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ABSTRACT
The ability to determine the joint spectral properties of photon pairs produced
by the processes of spontaneous parametric downconversion (SPDC) and sponta-
neous four wave mixing (SFWM) is crucial for guaranteeing the usability of heralded
single photons and polarization-entangled pairs for multi-photon protocols. In this
paper, we compare six different techniques that yield either a characterization of
the joint spectral intensity or of the closely-related purity of heralded single pho-
tons. These six techniques include: i) scanning monochromator measurements, ii) a
variant of Fourier transform spectroscopy designed to extract the desired informa-
tion exploiting a resource-optimized technique, iii) dispersive fibre spectroscopy, iv)
stimulated-emission-based measurement, v) measurement of the second-order corre-

lation function g(2) for one of the two photons, and vi) two-source Hong-Ou-Mandel
interferometry. We discuss the relative performance of these techniques for the spe-
cific cases of a SPDC source designed to be factorable and SFWM sources of varying
purity, and compare the techniques’ relative advantages and disadvantages.

KEYWORDS
Nonlinear Optics; Quantum Optics; Spontaneous Parametric Downconversion;
Spontaneous Four-Wave Mixing; Purity; Joint Spectral Intensity

1. Introduction to Joint Spectral Characterization

Pairs of polarization-entangled photons are a critical resource for optical quantum
information processing. The nonlinear optical processes of spontaneous parametric
downconversion (SPDC) and spontaneous four wave mixing (SFWM) are commonly
used to produce photon pairs, usually with additional (and often undesirable) correla-
tions in frequency and transverse momentum (1 , 2 ). Correlations between the signal
and idler photons cause the detection of one of the photons in a given pair to her-
ald its partner into a mixed state, which inhibits interference between independent
sources. For example, a key building block of a scalable quantum communication net-
work, the quantum repeater, requires interfering photons from a series of independent
sources (3–5 ). Joint spectral measurement is an important tool for characterizing and
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optimizing the behavior of such sources (6 ).
In this work we describe, implement and compare six techniques that yield either

a characterization of the joint spectral intensity or of the closely-related purity of
heralded single photons, in order to provide an in-depth overview that highlights the
purposes for which each technique is suited, demonstrates the procedures required
to implement each technique, and presents a quantitative comparison of the infor-
mation the techniques can provide. This section provides a brief introduction to the
principles of joint spectral measurement, while in the next two sections we discuss
the details of specific measurement techniques. Section 2 describes four independent
measurements of the joint spectrum, using scanning monochromators, two-dimensional
Fourier transform spectroscopy, dispersive fibre spectroscopy and stimulated-emission-
based measurement. Section 3 discusses measurements based on correlation functions
and two-source Hong-Ou-Mandel (HOM) interference; while these last techniques do
not provide a direct means to visualize the joint spectrum, they do directly relate to
the heralded single-photon purity, which is often the metric of interest. The field of
joint spectral characterization is quickly evolving, and thus the methods covered here
do not include more recently developed techniques (see, for example, (7 )), and the
quoted rates and acquisition times represent those achievable with commonly-used
silicon avalanche photodiode detectors rather than high-efficiency superconducting
detectors (see, for example, (8 )). In the conclusions we summarize the experimental
results and quantify figures of merit based on our implementations.

1.1. A Simple Model

To illustrate the use of joint spectral measurement, we first consider a simplified version
of the joint spectrum of photon pairs. This model motivates the more complete theory
and provides an intuition for how to think about the joint spectrum.

Suppose that the only constraint on the SPDC process, in which a pump photon
of frequency ωp is converted into a pair of ‘signal’ and ‘idler’ photons (at ωs and ωi,
respectively), is conservation of energy, i.e., ωp = ωs + ωi. (For SFWM, instead of
just one pump photon, two are annihilated to create the signal and idler photons; for
degenerate pump photons, the following discussion can be applied with the energy
conservation condition 2ωp = ωs+ωi.). If the pump spectral amplitude is described by
a Gaussian function A(ωp) centred at frequency 2ω0, with bandwidth σ, we can write

A(ωp) = M exp

[
−(ωp − 2ω0)2

2σ2

]
, (1)

where M is a normalization constant to preserve unit area of |A(ωp)|2. To simplify the
analysis, we can redefine the pump spectral amplitude in terms of νp ≡ ωp− 2ω0, such
that it has a mean of zero. This applies to the signal and idler frequencies as well,
where for degenerate signal and idler photons we define νs ≡ ωs−ω0 and νi ≡ ωi−ω0.
Substituting these definitions into Eq. 1, we can write the joint amplitude of the photon
pairs as

f(νs, νi) = A(ωp = ωs + ωi)

= M exp

[
−ν

2
s + ν2

i

2σ2
− 2νsνi

2σ2

]
.

(2)

2



(a) (b) (c)

Figure 1. Modeled JSI with (a) no filtering (Eq. 2), (b) filter width equal to the pump bandwidth (Eq. 5),

and (c) filter width equal to 1
5

of the pump bandwidth.

(a) (b) (c)

Figure 2. (a-c) The first three Schmidt modes for a two-dimensional diagonal Gaussian ellipse. Lighter areas

are maxima; darker areas are minima.

(a) (b) (c)

Figure 3. Relative values of Schmidt decomposition eigenvalues for the unfiltered/filtered/highly-filtered joint
spectra of Fig. 1. The resulting Schmidt numbers (defined by Eq. 4) for the three cases are (a) K = ∞, (b)

K = 1.15, and (c) K = 1.001.

The joint spectral intensity, or joint spectrum, |f(νs, νi)|2 can then be understood as
the two-dimensional probability distribution associated with signal and idler emission
frequencies, which we have plotted in Fig. 1(a) for a particular value of σ. In general,
the joint spectrum may or may not be separable into functions that represent the
spectral amplitudes of the signal and idler photons individually. The degree of non-
separability determines how correlated the signal and idler photons are, which we will
discuss in the next section.

1.2. Schmidt Modes

In order to quantify the degree of correlation between signal and idler photons one
can apply the very useful Schmidt decomposition. The resulting Schmidt number can
be used to quantify the entanglement between two systems, and hence the purity of
each system individually. The Schmidt decomposition 1 (9 , 10 ) allows a pure state of
a composite system AB to be decomposed into a sum over products of orthonormal
states of A and B:

fA,B =
∑
i

√
λi gA,i gB,i, (3)

where the Schmidt coefficients
√
λi satisfy the normalization condition

∑
i λi = 1. In

a highly multi-dimensional space, this answers the difficult question of exactly which

1A practical note: calculating the Schmidt decomposition is functionally equivalent to singular value decom-

position, which is easily performed by any capable linear algebra package.
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mode(s) to collect in order to maximize the probability of detection: the one(s) with the
largest coefficients λi. The Schmidt coefficients can be used to define an exceptionally
useful quantity known as the Schmidt number2 K, which can be described as the
effective number of populated eigenmodes:

K =
1∑
i λ

2
i

. (4)

Why is this useful? First, it naturally quantifies the degree of entanglement in the
physical system of interest, that also conveniently relates to the entropy of the system,
i.e.,

∑
λi log2 λi (11 ). Also, the inverse Schmidt number 1/K of the collected joint

spectrum is equal to two other relevant quantities in an SPDC or SFWM source:
the purity P of a heralded single photon and the visibility V of a two-source HOM
interferogram (13 ). Note that if fA,B is separable, the sum in Eq. 4 is trivial, as by
definition we can simply write fA,B = gAgB, so K = 1. Similarly, for a maximally

polarization-entangled two-photon state fA,B = (HAHB + VAVB) /
√

2, λ1 = λ2 = 1/2
and the number of modes is K = 1/(1

4 + 1
4) = 2. However, in the case of Eq. 2,

the continuous basis and symmetry of the problem indicate that the Schmidt number
becomes a sum of N →∞ equally weighted terms, λi = 1

N . Thus, the Schmidt number

is K = 1/(
∑N

i=1 1/N2), but the denominator goes to zero as N →∞, indicating that
an infinite number of modes are required to describe this distribution.

Now suppose that we apply a Gaussian spectral filter (with bandwidth σf ) to the
signal and idler modes. After filtering, the joint spectrum from Eq. 2 becomes

f(νs, νi) = A exp

[
−ν

2
s + ν2

i

2σ2
− 2νsνi

2σ2

]
exp

[
− ν2

s

2σ2
f

]
exp

[
− ν2

i

2σ2
f

]
, (5)

which is plotted in Fig. 1 for different filter bandwidths. Note that if σf is large, we
recover the unfiltered case of Eq. 2, while if σf is small, the filter term dominates and
the joint spectrum becomes separable. The Schmidt modes and their relative weights
for varying filter bandwidths are shown in Figs. 2 and 3, respectively. In this general
case, it can be shown (2 ) that the inverse Schmidt number 1/K is given by

1

K
=

√√√√1− 1(
1 + ( σσf )2

)2 , (6)

which has the expected behavior that K → ∞ as σf → ∞ (the unfiltered case), and
K → 1 as σf → 0 (the tightly filtered case). Note that while the discussion presented
above, which is strictly valid only in the limit of a very short nonlinear medium, is
aimed at providing useful physical intuition, in a realistic situation the two-photon
state is characterized by a joint spectrum which depends on phasematching properties
as well as on the spatial shape of the pump, including the degree of focusing. In
general, the joint spectrum may be expressed as |f(νs, νi)|2 = |A(νs, νi)|2|Φ(νs, νi)|2,

2Confusingly, the Schmidt number is also sometimes defined as the total number of eigenmodes without
weighting by eigenvalues, and K is sometimes referred to as the ‘cooperativity parameter.’
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where Φ(νs, νi) is determined by: i) the phasematching properties of the nonlinear
medium (related to momentum conservation), and ii) the spatial shape of the pump
field (2 ). For most situations, energy and momentum conservation lead to a joint
spectrum |f(νs, νi)|2 which exhibits spectral correlations, so that spectral filtering can
be used as discussed above in order to render the state factorable.

1.3. The Spectrally Filtered Source

As discussed in the introduction, an ideal photon pair source for scalable optical quan-
tum information processing would not exhibit joint spectral correlations between the
signal and idler photons. The discussion in the previous subsection illustrates how
these correlations arise from energy conservation, and also how spectral filtering may
eliminate them. However, this solution has a significant drawback: if the quantum
state involves strong spectral correlations, the filters will block the great majority of
the emitted photon pairs. This can be seen easily from a plot of the joint spectrum
in Fig. 1(a): an uncorrelated sub-ensemble of the emitted photon pairs will lead to
only a small fraction of the emitted photon pair-flux (in the theoretical limit of a
perfectly correlated joint spectrum, the fraction is actually zero). Another way to see
this is through the Schmidt decomposition: the best filtered, uncorrelated collection
mode one can hope for is the most populated Schmidt mode. If the Schmidt number
is large, there are many significantly populated Schmidt modes, and any one of them
will contain only a small fraction of the total photon-pair flux.

Instead of employing spectral filtering to ‘fix’ a highly correlated source, it would
be desirable3 to produce a joint spectrum which is already intrinsically uncorrelated.
This is the motivation behind the various ‘engineered source’ techniques (1 , 2 , 12–
18 , 24 ). We have characterized an engineered photon pair source that employs type-I
degenerate SPDC in β-barium borate (BBO), pumped with a pulsed 405 nm beam,
obtained from a frequency-doubled ultrashort pulse train (35 fs time duration with 76-
MHz repetition rate) from a Titanium Sapphire laser centred at 810 nm; and photon-
pair sources that employ SFWM in birefringent optical fibre, pumped with a pulsed
700 nm beam with 80 fs time duration and 80 MHz repetition rate from a Titanium
Sapphire laser.

2. Measuring the Joint Spectrum

2.1. Overview of Joint Spectral Measurement

The most direct joint spectral measurement possible would register the signal and
idler frequencies over many successive events, and from that estimate the underlying
probability distribution. However, directly measuring the frequency of a single photon
is impractical, so we instead make use of optical elements which map frequency to
spatial mode. For example, the angle at which light refracts from a prism or diffracts
from an optical grating depends on frequency, allowing a measurement of the position
of a photon to determine its frequency. This principle is used in a scanning monochro-
mator, which uses a narrow slit to determine the position (and thus the frequency) of

3It is worth noting that a filtered correlated source can actually be more desirable in some cases. For example,
it is possible to take advantage of correlations to improve heralding efficiency (the chance of detecting an idler
photon in a given mode conditional on the detection of a signal photon). However, this is achieved at the

expense of reduced source brightness, i.e., fewer pairs overall.
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a photon after a prism or grating. Thus, one could use two scanning monochromators
counting photons in coincidence to construct a joint spectral intensity (19 , 20 ), as
described in Sec. 2.2. This technique is relatively simple and accurate, especially if
using commercially available monochromators. However, it is not particularly fast, as
any given photon pair is detected only if both photons pass through their monochro-
mator slits, which for a reasonable resolution leads to a pair collection efficiency on
the order of 0.1%. One could upgrade the scanning monochromator technique to one
which determines position with an array of, e.g., 20-40 single-photon counters, which
must then be independently time-resolved or otherwise able to count in coincidence.
Such a scheme in principle extracts usable information from every photon pair, but
requires specialized detection and multicorrelation electronics (21 ).

Another possibility is to use Fourier transform spectroscopy to measure frequency in
the time domain, as in Sec. 2.3. This exploits a self-interference effect and the property
that the extremely short (∼femtosecond) time regime of the electric field oscillations
is easily accessible by an optical delay in a bulk optical medium. This provides a
useful characterization of the joint spectrum, but is not an ideal measurement; it is
not particularly simple due to the required scanning interferometers and the Fourier
transform that relates the time-domain measurement to the desired frequency-domain
result. It is also relatively slow, though Sec. 2.3.2 describes a speed-up that makes the
measurement more practical.

Dispersive-fibre spectroscopy, described in Sec. 2.4, provides another useful measure-
ment of the joint spectral intensity (22 ). In this scheme, we make use of dispersion
in a long optical fibre to yield a frequency-dependent time of detection, from which
the spectrum may be inferred. This technique is one of the most direct measurements
of the joint spectral intensity available, and is relatively fast and simple. The main
disadvantage of dispersive-fibre spectroscopy is its high sensitivity to timing accuracy
in detection electronics, and the lack of sufficiently low-loss dispersive fibres in all
spectral regions.

Stimulated-emission-based measurement, described in Sec. 2.5, uses the correspond-
ing stimulated version of the spontaneous photon-pair generation process to charac-
terize the source (23 ). This measurement procedure requires an additional stimulating
laser that is tunable across the signal or idler frequencies. The flux of stimulated pho-
tons is proportional to the flux of spontaneous photons with a proportionality constant
equal to the number of photons in the stimulating seed, resulting in count rates many
orders of magnitude higher than the spontaneously produced photons alone; thus,
single-photon detectors are not required, only a standard spectrometer. This tech-
nique is one of the most efficient and high-resolution methods of measuring the joint
spectral intensity, providing significantly shorter collection time and a significantly
higher signal-to-noise ratio.

Another advantage of the stimulated-emission-based technique is that it can be
extended to also measure the joint spectral phase, as demonstrated in Ref. (38 ) (in
this work we measure only the joint spectral intensity using this technique). The
ability to measure the joint spectral phase is useful as correlations between the signal
and idler photons can be present in the phase as well as in the intensity of the joint
spectrum, for example when pumping the nonlinear medium with a non-transform-
limited pulse train; note that if the pump is transform-limited, it is often acceptable to
measure just the joint spectral intensity. In Sec. 3 we discuss two different measurement
techniques which yield the heralded single-photon purity directly (rather than via the
joint spectrum) and which also include the effect of the joint spectral phase, namely g(2)

correlation function measurement and two-source Hong-Ou-Mandel interferometry.
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In this paper we present a comparison of these six measurement techniques, i.e.,
scanning monochromator measurement, Fourier spectroscopy, dispersive-fibre spec-
troscopy, stimulated-emission-based measurement, g(2) correlation function measure-
ment, and two-crystal Hong-Ou-Mandel interferometry, specifically implemented for
the sources described in Refs. (18 ) and (24 ). We demonstrate a subset of the tech-
niques for each source. For the first source, which is based on frequency-degenerate
and non-collinear photon pairs obtained via SPDC from a type-I BBO crystal pumped
with an ultrashort pump from a Ti:sapphire laser, we apply the techniques of Fourier
spectroscopy, dispersive-fibre spectroscopy, g(2) correlation function measurement, and
two-crystal Hong-Ou-Mandel interferometry. For the second source, which is based
on non-degenerate photon-pairs obtained via SFWM from a polarization-maintaining
optical fibre pumped with an ultrashort pump from a Ti:sapphire laser (degen-
erate pumps), we apply the techniques of scanning monochromator measurement,
stimulated-emission-based measurement, and g(2) correlation function measurement.
In the conclusion we compare all of these techniques’ relative advantages and disad-
vantages and quantify their resolution, sensitivity, and efficiency.

2.2. Scanning Monochromator Technique

In the scanning monochromator measurement, shown in Fig. 4, the signal and idler
photons are directed into two separate diffraction grating-based monochromators. At
the output ports of the monochromators, the photons are coupled into a multi-mode
fibre, and a frequency scan is performed by rotating the gratings: only the frequency
components coupled into the fibres are recorded and thus the joint spectrum can be
collected as a series of pairs of frequency values. The photon pairs are detected with
avalanche photodiodes and counted in coincidence. A scan is performed over the dual
frequency range by holding one diffraction grating at a constant orientation while
rotating the other diffraction grating, repeating this procedure for a vector of angular
orientation values for the first grating, thus performing a two-dimensional sweep of the
signal and idler frequencies. The rate at which coincidences are observed is very low,
and thus each data point requires a long integration time, limited by the stability of
the source over the time required for the overall procedure. Thus, while the procedure
is conceptually straightforward, it is clearly inefficient.

2.2.1. Scanning Monochromator Measurement for the SFWM Source

Figure 4 shows a schematic of the experimental setup for the scanning monochromator
measurement. We apply the technique to a bow-tie polarization-maintaining optical-
fibre SFWM source (25 , 26 ). We use an ID Quantique 800 time-tagger module to
count coincidences, with the coincidence window set to be 5.67 ns; the repetition rate
of the laser is 80 MHz, so that this window is less than half of the time between
pulses. We scan over the dual frequency range by holding one diffraction grating at
a constant orientation and taking 0.2 nm spectral steps across the other diffraction
grating, covering the range 624-632 nm for the signal and 784-796 nm for the idler.
The rate at which we observe coincidences is very low, so we integrate for 60 s in each
grating position; the whole procedure takes approximately 40 hours. The results are
shown in Fig. 5(a); the dotted square represents the spectral area where data were
taken. While the presence of a peak is clear, there are very few counts for each point,
resulting in a low signal-to-noise ratio. The number of counts would increase with an
even longer integration time, but the increase of signal over noise must be balanced

7



Figure 4. Schematic of the scanning monchromator technique. MMF: multi-mode fibre, APD: avalanche

photodiode.

Figure 5. Joint spectral intensity of photon pairs produced in a bow-tie fibre SFWM source, (a) from the

scanning monochromator measurement, (b) from the stimulated-emission-based measurement.
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(a) (b)

Figure 6. Schematic diagram of (a) one-dimensional and (b) two-dimensional Fourier spectroscopy. Both

systems use Michelson interferometers, but in the two-dimensional case, the interferometer is duplicated in
both arms of an SPDC source, and counts are measured in coincidence.

with the effects of drift over the time required for the overall procedure. Note that
the purity, calculated from the measured joint spectral intensity while ignoring any
possible joint phase effects, of the heralded single-photon state is 0.826± 0.004.

2.3. Fourier Spectroscopy

The well-established technique of Fourier spectroscopy (27 ) relies on the fact that
a Michelson interferometer with a variable relative path length in one of the two
arms can be used to extract the spectrum of the incoming light from the Fourier
transform of a time-domain interferogram. Light with an unknown spectrum is sent
into a Michelson interferometer, as shown in Fig. 6(a). Recording the output intensity
while scanning the path length difference in the interferometer, a time-domain signal
is measured from which the spectrum can be obtained through a Fourier transform
followed by appropriate numerically-implemented spectral filtering. Mathematically,
the time-domain interferogram Ĩ(τ) is related to the incoming spectral intensity I(ω)
through a Fourier cosine transform, with an offset term, as follows

Ĩ(τ) ∝
∫ ∞

0
dωI(ω)[1 + cos(ωτ)], (7)

So, by simply computing the inverse transform on the measured data, the spectrum
of the signal is recovered:

I(ω) ∝
∫ ∞

0
dτ

(
I(τ)− 1

2
I(τ = 0)

)
cos(ωτ). (8)

2.3.1. Two-Dimensional Fourier Spectroscopy

In the context of characterizing an SPDC photon-pair source, performing Fourier spec-
troscopy on either the signal or idler arm permits measuring the corresponding single-
photon spectrum. In order to measure the joint spectrum, we employ a generalized
version of this technique (28 ) in which scanning interferometers are placed in both the
signal and idler arms, while collecting coincidence counts, as shown in Fig. 6(b). The
time-domain data collected by independently scanning the interferometers are then
related to the Fourier transform of the joint spectrum:
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Figure 7. Sketch of the frequency-domain signal resulting from two-dimensional Fourier spectroscopy.

Ĩ(τs, τi) ∝
∫ ∞

0
dωs

∫ ∞
0

dωiI(ωs, ωi) (1 + cos(ωsτs)) (1 + cos(ωiτi)) , (9)

where Ĩ(τs, τi) is the joint temporal intensity (JTI) and I(ωs, ωi) is the joint spectral
intensity (JSI). Analogously to the one-dimensional case, performing a 2D Fourier
transform on the measured data and retaining only terms in the ωs > 0, ωi > 0
quadrant gives

∫
dτsdτiĨ(τs, τi) exp(iωsτs + iωiτi)

∝ δ(ωs)δ(ωi)
〈
N̂sN̂i

〉
+

1

2
δ(ωs)

〈
N̂sÎi(ωi)

〉
+

1

2
δ(ωi)

〈
N̂iÎs(ωs)

〉
+

1

4
I(ωs, ωi), (10)

where Îi(ωi) and Îs(ωs) represent the spectral intensities of the signal and idler beams,

and N̂µ =
∫
dωÎµ(ω) (with µ = s, i) are the total number operators for signal (s) and

idler (i) photons. While the terms shown represent the top-right quadrant, as shown
in Fig. 7, symmetric terms also appear in the other three quadrants. The first term
is located at the origin and is proportional to the total number of coincidence counts.
The middle terms are located on the axes and provide information about the single-
photon spectrum of the signal and idler photons, conditioned on the detection of the
conjugate photon. The term of interest is the final term, which is proportional to the
JSI.

2.3.2. Diagonal Fourier Spectroscopy

Unfortunately, collecting two-dimensional data is very time consuming compared to
one-dimensional Fourier spectroscopy, requiring N2 rather than N points to obtain
the same resolution. However, under the assumption that the JSI is approximately
Gaussian (which is valid for our source), we can take advantage of the structure of the
two-dimensional spectrum to measure the relevant parameters with a one-dimensional
scan. Specifically, because the JSI is well approximated by a Gaussian ellipse with its
major and minor axes aligned with the diagonal frequency axes ωs + ωi and ωs − ωi,
the spectral correlations can be well characterized by the diagonal widths along these
two axes. Thus, the Fourier transform of a 1D scan along the ts + ti (ts − ti) axis

10



yields the projection of the 2D spectrum along the ωs +ωi (ωs−ωi) axis, as shown in
Fig. 7. If we model the joint frequency spectrum as a 2D Gaussian ellipse, the relevant
parameter for spectral correlation is the ratio of the peak widths along the ωs+ωi and
ωs−ωi axes, σd/σa. The parameters σd and σa can be extracted directly from the 1D
scan described above, characterizing the Gaussian ellipse

f(νs, νi) = A exp

[
−
(
ν2
s + ν2

i

)( 1

4σ2
d

+
1

4σ2
a

)
− 2νsνi

(
1

4σ2
a

− 1

4σ2
d

)]
. (11)

Recall from Eqs. 5 and 6 that we can determine the heralded single-photon purity P
(or equivalently, the inverse Schmidt number 1/K) directly from a Gaussian ellipse.
Applying a change of variables and solving for σa and σd in terms of σ and σf , we can
rewrite Eq. 6 as

P =

√
1−

(
r − 1

r + 1

)2

, (12)

where r ≡ σ2
d/σ

2
a.

2.3.3. Fourier Spectroscopy Measurements for the SPDC Source

Figure 8 shows our experimental setup for the Fourier spectroscopy measurements.
The critical difference between this and the theoretical discussion above is the use
of a common-path polarization interferometer rather than a Michelson. This achieves
the same function by providing an optical path length difference due to the different
indices of refraction of ordinarily and extraordinarily polarized light in birefringent
quartz, rather than a physical path length difference. The advantage of this technique
is that the two optical paths take the same physical path, making the interferometer
much more robust against vibrations and thermal fluctuations. Specifically, horizon-
tally polarized light is rotated into the diagonal basis using a half-wave plate4 before
passing through scanning quartz wedges with vertical optic axes. Diagonally polar-
ized light is a superposition of ordinary (o) and extraordinary (e) polarization in the
crystal, which pick up different phases,

|D〉 =
|e〉+ |o〉√

2
→ 1√

2

(
e2πineL/λ |e〉+ e2πinoL/λ |o〉

)
, (13)

where L is the length of quartz, λ is the wavelength and no and ne are the ordinary
and extraordinary indices of refraction at that wavelength. For our quartz wedges
(custom-made by Rocky Mountain Instruments) at 810 nm, with a wedge angle of
32◦ and one wedge mounted on a translation stage, this corresponds to a relative
delay of 15.75 fs per mm of stage motion (where 2.7 fs corresponds to a relative phase
of 2π). A fixed-length quartz plate is used to provide a delay offset in the opposite
direction using an optic axis mounted orthogonally to that of the wedges. Finally,
the polarization is rotated back to the horizontal (H)/ vertical (V) basis and analysed
with a polarizing beamsplitter. The probability P of observing a horizontally polarized

4Due to the broad bandwidth involved, one must take care to use waveplates with a flat retardance (that is,

the optical path-length difference between ordinary and extraordinary polarization Le−Lo) in the wavelength
region of interest.
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(a) (b)

Figure 8. Diagram of 2D Fourier spectroscopy setup for measuring the joint spectrum. The common-path

polarization interferometer in (a) uses a half-wave plate (HWP) to rotate light into the diagonal basis, followed

by a birefringent quartz plate to initially delay horizontally polarized light (H) relative to vertically polarized
light (V). Then, quartz wedges are used to variably delay V relative to H. Finally, another HWP rotates back

into the H/V basis and a polarizing beam splitter (PBS) is used to pick off the H component. Two of these

polarization interferometers are used in (b) to analyse the joint spectrum.

Figure 9. Experimental measurement of joint spectrum for a pump bandwidth of 5.2 nm, collected through

20 nm filters, resulting in an estimated purity of 0.96±0.02. The ellipse represents the estimated joint spectrum,
with the eccentricity along the diagonal providing spectral correlation (or in this case, anti-correlation). The

purity here applies only to the spectral state of heralded single photons, and represents the degree of factorability

of the joint spectral intensity, i.e., not including any possible phase correlations. The double peaks seen in the
frequency plot are due to a slight misalignment of the diagonal scan axis and are fit with two identical offset

Gaussian peaks.

photon, i.e., the photon exiting the horizontal port of the PBS, depends on the relative
phase ∆φ ≡ 2πL(no − ne)/λ as

P = cos(∆φ)2 =
1

2
(1 + cos(2∆φ)) . (14)

Fig. 9 shows typical results from applying this technique to our source, and illus-
trates the reconstruction of the joint spectrum from the measured data. The spectrum
is Fourier transformed to the frequency domain, and then a Gaussian fit is applied
to peaks corresponding to the diagonal widths of the joint spectrum. From this, the
heralded single-photon purity can be determined through Eq. 12.

As discussed above, the joint spectrum is given in general as the product
|f(νs, νi)|2 = |A(νs, νi)|2|Φ(νs, νi)|2. Note that for a large pump bandwidth the func-
tion |Φ(νs, νi)|2 will tend to dominate over a comparatively broad |A(νs, νi)|2 so as
to determine the resulting shape of the joint spectrum |f(νs, νi)|2. Conversely, in the
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Figure 10. Single-photon purity of our SPDC source, as measured with our diagonal Fourier transform
spectroscopy setup, as a function of the pump bandwidth. As expected, decreasing the pump bandwidth has

the effect of increasing the photon-pair degree of spectral entanglement, thus increasing the Schmidt number
K and decreasing the single-photon purity P = 1/K.

limit of a monochromatic pump |A(νs, νi)|2 → δ(νs + νi), the pump envelope function
|A(νs, νi)|2 dominates, and the spectral entanglement becomes maximal. Thus, as the
pump bandwidth σ is decreased, the degree of spectral entanglement quantified by the
Schmidt number K increases while the heralded single-photon purity K−1 decreases.
We have verified this behavior experimentally by extracting the heralded single-photon
purity from the diagonal Fourier transform spectroscopy measurement detailed above,
for a number of different pump bandwidths. The results of this measurement are shown
in Fig. 10, along with a theoretical curve, showing excellent agreement.

2.4. Fibre Spectroscopy

As mentioned previously, interferometry is not the only method possible for transform-
ing the spectral information of the two-photon state into a measurable form. Another
promising technique exploits dispersion in an optical fibre in order to map frequency
components into resolvable times of detection (22 ). This exploits the property that
short wavelengths travel more slowly than long wavelengths in an optical medium
(with ordinary dispersion). The experimental schematic is shown in Fig. 11. Our fibre
(Nufern 780HP) has a dispersion of approximately -120 ps/nm/km for light near 810
nm. For example, in our 400-m length of fibre, a photon with a wavelength of 809
nm will be delayed by approximately 50 ps compared to a photon at 810nm. Thus,
measuring the time of arrival of a photon determines its wavelength, assuming that
the relative delay exceeds the detector timing jitter. Higher resolution can be achieved
using longer fibre lengths, but at the cost of greater loss; alternatively, media with
higher dispersion can be used, as was shown recently through the use of chirped fibre
Bragg gratings (29 ).

Detection is accomplished with two Micro Photon Devices avalanche photodiodes
(APDs) with custom circuitry, chosen for low jitter (see Sec. 2.4.1) (30 ). The transit
time difference between the signal and idler photons in the single-mode fibre is on the

13



Figure 11. Schematic diagram of fibre spectroscopy. A half-wave plate (HWP) and polarizing beamsplitter

(PBS) are used to combine the signal and idler modes into a 400-m length of single-mode fibre (SMF). A
fibre beamsplitter delivers light to two avalanche photodiodes (APD), which are analysed by a time-to-digital

converter (TDC) together with a synchronization signal from the pump via a photodiode (PD).

order of 1ns, while the dead-time of each APD is over 20 ns; for each particular pair,
there is a 50% chance that the photons will arrive at different APDs and are thus
counted in coincidence, and a 50% chance that the photons will arrive at the same
APD and are not counted in coincidence. This could be improved by using two separate
lengths of fibre, but resources are typically better spent in obtaining one longer length
of fibre, as the fibre length determines the amount of dispersion experienced by the
photons, and thus the resolution of the measurement. The output pulses from the
detectors are registered by an Agilent U1051A time-to-digital converter (‘time-tagger’),
with 50 ps time-bin resolution, and counted in coincidence. The coincidence signal
is referenced to an Electro-Optics ET-2030 photodiode measuring the pump, also
registered by the time-tagger.

The time-tagger is so named because it ‘tags’ input pulses on a number of chan-
nels with a time of arrival. This allows convenient digital post-processing of events,
with the ability to find coincidences between different channels with arbitrary intra-
channel temporal delays and with arbitrary coincidence window widths; the specific
configuration used may be freely chosen after the data are collected. The result is a
very powerful tool for applications ranging from singles and coincidence counting, to
correlation-based jitter measurements (Sec. 2.4.1), to complex multi-fold coincidences
(Sec. 2.4.2).

2.4.1. Fibre Spectroscopy Calibration

In fibre spectroscopy, the timing jitter of the detection electronics limits the accuracy
of the measurement. A high-jitter detector will lead to an uncertainty in the frequency-
time relationship. This limits the resolution of the measurement, leading to a more
circular joint spectrum and an artificially lower measured Schmidt number. Thus,
calibration is essential to determining the measurement accuracy; we perform this by
first characterizing the system jitter in the context of a spectroscopic measurement of
a calibrated classical source.

This calibration includes using the time-tagger to measure the distribution of re-
sponse times of each component in the experimental setup. We measured APDs from
Perkin-Elmer, ID Quantique, and Micro Photon Devices, which had FWHM jitters
of 358 ps, 70 ps, and 174 ps, respectively. The best-performing detectors were MPD
avalanche photodiodes (with custom circuitry from Mario Stipcevic), which have a rea-
sonably low jitter of 174 ps and do not have a significant non-Gaussian tail. Although
the ID Quantique detectors have a lower FWHM jitter, they also have a long tail with a
significant portion of the total power (over 50% outside of the FWHM as compared to
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Figure 12. Normalized spectral power density measurements under 810 nm low-pass filtering. The measured
spectrum from an Ocean Optics HR2000 spectrometer is shown in red. The inferred spectrum from the fibre

spectroscopy is shown in blue, re-centred on the peak of the spectrometer measurement (as the measure-

ment only gives wavelength relative to an arbitrary reference). The green line shows the convolution of the
spectrometer data with a 275 ps FWHM Gaussian, i.e., the measured timing jitter of our system.

approximately 24% for a Gaussian response), which severely reduces the resolution of
the measurement. The time response of the time-tagger itself was measured using the
correlation method, with a function generator simultaneously triggering two channels
on the time-tagger. This yielded a FWHM jitter of 64 ps, which is deconvolved from
all other jitter measurements. Additionally, the time response of the Electro-Optics
photodiode was measured, yielding a FWHM jitter of 203 ps. Adding the jitter values
in quadrature gives a total-system jitter of

√
2032 + 1742 + 642 = 275 ps with the

MPD detectors.
We can compare this jitter with measurements obtained using fibre spectroscopy

on a known calibration source. This measurement is similar to that pictured in Fig.
11 except that instead of an SPDC source and two APDs measuring in coincidence,
there is only the pump, which is sent to a photodiode and a single APD. Additionally,
the pump is optionally filtered by a low-pass filter to observe the response to a sharp
spectral cutoff. The time response is determined by looking at the correlation between
the APD and the photodiode, with the photodiode serving as a fixed point of reference.
This is converted to a spectrum by multiplying by a conversion factor determined by
the length and dispersion of the fibre, and a manual offset which varies depending
on delays present in the experiment, but which does not depend on the shape of
the spectrum. Finally, the inferred spectrum is compared to that measured directly
with an Ocean Optics HR2000 spectrometer, which is also mathematically convolved
with a Gaussian equivalent to a system jitter of 275 ps. Fig. 12 shows the results of
this measurement, which exhibits excellent agreement between the directly measured
spectrum and the fibre-spectroscopy-measured spectrum, given the characterized jitter
of the system.

2.4.2. Fibre Spectroscopy Measurement and Simulation for the SPDC Source

The effect of jitter can be simulated using a Monte Carlo technique, with photons
drawn from an assumed spectrum receiving random jitters to produce a transformed
spectrum, as shown in Fig. 13.5 This allows us to estimate the uncertainty of the
experimental measurements. We also attempted to remove the detector response using

5The system jitter is slightly more nuanced for a two-dimensional measurement; the photodiode jitter is

correlated with both the signal and idler detection, as both are referenced to the photodiode signal. This

shared reference leads to the signal and idler detection times appearing more correlated than they actually are.
This manifests in the positive diagonal direction in Fig. 13, which corresponds to the sum of the two detection

times, and therefore the jitter of the reference does not cancel. This contrasts with the anti-diagonal direction
which corresponds to the difference of detection times, where the photodiode jitter does cancel. However, Monte
Carlo simulations of this effect indicate that it is minor, leading to a purity bias of no more than 0.01 in our

measurements.
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(a) (b)

(c)

Figure 13. Monte Carlo simulations of fibre spectroscopy with a detection timing jitter of (a) 50 ps, (b) 275

ps, and (c) 1 ns. Simulated detector photons are detected with a Gaussian random jitter and binned into a 2D

histogram with 50 ps time bin widths (the bin width of our Agilent U1051A Time-to-Digital Converter). The
true Schmidt number of this simulated source is 2.0, and the Schmidt numbers after the application of jitter

are (a) 1.98±0.02, (b) 1.68±0.01, (c) 1.14±0.003. A Richardson-Lucy deconvolution algorithm can be applied

to attempt to remove the effect of the jitter, but this compensation breaks down for large jitters, resulting in
(a) 1.98± 0.02 (b) 1.99± 0.02, (c) 1.20± 0.007. The simulation was performed with 32,000 simulated photon

pairs, a fairly typical number for our experimental measurements.

a Richardson-Lucy 6 deconvolution algorithm (31 ). This is reasonably successful for
removing a relatively small jitter, but breaks down as jitter increases. As a rough
rule of thumb, deconvolution is unnecessary if the jitter is less than half as large as
the smallest spectral feature (i.e., the narrow axis of the ellipses of Fig. 13), and is
unreliable if the jitter is more than 2-4 times larger than the smallest spectral feature
(the latter criterion depends on the amount of noise and the shape of the features).
Jitter on the order of the feature size is a ‘sweet spot’ for applying deconvolution.

To perform the full joint spectral measurement, we need to perform a complex multi-
channel correlation. This is not a typical use of the time-tagger, and is not directly
supported by the default configuration of the driver software, so some modifications
must be made. The basic idea of the measurement is to count in three-fold coincidence
between the APDs and the photodiode, with each triple-coincidence event being reg-
istered as an event with ∆λs ≈ c(ts − tpd) and ∆λi ≈ c(ti − tpd), where c is the
speed of light and ts, ti, and tpd are the timestamps of the signal photon, idler photon,
and photodiode pulse, respectively. The set of all such events can be binned into a
two-dimensional relative-timing histogram, then converted to wavelength to produce
a joint spectrum similar to those of Fig. 13 (see Fig. 14). Finally, the Schmidt decom-
position can be applied to this histogram to determine the Schmidt number as in Sec.
1.2.

Unfortunately, directly accessing these times of arrival on all three channels is not
practical given the extremely large number of time-tags involved. Instead, we make
use of a fast and efficient multi-coincidence routine in custom driver software. This
allows the fast construction of the desired histogram by the following method: first,

6Richardson-Lucy is an iterative maximum-likelihood-based deconvolution algorithm developed for image
processing, specifically for removing a Gaussian blur from an image. Initially, we attempted to use a naive
matrix-inversion-based deconvolution, but this proved to be numerically unstable for our application due to

the high condition number of the joint-spectral matrix.
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(a) (b) (c)

Figure 14. Comparison of measurements on a source with no spectral filtering and an 8 nm bandwidth pump

using (a) diagonal Fourier spectroscopy (b) fibre spectroscopy and (c) a theoretical simulation showing ideal

behavior. Corresponding purities are (a) 0.88± 0.02, (b) 0.87± 0.03, and (c) 0.998.

Figure 15. Schematic of spontaneous processes and their stimulated analogues. Line thickness represents

intensity.

we observe that each bin in the histogram corresponds to a three-fold coincidence
with offsets ∆ts and ∆ti and window size equal to the histogram bin width. Then, by
iterating over all offsets in the desired range, we can construct the desired histogram.
A comparison of the results of this technique with Fourier spectroscopy measurements
and our simulations is shown in Fig. 14. The two measurements agree closely with each
other, but exhibit more correlation than the ideal simulated source. We believe this
discrepancy arises from experimental factors not included in simulation, particularly
temporal and spatial chirp in the pump.

2.5. Stimulated-Emission-Based Measurement Technique

Stimulated-emission-based measurement of the JSI relies on the relationship between
the spontaneous process and its corresponding stimulated process (23 ). Specifically,
difference-frequency generation can be used to characterize an SPDC source (32 ), and
stimulated four-wave mixing can be used to characterize an SFWM source (33 ); the
relation between the stimulated and spontaneous processes is depicted in Fig. 15. We
can see that the spontaneous and stimulated spectra are related by comparing the
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Figure 16. Experimental setup for the stimulated-emission-based measurement of the JSI of an optical fibre

SFWM source. A half-wave plate (HWP) and polarizing beamsplitter (PBS) are used to filter out the pump.

expected number of photons from each process (23 ):

〈nσsks〉Aσiki
〈nσsksnσiki〉

≈ |Aσiki |
2 (15)

where 〈nσsks〉Aσiki is the average number of signal photons with polarization σs and

wave vector ks stimulated by an idler seed with polarization σi and wave vector
ki, 〈nσsksnσiki〉 is the average number of spontaneously generated photon pairs, and
|Aσiki |

2 is the average photon number of the coherent seed pulse. Thus the number of
photons resulting from a spontaneous process is directly proportional to the number
of photons detected in its corresponding stimulated process, with the proportionality
factor being the number of photons in the stimulating laser. If we use a mW-power
continuous wave (CW) stimulating laser, this number is many orders of magnitude
higher than nσ,σ′ alone, leading to a significantly shorter collection time and a sig-
nificantly higher signal-to-noise ratio than techniques based on coincidence counting.
Note that in experiment the dependence of the stimulated signal power on seed power
should be confirmed to be in the linear regime for the seed powers used (33 ). Note
also that the stimulated emission technique is not sensitive to other processes that
may generate noise background, such as Raman scattering; thus, such contributions
should be characterized separately.

2.5.1. Stimulated-Emission-Based Measurement for SFWM Sources

The experimental setup for performing the stimulated-emission-based measurement
on SFWM sources is shown in Fig. 16. A CW laser (the ‘seed’) is coupled into the
fibre in addition to the pulsed pump. The seed laser has a bandwidth of ∼ 30GHz
and its centre frequency is incrementally scanned over the frequency range of idler
photons produced in the spontaneous process so a stimulated four-wave mixing process
is driven and a stimulated signal beam is produced. The stimulated signal is sent into
a standard spectrometer with a CCD that records the signal’s spectrum at each seed
frequency. A complete scan for this source takes approximately 15 minutes. The results
for bow-tie polarization-maintaining fibre are shown in Fig. 5(b). When compared to
the monochromator result shown in Fig. 5(a), the signal-to-noise ratio is clearly much
higher and the resolution is much better. The purity calculated from the joint spectral
intensity measured using stimulated emission is 0.8322± 0.0004.

As the stimulated emission technique is relatively swift, it allows the efficient test-
ing of engineered sources. To demonstrate this we show in Fig. 17 the JSI of three
SFWM sources in panda-type polarization-maintaining fibre for three different fibre
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Figure 17. Joint spectral intensities from stimulated-emission-based measurements of panda-fibre SFWM

sources of three different lengths: (a) 2.6 cm, (b) 1.6 cm, and (c) 1.1 cm.

lengths that exhibit correlated (Fig. 17(a)), almost uncorrelated (Fig. 17(b)), and anti-
correlated (Fig. 17(b)) JSI for fibres of length 2.6 cm, 1.6 cm, and 1.1 cm, respectively.
The purities calculated from the measured JSI of these sources assuming a flat joint
spectral phase are 0.8018± 0.0003, 0.8975± 0.0001, and 0.8529± 0.0002, respectively.

3. Heralded Single-Photon Purity Measurement

In this section we measure the heralded single-photon purity, which is phase-dependent
and which in many situations is the quantity of interest, in two ways: indirectly, by
taking advantage of the statistical properties of SPDC and SFWM (Sec. 3.1), and
directly by interfering heralded single photons from two SPDC sources (Sec. 3.2).

3.1. Correlation Function Measurement

The second-order correlation function g(2)(t1, t2) represents the joint probability of
detecting one photon at a time t1 and another photon at a time t2. As we will discuss
in this section, the time-integrated g(2) function can be used to determine the purity
of the heralded single-photon quantum state. The second-order correlation function
g(2)(t1, t2) may be expressed, in terms of time-dependent photon number operators

n̂µ(t) = â†µ(t)âµ(t), with µ = 1, 2, as

g(2)(t1, t2) =
〈: n̂1(t1)n̂2(t2) :〉
〈n̂1(t1)〉 〈n̂2(t2)〉

, (16)

where 〈...〉 indicates normal ordering.
In our case we are interested in measuring the g(2) function of the signal or idler

mode of an SPDC source. This measurement can be accomplished by sending the de-
sired mode to a Hanbury Brown-Twiss interferometer (34 ), as shown schematically in
Fig. 18(a), where the 1 and 2 labels correspond to the output ports of the beamsplitter,
each leading to an avalanche photodiode. From Eq. 16, the g(2)(t1, t2) function is given
as the ratio of the time-resolved coincidence rate between the two detectors divided
by the product of the time-resolved single-channel detection rates in each of the two
detectors.

The possibility of temporally resolving the g(2) function would hinge on a fast detec-
tor response, as compared to the coherence time. The latter condition is not fulfilled
in our experimental apparatus: our broadband pulses have coherence times in the tens
of femtoseconds, while the APD’s have typical response times in the hundreds of pi-
coseconds! Thus, in the experimentally realistic case of a slow detector response, we
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instead measure the time-integrated correlation function g(2)(35 ), expressed as

g(2) =

∫
dt1
∫
dt2 〈: n̂1(t1)n̂2(t2) :〉∫

dt1 〈n̂1(t1)〉
∫
dt2 〈n̂2(t2)〉

, (17)

where the integral is taken over the detection window, assumed to be long compared to
the pulse duration. The time-integrated g(2) is sensitive to the distribution of Schmidt
modes of the measured photons (although it does not provide detailed temporal infor-
mation as g(2)(t1, t2) does) this leads to its utility for determining the purity of the
heralded single-photon state, as we discuss in further detail below.

In carrying out this measurement with single-photon detectors, one must either
take care that the probability of multiple photons arriving during each detector’s
‘dead-time’ is negligible, or alternatively employ photon-number-resolving detectors.
We satisfy the first condition by using a signal/idler average photon number per pump
pulse which is much less than 1 (approximately 0.001).

Recall that when carrying out a Schmidt decomposition, the two-photon state may
be written in terms of the Schmidt eigenvalues λj and the Schmidt annihilation oper-

ators Âj for the signal mode and B̂j for the idler mode, as

|Ψ〉 =

∞∑
j=1

√
λjA

†
jB
†
j |0〉. (18)

In Ref. (35 ) it was shown that this time-integrated g(2) function may be written,

for the signal mode with N̂s ≡ Â†i Âi, as

g(2) =

〈
:

( ∞∑
i=1

N̂s

)2

:

〉
〈 ∞∑
i=1

N̂s

〉2 , (19)

and an equivalent expression may be written with N̂i ≡ B̂†i B̂i for the idler mode. Note
that for single-mode SPDC, i.e., for which each of the signal and idler waves occupies
a single polarization/spatial/spectral mode, there is a single term in each of the two
sums in Eq. 19, and each wave then has thermal statistics with g(2) = 2. It is interesting
that for an SPDC source which departs from being single-mode, the statistics for each
of the signal and idler waves is no longer thermal. Consider a concrete example of two
independent polarization modes, H and V, each in a thermal state
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(a) (b)

Figure 18. (a) Setup for measuring g(2) in one arm of SPDC using a Hanbury Brown-Twiss interferometer

and (b) calculated relationship between g(2) for a source with K (effective) thermal modes.

g(2) =

〈
: (n̂H + n̂V )2 :

〉
〈n̂H + n̂V 〉2

=

〈
: n̂2

H + 2n̂H n̂V + n̂2
V :
〉

〈n̂H〉2 + 2 〈n̂H〉 〈n̂V 〉+ 〈n̂V 〉2

=

〈
: n̂2

H :
〉

+ 2 〈: n̂H n̂V :〉+
〈
: n̂2

V :
〉

4 〈n̂〉2

=
1

2

(〈
: n̂2 :

〉
〈n̂〉2

+
〈: n̂H n̂V :〉
〈n̂〉2

)
, (20)

where we have assumed for simplicity that the two modes are equally occupied, so that
〈n̂H〉2 = 〈n̂V 〉2 ≡ 〈n̂〉2 and

〈
: n̂2

H :
〉

=
〈
: n̂2

V :
〉
≡
〈
: n̂2 :

〉
. The first term represents a

single-mode thermal state, and has a value of 2. The second term, however, depends on
correlations between the H and V modes. These are independent, uncorrelated modes,
and so no photon bunching occurs, and this term takes a value of 1. Thus, the sum
for our two-mode state is g(2) = 3/2.

This generalizes, for an SPDC source with a Schmidt number K, which corresponds
to a source with K effective thermal modes, to the following result

g(2) = 1 +
1

K
, (21)

which is shown in Fig. 18(b). Therefore, measuring g(2) directly determines the effective
number of modes as K = 1/(g(2) − 1), and the heralded single-photon purity as P =
1/K = g(2) − 1. It is remarkable that information about the degree of entanglement
in the photon pair (K) and about the single-photon purity, can be obtained from
measuring only one arm of an SPDC source or an SFWM source. 7 Additionally,
unlike the previously described methods, this measurement is sensitive to the total
number of independent modes in the Schmidt decomposition, and in particular it is
sensitive to the joint spectral phase (e.g., which could result from chirp in the pump).

3.1.1. Correlation Function Measurement of the SPDC source

The features outlined in the previous section enable us to measure correlations present
in the joint spectral phase; although we knew such correlations could be caused by

7For this to be exactly true, the complementary modes must be collected in the other arm. Otherwise, it is

the (smaller) set of modes collected by both arms that determines heralded single-photon purity. This effect
can cause the single-arm measurement to underestimate the coincidence post-selected purity.
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Figure 19. Values of inverse Schmidt number 1/K, measured from the correlation function. This is equal

to heralded single-photon purity or g(2)(0) - 1. The horizontal axis shows a variable amount of group delay
dispersion (GDD) applied to our pump using a prism pair compressor, controlling pump temporal chirp. A

simple prediction based only on second- and third-order dispersion, where the third-order chirp was fixed to

the value which optimizes agreement with the experimental results, is shown in blue.

a temporally chirped pump, we had no convenient way to measure this chirp, as our
pump wavelength is outside the range accommodated by typical autocorrelation tech-
niques. The g(2) measurement is sensitive to these phase correlations, and thus also
indirectly describes the degree of temporal chirp in the pump. Fig. 19 shows the results
of applying this technique to optimize dispersion compensation in the pump. With op-
timal dispersion compensation, we measure g(2) = 1.66±0.02 without spectral filtering,
and g(2) = 2.02 ± 0.04 with a 20 nm bandwidth filter; these values corresponds to a
heralded single-photon purity of 0.66± 0.02 without spectral filtering and 1.02± 0.04
with spectral filtering. The exact nature of the reduction in the purity in the absence
of filtering, as compared with the values obtained with diagonal Fourier spectroscopy
and/or fibre spectroscopy, is not known, but it is likely due to a combination of higher-
order dispersion in the pump and unintended filtering. A model based on second- and
third-order dispersion in the pump is shown in Fig. 19; however, this model does not
completely account for the effect observed.

3.1.2. Correlation Function Measurement of the SFWM sources

We performed correlation measurements on the bowtie-fibre SFWM source whose
JSI is depicted in Fig. 5. The purity obtained from the g(2) value for this source is
0.63± 0.02, which is lower than the stimulated-emission-based measurement purity of
0.8325 and the monochromator purity of 0.80. We also measured g(2) values for the
three panda-fibre SFWM sources whose JSI are depicted in Fig. 17, to be 0.67± 0.05,
0.78± 0.07, and 0.71± 0.07, for 2.6cm, 1.6cm, and 1.1cm lengths of fibre, respectively.
Our stimulated-emission-based measurements provide an upper bound for the purity
because not all of the sidelobes in the JSI are measured, and because we did not
extend the technique to measure the relative spectral phase between the signal and
idler photons, which could contain correlations that degrade the purity. A summary
of the results for the SFWM sources is presented in Table 2.

3.2. Two-Source Hong-Ou-Mandel Interference

In many situations it is essential to interfere heralded single photons from a given
source with other single photons from independent sources. The ability of single pho-
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Figure 20. Two-crystal common-path HOM interferometer. A diagonally polarized beam pumps two crystals

orthogonally oriented to produce vertical and horizontal photon pairs. In the signal arm, these distinguishable

photons are directed to two detectors, heralding the presence of one photon pair from each crystal. In the idler
arm, we use transverse walk-off in birefringent α-BBO to combine the photons into a single spatial mode. The

quartz plate and quartz wedges compensate for the temporal delay between the photons, which are coupled

into a single-mode fibre and rotated into the diagonal/anti-diagonal basis. An HOM dip can be observed as a
suppression of four-fold coincidence counts as the temporal compensation is adjusted.

tons from distinct sources to interfere is governed by the single-photon purity; thus an
interference experiment may be used for the determination of the purity. This more
direct route, in contrast to exploiting a spectral characterization of the source as in the
cases of diagonal Fourier-transform and fibre spectroscopies described above, is consid-
erably more time-consuming however, because it relies on the simultaneous emission
(and detection) of two photon pairs, i.e., its intrinsically a four-photon experiment.

Recall that Hong-Ou-Mandel interference relies on two single photons which im-
pinge on a beamsplitter; when the two scenarios which can lead to the two photons
emerging from different output ports of the beamsplitter are indistinguishable, they
interfere destructively and a null in the coincidence rate across these two output ports
is expected. In a two-source HOM interferometer, the two intefering photons originate
from independent sources; in our case the two sources are two type-I SPDC crys-
tals with orthogonally oriented optic axes, as is commonly used for the generation of
polarization-entangled photon pairs (36 ). Our implementation of the two-source HOM
interferometer employs a common-path polarization scheme with a similar motivation
as in the case of polarization interferometer of Sec. 2.3.3 (37 ), i.e. in order to guar-
antee interferometric stability. Rather than being distinguished by their spatial mode,
the two sources in fact share the same spatial mode, but have orthogonal polarization
modes.

The experimental setup is shown in Fig. 20. The two photons in the upper arm
shown in the diagram are used as triggers; i.e., when a click is registered in both of the
upper-arm detectors, a photon pair with orthogonal polarizations |HV 〉 is heralded in
the lower arm. We observe HOM interference even though the two photons arrive on
the same beamsplitter input port because we rotate the polarizations of the heralded
photons into the diagonal (D)/ anti-diagonal (A) polarization basis and use a polariz-
ing beamsplitter in the horizontal (H)/ vertical (V) basis. The two photons exit on the
same port of the polarizing beamsplitter, giving the characteristic HOM suppression
of (four-fold) coincidence counts. The degree of indistinguishability of the heralded
single photons, linked to the HOM visibility V 8, is related to heralded single-photon
purity P through the single-photon density operator ρ̂ by

8Defined as V ≡ 1− Cmin, where Cmin is the minimum count rate normalized by the baseline count rate.
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(a)

(b)

(c)

Figure 21. Results from two-source HOM with varying alignment and dispersion compensation. The visibil-
ities of the HOM dips are (a) 0.24±0.05, (b) 0.48±0.04, and (c) 0.61±0.05. These show good agreement with

accompanying g(2) measurements, which imply a maximum visibility of (a) 0.26± 0.02 and (b-c) 0.66± 0.02.
The low visibility in (a) is due to intentional misalignment of the dispersion compensation. The difference

between (b) and (c) is due to imperfect collection mode matching in (b), which was improved to obtain the

result in (c). Red lines shown indicate Gaussian fits to the data.
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Fourier Dispersive Correlation Two-Source
Transform Fibre Function HOM

Implied Purity 0.88±0.02 0.87±0.03 0.66±0.02 0.61±0.05
(w/o filters) (w/o filters) (w/o filters) (w/o filters)
0.99±0.01 0.995±0.04 1.02±0.02

(20nm filters) (20nm filters) (20nm filters)
Table 1. Comparison of implied purity for each experimental characterization technique used for the SPDC
source.

V = Tr
[
ρ̂2
]
≡ P. (22)

An important implementation detail is the use of birefringent walk-off in α-BBO
for spatial compensation in the idler arm.9 This removes which-crystal distinguishing
information at the beamsplitter and allows two-source heralded single-photon inter-
ference.

Our measurement results under different conditions are shown in Fig. 21. In panel
(a), we show a HOM dip with a relatively low visibility, resulting from intentional
misalignment of the dispersion compensation, so that the pump carries a non-zero
quadratic chirp. In panel (b), we show a HOM dip resulting from imperfect collection
mode matching, which was improved upon to obtain the result shown in panel (c).
In this last panel we observe a maximum two-source HOM visibility of 0.61 ± 0.05,
obtained without spectral filtering, which is consistent with the measured g(2)-implied
purity of 0.65 ± 0.02. Indeed, the g(2)-implied purity is an upper limit on the HOM
visibility, as the latter is sensitive not just to the heralded single photons being in a pure
state, but also being in the same pure state. That we are essentially able to reach this
limit serves as an important cross-check between the information provided by these two
measurements. It validates the use of the correlation function measurement as a proxy
for heralded single-photon purity. This is useful because although the two-source HOM
measurement provides unambiguous evidence for a lower bound on heralded single-
photon purity, it is extremely time intensive. Each point on Fig. 21 requires several
hours of photon counting due to the low rate of two-pair events, leading to an entire
day or more of data collection to obtain the full HOM dip. The correlation function
measurement, on the other hand, can be performed with our source in under one hour.

4. Conclusions

Tables 1 and 2 summarize the results of applying the explored techniques to our
engineered SPDC source and SFWM sources. The implied purities are consistent across
all the techniques, following the same trends as a function of filtering and length of
fibre, and exhibiting lower values for the phase-sensitive correlation function and two-
source HOM measurements, as expected.

Having performed all the techniques ourselves, we have access to all the experi-
mental parameters and can compare the techniques explored, highlight their relative
advantages and disadvantages, and provide metrics that can be used to indicate which

9One could instead implement spatial pre-compensation on the pump, causing the two idler modes to directly

overlap.
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Scanning
Monochro-

mator

Stimulated-Emission-
Based

Correlation Function

Implied 0.826±0.004 0.8322±0.0004 (bow-tie) 0.63±0.02 (bow-tie)
Purity (bow-tie) 0.8018±0.0003 (2.6 cm) 0.67±0.05 (2.6 cm)

0.8975±0.0001 (1.6 cm) 0.78±0.07 (1.6 cm)
0.8529±0.0002 (1.1 cm) 0.71±0.07 (1.1 cm)

Table 2. Comparison of implied purity for each experimental characterization technique used for the SFWM

sources. The fibre measured was panda-type unless otherwise noted.

Scan-
ning
Monochro-
mator

Diagonal
Fourier
Trans-
form

Disper-
sive Fi-
bre

Stim-
ulated
Emis-
sion

Corre-
lation
Function

Hong-
Ou-
Mandel

Reconstruct
JSI?

Yes Yes Yes Yes No No

Phase-
sensitive?

No No No Yes* Yes Yes

Spectral
Resolution

0.20 nm
×0.20 nm

N/A 1 nm
×1 nm

0.06 nm
×0.17 nm

N/A N/A

Spectral
resolution
limited by

spec-
trometer

stage
transla-
tion

electronic
jitter

spec-
trome-
ter, seed
scanning

N/A N/A

Peak
Count Rate
(counts/sec)

0.57 2,236 2,058 N/A 0.1 0.1

Nominal
Acquisition
Time

39 hrs 700 s 300 s 200 s 1 hr 1 day

Acquisition
time per
bin

60 s 1 s 0.6 s 10−3 s N/A N/A

Raw SNR 6 47 45 198 20 9

Scaled SNR 2.6
s−1nm−2

47 s−1 75
s−1nm−2

2×107

s−1nm−2
6× 10−3

s−1
1× 10−4

s−1

*Not shown in this work. See (38 ).
Table 3. Comparison of all characterization techniques.

techniques one may want to pursue based on experimental constraints. This compari-
son is provided by Table 3. In the first two rows we summarize the capabilities of each
technique to resolve the JSI and measure the joint phase. For those techniques capable
of resolving the JSI we state the spectral resolution of our implementation, which is
based on the size of a histogram bin in each data set. As these values are equipment-
dependent, in the next row we state the resource that limits the resolution. We list
the background-subtracted peak count rates, whether singles or coincidence counts.
The nominal acquisition time is the acquisition time per bin multiplied by the number
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of bins; in practice, the overall acquisition time may be longer due to the finite time
required to perform computation and/or mechanical adjustments. Taking the nominal
acquisition time and dividing by the spectral resolution gives an approximate acquisi-
tion time per bin for our implementations. The ‘Raw SNR’ for counting measurements
is the signal-to-noise ratio (SNR) defined in the context of Poisson statistics as the
square root of the maximum number of background-subtracted counts in the measure-
ment. For the stimulated-emission-based measurement, it is determined by taking the
mean about the peak value and dividing by the standard deviation. However, this raw
signal-to-noise ratio fails to capture the relative ease of data collection (for example,
the scanning monochromator measurement might in principle be capable of yielding
just as clear a signal as the stimulated measurement, but we would need to use a
monochromator with higher resolution and would need to wait a very long time to
achieve the same number of counts); thus, we normalize the raw SNR by the product
of the acquisition time per bin and the spectral resolution. We present this value as
the ‘Scaled SNR’ in the last row of Table 3. In the case of the correlation function and
HOM measurements, we scale by the total acquisition time. From this comparison
we can see that the stimulated-emission-based measurement has the highest scaled
SNR. However, this technique requires more resources than the correlation function
measurements, which were particularly helpful due to the relative simplicity of the
measurement.

The optimal technique for a given application will be determined by the resources
available and the requirements of the application. Given these constraints, some tech-
niques are easier to implement than others and some provide more information than
others. From our experience, performing the correlation function measurement is a
good place to start in characterizing the correlations in a photon-pair source. It pro-
vides the purity of the heralded single-photon state with minimal required equipment,
and can serve as an initial diagnostic before more detailed investigations in partic-
ular degrees of freedom. If one then wishes to gain a detailed, high-resolution, high
signal-to-noise measurement of the joint spectrum, and a tunable coherent light source
with sufficiently narrow bandwidth is available, the stimulated emission tomography
technique is a relatively straightforward measurement that does not require long in-
tegration times or significant analysis procedures subsequent to measurement. The
dispersive-fibre method and diagonal Fourier-transform method provide good signal-
to-noise ratio measurements of the joint spectral intensity. For the dispersive-fibre
method a time-to-digital converter is required and the wavelengths of the photons
must be such that they undergo sufficient dispersion in available fibre to provide the
desired frequency resolution. The diagonal Fourier-transform method is suitable if the
joint spectrum is approximately Gaussian and only the joint spectral intensity ma-
jor and minor axes are required. The monochromator measurement is the most time-
consuming technique and has poor signal-to-noise ratio, but may be suitable in the case
of a high brightness source, when it is desirable to measure the joint spectral intensity,
and only the capabilities of single-photon detection and sufficient resolution spectral
filtering are available. The Hong-Ou-Mandel measurement is more difficult than the
correlation function measurement as it relies on four-fold coincidence detection. It is
usually employed specifically when one wishes to demonstrate the indistinguishability
of two sources; as such it is a benchmark for source validation. We hope that our
present work will provide a useful description and comparison of techniques available
for joint spectral intensity and single heralded-photon purity measurements.
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