **15**(3): 365-370

Carvalheira MS. 2010. Avaliação do estabelecimento de espécies de cerrado sentido restrito, a partir do plantio direto de sementes na recuperação de uma cascalheira na Fazenda Água Limpa. MSc Dissertation. Universidade de Brasília.

Cole RJ, Holl KD, Keene CL. Zahawi R A 2011. Direct seeding of late-successional trees to restore tropical montane forest. *Forest Ecology and Management* **261**(10): 1590-1597. DOI:10.1016/j.foreco.2010.06.038

Doust SJ, Erskine PD, Lamb D. 2008. Restoring rainforest species by direct seeding: tree seedling establishment and growth performance on degraded land in the wet tropics of Australia. *Forest Ecology and Management* **256**(5), 1178-1188. DOI:10.1016/j.foreco.2008.06.019

Eis S 1967. Establishment and early development of white spruce in the interior of British Columbia. *Forestry Chronicle* **43**(2): 174-177.

Engel VL, Parrotta J A. 2001. An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil. *Forest Ecology and Management* **152**(1): 169-181.

Erefur C, Bergsten U, Chantal M de. 2008. Establishment of direct seeded seedlings of Norway spruce and Scots pine: Effects of stand conditions, orientation and distance with respect to shelter tree, and fertilization. *Forest Ecology and Management* **255**(3): 1186-1195. DOI:10.1016/j.foreco.2007.10.024

Ferreira RA, Davide AC, Bearzoti E, Motta MS. 2007. Semeadura direta com espécies arbóreas para recuperação de ecossistemas florestais. *Cerne*, **13**(3): 271-279.

Ferreira RA, Santos PL, Aragão AG, Santos TIS, Santos Neto EM, Rezende AMS. 2009. Semeadura direta com espécies florestais na implantação de mata ciliar no Baixo São Francisco em Sergipe. *Scientia Forestalis*, **37**(81): 37-46.

Florentine SK, Graz FP, Ambrose G, O'brien L. 2013. The current status of different age, direct - seeded revegetation sites in an agricultural landscape in the burrumbeet Region, Victoria, Australia. Land Degradation and Development 24(1): 81-89. DOI: http://dx.doi.org/10.1002/ldr.1110

González-Rodríguez V, Navarro-Cerrillo R M, Villar, R 2011. Artificial regeneration with Quercus ilex L. and Quercus suber L. by direct seeding and planting in southern Spain. Annals of Forest Science **68**(3): 637-646. DOI: 10.1007/s13595-011-0057-3

Hooper E, Condit R, Legendre P. 2002. Responses of 20 native tree species to reforestation strategies for abandoned farmland in Panama. *Ecological Applications*. 12:1626–1641. http://dx.doi.org/10.1890/1051-0761(2002)012[1626:RONTST]2.0.CO;2

Jinks RL, Willoughby, I, Baker C 2006. Direct seeding of ash (Fraxinus excelsior rL.) and sycamore (*Acer pseudoplatanus* L.): The effects of sowing date, pre-emergent herbicides, cultivation, and protection on seedling emergence and survival. *Forest Ecology and Management* **237**(1): 373-386. doi:10.1016/j.foreco.2006.09.060

Jurado E, García JF, Flores J, Estrada E. 2006. Leguminous seedling establishment in Tamaulipan thornscrub of northeastern Mexico. *Forest Ecology and Management* **221**(1): 133-139. DOI:10.1016/j.foreco.2005.09.011

Klein J. 2005. Utilização de protetores físicos na semeadura direta de timburi e canafístula na revegetação de matas ciliares. MSc dissertation. Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon.

Laliberté E, Cogliastro A, Bouchard A. 2008. Spatiotemporal patterns in seedling emergence and early growth of two oak species direct-seeded on abandoned pastureland. *Annals of Forest Science*, 65(4): 276-386. DOI: 10.1051/forest:2008019

Nilson ME, Hjältén J. 2003. Covering pine-seeds immediately after seeding: effects on seedling emergence and on mortality through seed-predation. *Forest Ecology and Management* 176(1): 449-457. DOI:10.1016/S0378-1127(02)00308-0

Santos PL. 2010^a. Semeadura direta com espécies florestais Nativas para recuperação de agroecossistemas degradados. MSc Dissertation. Universidade Federal de Sergipe.

Santos LCA dos. 2010^b. A eficiência da semeadura direta para a revegetação de uma jazida de cascalho na fazenda Água Limpa, APA Gama Cabeça de Veado, Brasília, DF, MSc Dissertation. Universidade de Brasília, Brasília.

Santos Junior NA, Alvarenga SB, Davide AC. 2004. Estudo da germinação e sobrevivência de espécies arbóreas em sistema de semeadura direta, visando à recomposição de mata ciliar. *Cerne*, 10(1): 103-117.

Suganuma MS, Barbosa CEDA, Cavalheiro AL, Torezan, JMD. 2008. Enriquecimento artificial da diversidade de espécies em reflorestamentos: análise preliminar de dois métodos, transferência de serapilheira e semeadura direta. *Acta Scientiarum. Biological Sciences*, **30**(2): 151-158. http://dx.doi.org/10.4025/actascibiolsci.v30i2.3629

Sun DGR, Dickinson, Bragg AL. 1995. Direct seeding of Alphitonia petriei Rhamnaceae) for gully revegetation in tropical northern Australia. *Forest Ecology and Management* **73**(1): 249-257. doi:10.1016/0378-1127(94)03479-G

Thrall PH, Millsom DA, Jeavons AC, Waayers M, Harvey GR, Bagnall DJ, Brockwell J 2005. Seed inoculation with effective root-nodule bacteria enhances revegetation success. *Journal of Applied Ecology*, **42**(4): 740-751. DOI: 10.1111/j.1365-2664.2005.01058.x

Wang J, Ren H, Yang L, Li D. 2011. Factors influencing establishment by direct seeding of indigenous tree species in typical plantations and shrubland in South China. *New Forests*, **42**(1): 19-33. DOI: 10.1007/s11056-010-9234-8

Wennström U, Bergsten U, Nilsson JE 1999. Mechanized microsite preparation and direct seeding of Pinus sylvestris in boreal forests—a way to create desired spacing at low cost. *New forest*s, **18**(2): 179-198.

Figure 1: Percentage of the types of disturbed habitat prior to restoration

Figure 2: Distribution of germination and success probability ranks among species.

Figure 3. Mean germination (green diamonds) and success (brown squares) probabilities for different seed sizes. Bars represent the 95 % confidence intervals of the posterior distributions.

Figure 4. Mean germination (green diamonds) and success (brown squares) probabilities for experiments based on use of seed protection. Bars represent the 95 % confidence intervals of the posterior distributions.

Table I: Query terms and data bases

Data base	Query sentence	Key-words included in results	Hits
Google Scholar ¹		•	
	"direct seeding" and restoration	Direct seeding, seeding, restore, restoration, restoring	4030
	"direct sowing" and restoration	Direct sowing, sowing, restoring, restore	927
	"semeadura direta" and restauração	Semeadura direta, restauração, restaurar	399
	"siembra directa" and restauración	Siembra directa, restauración, restaurar	483
Web of Science ²			
	TS = (direct seeding and restor*) AND LANGUAGE: (ENGLISH)	Direct seeding, seeding, restore, restoration, restoring	257
	TS = (direct sowing and restor*) AND LANGUAGE: (ENGLISH)	Direct sowing, sowing, restoring, restore	50
	TS =(semeadura direta and restaura*) AND LANGUAGE: (PORTUGUESE)	No results ³	No results
	TS =(siembra directa and restaura*) AND LANGUAGE: (SPANISH)	No results ³	No results

¹ Time range: 1950-2012(April). Citations and Patents not included. Queries performed automatically on TITLE, ABSTRACT and BODY TEXT fields. No wildcards used because Google Scholar automatically included variations of the term restoration, such as restored, restore, restoring, etc.

² Time range: 1950-2012(April). Queries on TOPIC field. Type of document: All document types. *=wildcard

³ Web of Science core collection of scientific documents does not include Portuguese or Spanish.