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Abstract

A new method for distinguishing deterministic chaos from random noise in very short time
series is presented. It is based on the scaling properties of the uctuations present in the �rst-
di�erence series generated by simple non-linear models widely used in population dynamics. c©
1998 Elsevier Science B.V. All rights reserved.

1. Introduction

During the mid 1970s, it became clear that a number of simple mathematical models
used in the study of population dynamics often exhibit complex dynamical behaviour
in the form of deterministic chaos [1,2]. Since then, the number of techniques avail-
able for the study and proper characterisation of chaos has grown considerably. Such
techniques include algorithms for measuring invariant quantities such as the divergence
of trajectories in the phase space [3,4] or the fractal dimension of the attractor sets
[5,6]. However, due to fundamental constrains related to the size of the data [7], these
techniques are of limited use when applied to real situations where observational time
series are typically very short as is the case of real population dynamics [8]. Because
of this, theoretical ecologists have repeatedly used ad hoc models that are parametrized
with experimental data. If such models turn out to be chaotic, then it is suspected that
the systems under study may also exhibit chaos [9–12].
Another approach was recently discussed by Ikeguchi and Aihara [13] who intro-

duced an innovative method for distinguishing deterministic chaos from coloured noise.
Their method is based in the fact that the values of the correlation coe�cients cal-
culated between actual and predicted time series and between �rst-di�erence actual
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and predicted time series show characteristic di�erences that can distinguish between
these two dynamical behaviours. Here we describe an alternative approach based on the
scaling properties of �rst-di�erence series that is particularly useful for distinguishing
deterministic chaos from noise in very short time series. We name this method the
First-Di�erence Scaling Method.

2. First-Di�erence Scaling Method

The study of the scaling properties of uctuating processes has increasingly become
important in the last decades, specially after the discovery that a range of natural phe-
nomena share the universal property of power law scaling. This is particularly notorious
in those systems that are poised in or near critical states [14]. We are interested in
the way �rst-di�erence temporal uctuations generated by simple 1D maps scale. The
�rst-di�erence series (FDS) XFD of a given temporal series X = {Xi; : : : ; Xn} is de�ned
as XFD= ‖Xi − Xi+1‖¿0. This di�erence series conveys information on the absolute
size of the uctuations.
The method is as follows: two graphs are plotted in such a way that, in the �rst, the

number of uctuations of a given size are depicted versus the size of the uctuation
using linear axis. The second graph is a log–log transformation of the �rst. The corre-
lation coe�cients of the linear �tting on the linear-axis graph and the power �tting on
the log–log axis graph are calculated as standard correlation coe�cients CL= r2 and
CP = r2log respectively, where r is given by
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r2log is the coe�cient calculated over the log transformed x–y variables that represent the
size of the uctuation and the number of uctuations, respectively. We will concentrate
on the values of the correlation coe�cients rather than on the values of the exponents.
The reason for this will become clear later.
Both CL and CP are related by means of a non-linear transformation. Despite this fact,

we will use them as independent variables for visualisation purposes. It turns out that
deterministic chaos and noise occupate distinctive regions when CL and CP are plotted
together in what we call the “correlation space”. More interestingly is the fact that this
characteristic behaviour holds even for very short time series. The method just described
would be exempli�ed below when exploring a well-known chaotic simple model.

3. Deterministic chaos and white noise

The existence of deterministic chaos in simple models of population dynamics was
�rst noted in the 1D logistic map [1,2]:

Xn+1 = �Xn(1− Xn) :
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Fig. 1. (a) Shows the bifurcation diagram for the FDS in the logistic map. 103 partitions were generated
uniformly distributed in the interval [3.6, 4]. For each value of �, a series of length 103 was generated
after discarding a transient 104 long. (b) and (c) A graph was built containing the number of uctuations
versus the size of the uctuation, then a linear �tting was performed giving the scaling coe�cient � and
the correlation coe�cient CL. Notice that the values of CL are typically very low. (d) and (e) The same
�tting exercise described above was performed on a log–log transformed graph, then the scaling exponent
� and the correlation coe�cient CP were calculated. The values of CP are very low as in the linear �tting.
In all cases X0 = 0:1. The histograms containing the number of uctuations were calculated with 20 classes
of uctuation sizes and were considered as valid only those containing more or equal than 10 non-empty
classes (this eliminates the periodic windows).
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Fig. 2. (a) Linear and (b) power �tting for a FDS generated by the logistic map when �=4:0. Notice
how the lines representing the best �t do not adjust to the data, giving very low values for the respective
correlation coe�cients. This particular form of the histograms is typical of all the period-doubling simple
maps we explored in this paper.

This map develops chaos by the period-doubling route for values of the bifurcation
parameter � between 3.57 and 4.0. In this interval, a number of FDS were generated
and the scaling exponents and correlation coe�cients calculated. Fig. 1a shows the bi-
furcation diagram of these FDS for reference purposes. Fig. 1b–e show the behaviour
of the scaling exponents � and � and the coe�cients CL and CP for the linear and
the power �tting, respectively. The logistic map does not �t well into any of these
scaling models and this explains the low values of CL and CP . In order to see in
detail how the FDS of the logistic map scales, the graph containing the number of
uctuations versus the size of the uctuation is plotted in Fig. 2, for the linear and
power �ttings.
A similar analysis was performed on random data (Figs. 3 and 4). In this case, �rst-

di�erence series of white noise uniformly distributed in the interval [0; 1] produced
high values of CL and mid values for CP . This is, indeed, the fundamental di�erence
in the scaling behaviour that allows distinction between random noise and deterministic
chaos. The FDS of random noise scales linearly while deterministic chaos does not �t
well into any of both �tting models.
The di�erence in the scaling behaviour of the FDS of deterministic chaos and random

noise is better appreciated when the coe�cients CL and CP are plotted in the correlation
space, that is CL versus CP as is shown in Fig. 5. The same data depicted in Figs. 2
and 3 is now shown on the correlation space for the case of four di�erent data lengths.
The idea is to see how e�ectively the method discriminates between deterministic chaos
and white noise as the data size is varied. For data 1000 long (Fig. 5d), both data sets
are con�ned into speci�c disjoint regions of the correlation space, as also happens for
shorter sets 500 points long (Fig. 5c). For even shorter data sets of 100 points long
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Fig. 3. (a)–(d) Scaling exponents and correlation coe�cients for 103 uniformly distributed random noise
�rst-di�erence series 103 points long each. Notice that CL, in contrast to deterministic chaos, takes values
close to 1.0 indicating good linear �tting.

Fig. 4. (a) Linear and (b) power �tting for a random noise FDS. Notice how the line representing the best
�t does adjust to the data in the linear case. The series contained 103 data.
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Fig. 5. Chaotic and white noise �rst-di�erence series are plotted together in the correlation space as a
function of the data length. (a) 50, (b) 100, (c) 500 and (d) 1000 points long. Notice how, even for very
short time series, the areas occupied by each data set are clearly distinguishable. The ellipses represent the
area containing 95% of the data. The ellipse is calculated as follows. A linear regression is applied to the
cloud of data in such a way that the direction of the line �tted is taken as the major axis of the ellipse.
A normal distribution was then calculated where the distribution parameter was the con�dence limit or the
percentage of data explained by such normal distribution.

(Fig. 5b), the areas of the correlation space occupied by each data set are not longer
disjoint but it is still possible to di�erentiate them very well as is also true for very
short time series of only 50 points long (Fig. 5a).
So far, we have analysed with this method one of the most simple and well-known

population models that exhibits chaos. In the following section other models will be
explored as well.
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4. Other chaotic models

Other simple 1D chaotic maps that are commonly used in population modelling
include [15]:
The Ricker map [15]:

Xn+1 =Xn exp[�(1− Xn)] :

The Hassell map [16]:

Xn+1 = �Xn[1 + Xn]−� :

Fig. 6. Correlation space for some well-known maps commonly used in population modelling.
(a) Ricker �∈ [2:69; 4:0], (b) Hassell �∈ [65; 140]; �=10, (c) Verhulst �∈ [2:6; 2:8] and (d) Pennycuick
�∈ [10; 12]; a=0:1; b=0:1: 103 partitions for the bifurcation parameter � were calculated in the interval
shown, time series are 200 points long. In all cases a transient 104 points long was discarded and X0 = 0:1.
The ellipses represent the area containing 95% of the data.
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Fig. 7. Resolving power of the method. The resolution probability is plotted versus data size for the �ve
maps discussed. The resolution probability is estimated as the con�dence limit of the maximum ellipse that
can be drawn on each over the data (chaos and noise) without having these ellipses intersected. All map
parameters as in Fig. 6.

The Verhulst map [17]:

Xn+1 =Xn[1 + �(1− Xn)] :
The Pennycuick map [18]:

Xn+1 = �Xn=(1 + exp[−b(1− Xn=a)]) :
All models are 1D single-humped period-doubling maps sharing the same FDS scal-

ing properties of the logistic map as is shown in Fig. 6. The Ricker map was explored
for di�erent data sizes (a). We present the correlation space for 103 �rst-di�erence
series 200 point long each (the ellipses represent the area where 99.5% of the data are
con�ned). The same analysis was done for the Hassell (b), Verhulst (c) and Pennycuick
maps (d). In all the cases, deterministic chaos and white noise are well distinguishable
despite the short length of the data.
Finally, Fig. 7 shows the resolving capability of the �rst-di�erence scaling method

for distinguishing deterministic chaos from white noise, for each of the maps studied
and for di�erent data sizes. The Resolution was estimated as the area of the ellipses that
can accommodate the maximum percentage of data without having the areas intersected.
The method is very robust for all the maps since they all follow a common pattern.
The method is also very precise since the resolving power for short series is good
enough. Take for example series 100 points long, the method has a resolution of about
0.999 for this data size in all the models studied.

5. Discussion

It was shown that the scaling of �rst-di�erence uctuations of time series convey
information that can distinguish between deterministic chaos generated by simple maps
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and white noise, even for very short time series. There are many open lines for future
research: preliminary results show that other routes to chaos could also be distinguished
from period-doubling chaos. The method also seems to be helpful in distinguish be-
tween coloured noise such as 1=f, Brownian and white noise. A sound theoretical basis
for this method remains for the future.
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