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Abstract Let� be a smooth closed hypersurface with non-negative Ricci curvature, isomet-
rically immersed in a space form. It has been proved in Cheng (Pacific J Math, 2014), Cheng
and Zhou (J Geom Anal, 2012), Perez (On nearly umbilical hypersurfaces, 2011) that there
are some L2 inequalities on � which measure the stability of closed umbilical hypersurfaces
or more generally, closed hypersurfaces with traceless Newton transformation of the second
fundamental form. In this paper, we prove that the constants in these inequalities are optimal.

Keywords L2 stability inequality · Closed umbilical hypersurfaces · Newton
transformation · The second fundamental form
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1 Introduction

A hypersurface � is called totally umbilical if its second fundamental form A is multiple
of its metric g at every point, that is, A = trA

n g on �. In differential geometry, a classical
theorem states that a closed, i.e., compact and without boundary, totally umbilical surface
isometrically immersed in the Euclidean spaceR3 must be a round sphere S2 and in particular,
its second fundamental form A is a constant multiple of the metric. This result is also true
for hypersurfaces in R

n+1.
It is interesting to discuss a quantitative version or stability of this theorem. De Lellis

and Müller [6] obtained an L2 estimate for closed surfaces in R
3. Their result also has
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applications to foliations of asymptotically flat three manifolds by surfaces of prescribed
mean curvature [14–16]. Recently, Perez [17] studied the hypersurface case and proved the
following theorem for convex hypersurfaces in R

n+1:

Theorem 1.1 ([17]) Let � be a smooth, closed and connected hypersurface in R
n+1, n ≥ 2

with induced metric g and non-negative Ricci curvature, then

∫

�

∣∣∣∣∣A − H

n
g

∣∣∣∣∣
2

≤ n

n − 1

∫

�

∣∣∣∣A − H

n
g

∣∣∣∣
2

, (1.1)

and equivalently ∫

�

(
H − H

)2 ≤ n

n − 1

∫

�

∣∣∣∣A − H

n
g

∣∣∣∣
2

, (1.2)

where A and H = trA denote the second fundamental form and the mean curvature of �

respectively, H = 1
Voln(�)

∫
�
H is the average of H on �. In particular, the above estimates

hold for smooth, closed hypersurfaces which are the boundary of a convex set in R
n+1.

As pointed out by De Lellis and Topping [7], Perez’s theorem holds even for the closed
hypersufaces with nonnegative Ricci curvature when the ambient space is Einstein. Indeed
a slight modification of the proof of Theorem 1.1 gives the following result (see its proof in
[5]).

Theorem 1.2 Let (Mn+1, g̃) be an Einstein manifold, n ≥ 2. Let � be a smooth, closed
and connected hypersurface immersed in M with induced metric g. Assume that (�, g) has
non-negative Ricci curvature. Then the same inequalities as (1.1) and (1.2) hold.

Later, Zhou and the first author ([5]) studied the rigidity of the equalities in Inequalities
(1.1), (1.2), and the correspondging inequalities in Theorem 1.2. They proved that

Theorem 1.3 ([5]) Let Mn+1 be the Euclidean space R
n+1, or the Euclidean semi-sphere

S
n+ or the Hyperbolic spaceHn+1, n ≥ 2. Let� be a smooth, connected, oriented and closed

hypersurface immersed in Mn+1 with induced metric g. Assume that (�, g) has non-negative
Ricci curvature. Then,

∫

�

∣∣∣∣∣A − H

n
g

∣∣∣∣∣
2

= n

n − 1

∫

�

∣∣∣∣A − H

n
g

∣∣∣∣
2

, (1.3)

and equivalently ∫

�

(
H − H

)2 = n

n − 1

∫

�

∣∣∣∣A − H

n
g

∣∣∣∣
2

, (1.4)

holds if and only if � is a totally umbilical hypersurface, that is, � is a distance sphere Sn

in Mn+1, where H = 1
Voln(�)

∫
�
H.

In [5], the authors also studied the general case for hypersurfaces without assumption on
convexity (that is, A ≥ 0, which is equivalent to Ric ≥ 0 when � is a closed hypersurface in
R
n+1). See more details in [5].
Also in [17], Perez showed the constants in Inequalities (1.1) and (1.2) are sharp. In this

paper, we generalize his result and prove that the constants in Inequalities (1.1) and (1.2) are
sharp when the ambient spaces are other space forms. Precisely, we prove that
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Theorem 1.4 Let (Mn+1
c , g̃) be a space form of constant sectional curvature c, n ≥ 2. Let

C <
√

n
n−1 be a positive constant. Then there exists a smooth deformation�t of the geodesic

sphere Sn in Mn+1
c so that for each hypersurface �t ,

∫

�t

(
H − H

)2
> C2

∫

�t

∣∣∣∣A − H

n
g

∣∣∣∣
2

, (1.5)

and ∫

�t

∣∣∣∣∣A − H

n
g

∣∣∣∣∣
2

> C2
∫

�t

∣∣∣∣A − H

n
g

∣∣∣∣
2

. (1.6)

Moreover, �t can be chosen arbitrarily close to Sn so that the Ricci curvature Ric�t of �t is
positive.

Theorem 1.4 shows that the constant
√

n
n−1 in Inequalities (1.1) and (1.2) is optimal when

the ambient space is a space form.
In this paper, we also deal with higher order mean curvatures and the Newton transfor-

mations of the second fundamental form of hypersurfaces (see their definition in Sect. 2.
Besides we refer the interested readers to [3,4,18,19,21] and the related references therein).

When (�, g) is a hypersurface isometrically immersed in a space form, it can be verified
that if the Newton transformations Pr satisfy Pr = trPr

n g on�, then� has constant r th mean
curvature and thus Pr is a constant multiple of the metric g (cf Sect. 5). Moreover, Ros’
work [20,21] implies that the round spheres are the only closed embedded hypersurfaces in
R
n+1 with Pr = trPr

n g, 2 ≤ r ≤ n. Like the case for the totally umbilical theorem, we may
consider a quantitative version or stability of this result. Recently, the first author [3] showed
that

Theorem 1.5 [3] Let (Mn+1
c , g̃) be a space form of constant sectional curvature c, n ≥ 2.

Let � be a smooth connected closed hypersurface immersed in Mn+1
c with induced metric

g. Assume that (�, g) has nonnegative Ricci curvature, then for 2 ≤ r ≤ n,

(n − r)2
∫

�

(sr − sr )
2 ≤ n(n − 1)

∫

�

∣∣∣∣Pr − (n − r)sr
n

g

∣∣∣∣
2

, (1.7)

and equivalently,

∫

�

∣∣∣∣Pr − (n − r)sr
n

g

∣∣∣∣
2

≤ n
∫

�

∣∣∣∣Pr − (n − r)sr
n

g

∣∣∣∣
2

, (1.8)

where Pr and sr = trPr denote the Newton transformations of the second fundamental form

A of � and the trace of Pr respectively, sr =
∫
M sr dv

Vol(M)
denotes the average of sr over �.

In Sect. 5 of this paper, we consider the optimality of the constants for Inequalities (1.7)
and (1.8) and prove that

Theorem 1.6 Let (Mn+1
c , g̃) be a space form of constant sectional curvature c, n ≥ 2. Let

the natural number r (2 ≤ r ≤ n − 1) be given. For any given constants C1 <
√

n(n−1)
(n−r)2
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and C2 <
√
n, there exist smooth deformations (�1)t and (�2)t of the geodesic sphere S

n

in Mn+1
c respectively, so that for each t,

∫

(�1)t

(sr − sr )
2 > C2

1

∫

(�1)t

∣∣∣∣Pr − (n − r)sr
n

g

∣∣∣∣
2

, (1.9)

and ∫

(�2)t

∣∣∣∣Pr − (n − r)sr
n

g

∣∣∣∣
2

> C2
2

∫

(�2)t

∣∣∣∣Pr − (n − r)sr
n

g

∣∣∣∣
2

, (1.10)

where Pr , sr and sr are given as in Theorem 1.5.
Moreover, (�1)t and (�2)t can be chosen arbitrarily close to Sn so that the Ricci curva-

tures Ric(�i )t of (�i )t , i = 1, 2 are positive.

Observe that by P1 = s1 I − A and s1 = H , Theorem 1.4 shows that Theorem 1.6 also holds
for r = 1.

It is worth of mentioning that there is a parallel phenomenon in the clue of Riemannian
geometry. Recall that the Schur’s theorem states that the scalar curvature of an Einstein
manifold of dimension n ≥ 3 must be constant. One may consider the stability of Schur’s
theorem. See some work on this topic in [2,3,7,9–11].

The rest of this paper is organized as follows. In Sect. 2, we give some notation and
convention. In particular, we give the definitions of Newton transformation and r -th mean
curvatures associated to the second fundamental form. In Sect. 3, we prove the existence of
a smooth normal deformation which is needed in the next two sections. In Sect. 4, we give
some evolution equations and prove Theorem 1.4. In Sect. 5, we prove Theorem 1.6.

2 Notation and convention

In order to give the definition of high order mean curvatures and the Newton transformation
associated with the second fundamental form of a hypersurface, which was introduced by
Reilly [18] (cf. [19]), we first recall the definitions of the r th elementary symmetric functions
and Newton transformations. Let σr : Rn → R denote the elementary symmetric function
in R

n given by

σr (x1, . . . , xn) =
∑

i1<···<ir

xi1 . . . xir , 1 ≤ r ≤ n.

Let V be an n-dimensional vector space and A : V → V be a symmetric linear transfor-
mation. Let e1, . . . , en denote the orthonormal eigenvectors of A and η1, . . . , ηn denote the
eigenvalues satisfying Aei = ηi ei , i = 1, . . . , n respectively.

Definition 2.1 Define the r th symmetric functions σr (A), simply denoted by σr , associated
with A by

σ0 = 1, (2.1)

σr = σr (η1, . . . , ηn), 1 ≤ r ≤ n. (2.2)
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Also define the Newton transformations Pr : V → V, associated with A, 0 ≤ r ≤ n, as

P0 = I (Identidade), (2.3)

Pr =
r∑
j=0

(−1) jσr− j A
j

= σr I − σr−1A + · · · + (−1)r Ar , r = 1, . . . , n. (2.4)

By definition, Pr = σr I − APr−1, Pn = 0. It was proved in [18] that Pr has the following
basic properties:

(i) tr(Pr ) = (n − r)σr ; (2.5)

(i i) tr(APr ) = (r + 1)σr+1; (2.6)

(i i i) tr(A2Pr ) = σ1σr+1 − (r + 2)σr+2, (2.7)

where tr denotes the trace of the corresponding transformation.
Now assume (M, g̃) is an (n + 1)-dimensional Riemannian manifold, n ≥ 2. Suppose

(�, g) is a smooth connected oriented closed hypersurface immersed in (M, g̃)with induced
metric g. In this paper, unless otherwise specified, we denote by a “ ∼” all quantities on
(M, g̃), for instance by ∇̃ the Levi-Civita connection of (M, g̃). Also we denote for example
by∇, Ric,�, the Levi-Civita connection, the Ricci curvature tensor, the Laplacian on (�, g)
respectively.

Let ν denote the outward unit normal to �. The second fundamental form A = (Ai j ) of
� is defined by

A : Tp� ⊗s Tp� → R,

A(X, Y ) = −g̃(∇̃XY, ν),

where X, Y ∈ Tp�, p ∈ �.
The second fundamental form A corresponds a (1, 1)-tensor on Tp�, which is called the

shape operator of � and still denoted by A. Hence the shape operator A satisfies that A:
Tp� → Tp�, AX = ∇̃Xν, X ∈ Tp�.

Let ηi , i = 1, . . . , n denote the principle curvatures of � at p, which are the eigenvalues
of A at p corresponding the orthonormal eigenvectors {ei }, i = 1 . . . , n respectively.

By Definition 2.1, for the second fundamental form or the shape operator A, we have
sr = σr (A), the Newton transformations Pr associated with A at p respectively, 0 ≤ r ≤ n
and

Definition 2.2 The r th mean curvature Hr of � at p is defined by sr = (nr
)
Hr , 0 ≤ r ≤ n.

For instance, H1 = s1
n = H

n , where H = trA is the mean curvature of �. Hn is called the
Gauss-Kronecker curvature. When the ambient space M is a space form Mn+1

c with constant
sectional curvature c,

Ric = (n − 1)cI + H A − A2.

R = trRic = n(n − 1)c + H2 − |A|2 = n(n − 1)c + 2s2.

Hence H2 is, modulo a constant, the scalar curvature of �.
In a local coordinate system, g = (gi j ), its inverse g−1 = (gi j ). Given a smooth function

f on �, Hess f = ∇2 f denotes the Hessian of f on �. Throughout this paper, we use
Einstein summation convention of summing over repeated indices. We use the raising and

123



194 Geom Dedicata (2015) 177:189–211

lowering indices to change the type of tensor between a symmetric (2, 0) tensor and its
corresponding (1, 1) tensor. For instance,

g j
i = gikg

k j = δ
j
i ,

(Pr )i j = gik(Pr )
k
j .

We denote by 〈·, ·〉 the inner product of two smooth tensor fields of the same type on �.
Given two smooth symmetric (2, 0)-tensor fields (Si j ) and (Ti j ),

〈(Si j ), (Ti j )〉 = gi j gkl SikTjl = Sli T
i
l = 〈(S j

i ), (T j
i )〉.

We have the notation

|(Ti j )|2 = 〈(Ti j ), (Ti j )〉 = gi j gkl TikTjl = T j
i T

i
j = |(T j

i )|2.
When there is no confusion, we omit writting the type of tensors, for instance 〈S, T 〉, |T |2.
We denote by trT and T̊ the trace of (2, 0) tensor T and the traceless part of T : T̊ = T − trT

n g
respectively. Then

trT = gikTki = T i
i .

We use the notation: ∂t Ti j = ∂
∂t (Ti j ), ∂t T

j
i = ∂

∂t (T
j
i ), which define two tensors (∂t T )i j =

∂t Ti j and (∂t T )
j
i = ∂t Ti j , respectively.

3 A normal deformation

Let F0 : �n ↪→ (Mn+1, g̃) be a smooth immersion of a closed orientable hypersurface in a
Riemannian manifold with the induced metric g. We will prove the short-time existence of
the the following initial value problem: a one-parameter family F(·, t) : �×[0, T ) → Mn+1

of hypersurfaces �t = F(·, t) satisfies:{
∂F
∂t (x, t) = f (x)ν(x, t), x ∈ �, t ∈ [0, T );
F(x, 0) = F0(x), x ∈ �.

(3.1)

where f (x) is a smooth function on � and ν(x, t) denotes the outer unit normal of �t at
F(x, t).

The approach is to represent the hypersurface �t as a graph in Fermi coordinates over
the initial hypersurface � and then to consider the deformation process as a first order PDE
equation for the height function.

Let φ : � × (−ε, ε) → Mn+1 be an immersion, where ε is sufficiently small, by the
exponential map

φ(x, h) = expF0(x) hν(F0(x)).

φ induces a metric φ∗g̃ on � × (−ε, ε) from (Mn+1, g̃). Let x1, . . . , xn denotes a local
coordinate on �. Then { ∂

∂x1
, . . . , ∂

∂xn
, ∂

∂h } is a local coordinate frame on � × (−ε, ε). By
the Gauss lemma, the metric φ∗g̃ satisfies

(φ∗g̃)ih = g̃

(
∂

∂xi
,

∂

∂h

)
= 0, i = 1, . . . , n; (φ∗ g̃)hh = g̃

(
∂

∂h
,

∂

∂h

)
= 1.

Clearly for t fixed, φt (�) = φ(�, t) is a hypersurface in Mn+1. If � is embedded, φ gives
the so-called Fermi-coordinates on a tubular neighborhood of F0(�).
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Given a smooth function u : � → (−ε, ε), the map ψ : � → � × (−ε, ε) by ψ(x) =
(x, u(x)) is an immersion, i.e., the graph G(u) of u is a hypersurface in � × (−ε, ε). A local
coordinate frame on G(u) is

∂ψ

∂xi
= ∂

∂xi
+ ∂u

∂xi

∂

∂h
, i = 1, . . . , n.

The unit normal field n of G(u) is

n(x, u(x)) = 1

W

(
∂

∂h
− (φ∗g̃)i j ∂u

∂xi

∂

∂x j

)
(x, u(x)),

where W (x, u(x)) =
√
1 + (φ∗g̃)i j ∂u

∂xi
∂u
∂x j

(x, u(x)). Hence

〈n,
∂

∂h
〉 = 1

W
,

∂

∂h
= 1

W
n +

(
∂

∂h

)
,

where
(

∂
∂h

) is the projection of ∂
∂h to the tangent space ofG(u) spannedby ∂ψ

∂xi
, i = 1, . . . , n.

Under the above expression, we will prove that

Theorem 3.1 The initial value problem (3.1) has the unique smooth solution for T sufficiently
small.

Proof Consider the initial value problem of the first order PDE on � × [0, T ), T < ε:
{

∂u
∂t (x, t) = f (x)

√
1 + (φ∗g̃)i j ∂u

∂xi
∂u
∂x j

(x, u(x, t)), (x, t) ∈ � × (0, T )

u(x, 0) = 0, x ∈ �.
(3.2)

By the theory of the first order PDE (cf [1] §35–48; or [8], Chapter 3, Section 3), (3.2) exists
the unique smooth solution for t < T , where T is sufficiently small. Here the closeness of
� guarantees the global existence of the solution. Also we may choose T sufficiently small
so that u(x, t) ∈ (−ε, ε).

By the solutionu(x, t)of (3.2),wemay construct a one-parameter family of hypersurfaces,
i.e., graphs G(ut ), where ut (x) = u(x, t), t ∈ [0, T ), parametrised by  : � × [0, T ) →
� × (−ε, ε) satisfying

(x, t) = t (x) = (x, u(x, t)).

Then

∂

∂t
= ∂u

∂t

∂

∂h
= ∂u

∂t

(
1

W
n
)

+ ∂u

∂t

(
∂

∂h

)
.

So we have
∂

∂t
(x, t) = f (x)n(x, t) + λ(x, t), (3.3)

where n(x, t) denotes the unit normal oft (�) at(x, t) and λ = ∂u
∂t

(
∂
∂h

) is the projection
of ∂

∂t to the tangent space of t (�) spanned by ∂
∂xi

, i = 1, . . . , n.
Let α : � × [0, T ) → � be a smooth one-parameter family of diffeomorphisms of �

satisfying
∂α

∂t
= −∗

t λ, α0 = I d (Identity) (3.4)
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Integrating (3.4) directly, we obtain the unique smooth solution. Define �(x, t) =
(α(x, t), t). Then

∂�

∂t
(x, t) = ∗

(
∂α

∂t

)
(α(x, t), t) +

(
∂

∂t
(·, t)

)
(α(x, t), t)

= −λ(α(x, t), t) + f (x)ν(α(x, t), t) + λ�(x, t)

= f (x)n(x, t).

Finally note the exponential map φ is a local isometry. Define F : � × [0, T ) → Mn+1 by
F = φ ◦ �. Then F(x, t) is just the solution of Problem (3.1). ��

4 Evolution equations of geometric quantities and proof of Theorem 1.4

In this section, we will prove Theorem 1.4. Although there is a unified proof of it and
Theorem 1.6, we prefer to give an independent proof of Theorem 1.4. One reason is that the
evolution equations for mean curvature and the shape operator are much more simple than
the ones for r -th mean curvatures and the Newton transformations Pr , 2 ≤ r ≤ n. We use
the method by Perez [17] in proving Theorem 1.1.

Let F0 : �n ↪→ (Mn+1, g̃) be a smooth immersion of a closed orientable hypersurface
in a Riemannian manifold with the induced metric g. Consider the normal deformation of
hypersurfaces according to the equation:{

∂F
∂t (x, t) = f (x, t)ν(x, t), x ∈ �, t ∈ [0, T );
F(x, 0) = F0(x), x ∈ �.

(4.1)

where f (x, t) is a smooth function on � and ν(x, t) denotes the outer unit normal of �t =
F(�, t) at F(x, t).

If the solution of (4.1) exists, the following basic evolution equations holds under (4.1)
(cf [12,13]):

Proposition 4.1 For any solution of (4.1), it holds that

∂t gi j = 2 f Ai j , (4.2)

∂t g
i j = −2 f Ai j , (4.3)

∂t g
j
i = 0 (4.4)

∂t (dvol) = f Hdvol, (4.5)

∂tν = −∇ f, (4.6)

∂t Ai j = −(Hess f )i j + f (A2)i j − f R̃0i0 j , (4.7)

∂t H = −� f − |A|2 f − f R̃ic(ν, ν). (4.8)

In particular, when the ambient space is the space form Mn+1
c with the sectional curvature

c,

∂t Ai j = −(Hess f )i j + f (A2)i j − c f gi j , (4.9)

∂t H = −� f − |A|2 f − nc f. (4.10)

Here and thereafter, for simplicity, we drop the t subscript wherever it would not lead to
confusion. For instance, g and A denote the induced metric gt = F∗

t (g̃) and the second
fundamental form of (�t , gt ) respectively. When the ambient space is the space form Mn+1

c ,
Proposition 4.1 yields

123



Geom Dedicata (2015) 177:189–211 197

Proposition 4.2

∂t A
j
i = −(Hess f + f A2 + c f g) ji . (4.11)

∂t |A|2 = −2〈Hess f, A〉 − 2 f trA3 − 2c f H. (4.12)

∂t |Å|2 = −2〈Hess f, Å〉 − 2 f 〈A2, Å〉, (4.13)

where Å = A − tr A
n g.

Proof

∂t A
j
i = ∂t (Aikg

k j )

= (∂t Aik)g
kj + Aik∂t g

k j

= [−(Hess f )ik + f (A2)ik − c f gik]gkj − 2 f Aik A
k j

= −(Hess f ) ji − f (A2)
j
i − c f g j

i

∂t |A|2 = ∂t (A
j
i A

i
j )

= (∂t A
j
i )A

i
j + A j

i (∂t A
i
j )

= −(Hess f + f A2 + c f g) ji A
i
j − A j

i (Hess f + f A2 + c f g)ij

= −2〈Hess f, A〉 − 2 f trA3 − 2c f H.

∂t |Å|2 = ∂t

(
|A|2 − H2

n

)

= ∂t (|A|2) − 2H

n
∂t H

= −2〈Hess f, A〉 − 2 f trA3 − 2c f H + 2H

n
(� f + |A|2 f + nc f )

= −2〈Hess f, A〉 + 2H

n
〈Hess f, g〉 − 2 f 〈A2, A〉 + 2H

n
〈A2, g〉

= −2〈Hess f, Å〉 − 2 f 〈A2, Å〉.

��

In the rest of this section, we will consider the case that the ambient space is the space
form Mn+1

c and f (x, t) = f (x), that is, the normal deformation (3.1). Assume that � is a
closed totally umbilical hypersurface in Mn+1

c . It is well known that � must be a geodesic
sphere, i.e, distance sphere S

n(a), where a denotes its geodesic radius. Assume F(x, t) :
� × [0, T ) → Mn+1

c be the solution of the normal deformation (3.1). We consider the
functional F : �t = F(�, t) → R given by

F(�t ) = C2
∫

�

|Å|2 −
∫

�

(
H − H

)2
, (4.14)

where C is a constant and the subscripts t of Å, H and H are omitted.
Obviously, F(�) = 0. Next we obtain the first variation of F at t = 0 as follows.
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Proposition 4.3 If � is totally umbilical, then d
dtF(�t )|t=0 = 0.

Proof

d

dt
F(�t ) = C2

∫

�

∂t |Å|2dvol + C2
∫

�

|Å|2∂t (dvol)

−
∫

�

∂t (H − H)2dvol −
∫

�

(
H − H

)2
∂t (dvol).

At t = 0,
Å = 0. (4.15)

By (??),

H = H . (4.16)

∂t (H − H)2|t=0 = 2(H − H)∂t (H − H)|t=0 = 0. (4.17)

By (4.13), or directly

∂t |Å|2|t=0 = ∂t

(
Å

j
i Å

i
j

)
|t=0

=
(
∂t Å

j
i

)
Å
i
j |t=0 + Å

j
i

(
∂t Å

i
j

)
|t=0

= 0. (4.18)

Hence d
dtF(�t )|t=0 = 0. ��

Furthermore we discuss the second variation of F . The straightforward computation
implies the following conclusion.

Proposition 4.4 Suppose ϕ(·, t) : � × (−ε, ε) → R is a smooth function. If ϕ|t=0 = 0 and
∂tϕ|t=0 = 0, then (

d2

dt2

∫

�

ϕ

)
(0) =

∫

�

∂2t ϕ|t=0. (4.19)

Take φ = |Å|2 and (H − H)2 in Proposition 4.4 respectively. By (4.15), (4.16), (4.17) and
(4.18), it holds that

d2

dt2
F(�t )|t=0 = C2

∫

�

∂2t |Å|2|t=0 −
∫

�

∂2t (H − H)2|t=0 (4.20)

Now we will calculate the right hand of (4.20).

∂t Å
j
i = ∂t

(
A j
i − H

n
g j
i

)

= ∂t A
j
i − 1

n
(∂t H)g j

i − H

n
∂t g

j
i

= −[Hess f + f A2 + f cg] ji + 1

n
(� f + |A|2 f + nc f )g j

i
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= −(Hess f ) ji + 1

n
(� f )g j

i − f (A2)
j
i + 1

n
|A|2 f g j

i

= −(Hess f ) ji + 1

n
(� f )g j

i − f (AÅ)
j
i + 1

n
|Å|2 f g j

i − 1

n
H f Å

j
i . (4.21)

In the last equality of (4.21), we used the identity

A2 − 1

n
|A|2g = AÅ + H

n
A − 1

n

(
|Å|2 + H2

n

)
g = f AÅ − 1

n
|Å|2 + H

n
Å.

Note Å|t=0 = 0. By (4.21),

∂t Å
j
i |t=0 = −(Hess f ) ji |t=0 + 1

n
(� f )g j

i |t=0

= −(H̊ess f ) ji |t=0,

and

∂2t |Å|2|t=0 = ∂t

[
∂t

(
Å

j
i Å

i
j

)]
|t=0

=
[(

∂2t Å
j
i

)
Å
i
j + 2

(
∂t Å

j
i

) (
∂t Å

i
j

)
+ Å

j
i

(
∂2t Å

i
j

)]
|t=0

= 2
(
∂t Å

j
i |t=0

) (
∂t Å

i
j |t=0

)

= 2
(
H̊ess f

) j
i
|t=0

(
H̊ess f

)i
j
|t=0

= 2|H̊ess f |2|t=0 (4.22)

In order to calculate the second term of the right side of (4.20), we need the following
proposition, which was proved in [17].

Proposition 4.5 [17] Suppose ϕ(·, t) : � × (−ε, ε) → R be a smooth function. Let ϕ(t) =
1

vol(�t )

∫
�

ϕ(t)dvol(�t ) be average of ϕ(t) on �t . Then

d

dt
ϕ = ∂tϕ + f H(ϕ − ϕ). (4.23)

For the completeness of proof, we include its proof here.

Proof

∂tϕ =
[
∂t

(
1

vol(�t )

)]∫

�

ϕdvol + 1

vol(�t )
∂t

⎛
⎝
∫

�

ϕdvol

⎞
⎠

= − 1

vol(�t )2

⎡
⎣∂t

⎛
⎝
∫

�

dvol

⎞
⎠
⎤
⎦
∫

�

ϕdvol

+ 1

vol(�t )

∫

�

∂tϕdvol + 1

vol(�t )

∫

�

ϕ∂t (dvol)
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= − 1

vol(�t )

⎛
⎝
∫

�

f Hϕdvol

⎞
⎠+ ∂tϕ + 1

vol(�t )

⎛
⎝
∫

�

f Hϕdvol

⎞
⎠

= ∂tϕ + f H(ϕ − ϕ).

��
Taking ϕ = H in Proposition 4.5, we have

∂t H = ∂t H + f H(H − H). (4.24)

At t = 0, by (4.16), (4.8) and |A| = H2

n , it holds that

∂t (H − H)|t=0 = (∂t H − ∂t H)|t=0

= (∂t H − ∂t H − f H(H − H))|t=0

= (∂t H − ∂t H)|t=0

= −� f − |A|2 f − nc f + � f + |A|2 f + nc f

= −� f − H2

n
f − nc f + � f + H2

n
f + nc f

= −� f − nω f + � f + nω f ,

where ω = H2

n2
+ c. So

∂2t (H − H)2|t=0 = 2[∂t (H − H)]2 + 2(H − H)∂2t (H − H)

= 2[∂t (H − H)]2|
= 2(� f + nω f − � f + nω f )2 (4.25)

Thus (4.20) together with (4.22) and (4.25) yields that

Proposition 4.6 Let � is a totally umbilical hypersurface in the space form. It holds that

d2

dt2
F(�t )|t=0 = 2C2

∫

�

|H̊ess f |2(0) − 2
∫

�

(� f + nω f − � f + nω f )2. (4.26)

In the following, we will show that

Theorem 4.1 Let Mn+1
c be a space form of the constant sectional curvature c. Then there

exists a closed totally umbilical hypersurface � in M and a deformation F(·, t) of � such
that

d2

dt2
F(�t )|t=0 < 0,

where F(�t ) is given by (4.14) with constant C <
√

n
n−1 .

Proof We first consider the case of the simply connected space forms Mn+1
c , i.e., the Euclid-

ean space R
n+1, c = 0, the Euclidean sphere S

n+1, c > 0, and the hyperbolic space
H
n+1, c < 0 respectively. Here for convenience we take the Poincaré model for H

n+1.
Given an Mn+1

c , its rotationally symmetric metric is denoted by

g̃ = dr2 + sn2c(r)η,
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where η denotes the metric of the unit Euclidean sphere Sn , r denotes the distance under the
metric g̃ to the pole o and snc(r) is a function given by

snc(r) =

⎧⎪⎪⎨
⎪⎪⎩

r, if c = 0;
sin(

√
cr)√
c

, if c > 0;
sinh(

√|c|r)√|c| , if c < 0.

Now fix a number a > 0 (in the case of Sn+1, 0 < a < π√
c
) and choose � as the geodesic

sphere Sn(a) in M with the geodesic radius a centered at o. It is well known that � is totally
umbilical. On the other hand, � has the induced metric g = sn2c(a)η. The metric g is the
metric of the round sphere with the radius snc(a) and so the Ricci curvatue of � is

Ric�(∇ f,∇ f ) = n − 1

sn2c(a)
|∇ f |2.

Recalling the Bochner formula

1

2
�|∇ f |2 = |Hess f |2 + Ric�(∇ f,∇ f ) + 〈∇ f,∇(� f )〉 ,

and integrating it, by the Stokes’ formula, we have

∫

�

|Hess f |2 =
∫

�

(� f )2 −
∫

�

Ric�(∇ f,∇ f )

=
∫

�

(� f )2 − n − 1

sn2c(a)

∫

�

|∇ f |2

∫

�

|H̊ess f |2 =
∫

�

|Hess f |2 − 1

n

∫

�

(� f )2

= n − 1

n

∫

�

(� f )2 − n − 1

sn2c(a)

∫

�

|∇ f |2

= n − 1

n

∫

�

(� f )2 + n − 1

sn2c(a)

∫

�

f � f.

Note that the closeness of � implies the average � f = 0. Assume that f satisfies
∫
�

f = 0

(such f will be chosen later). Then

� f + nω f = � f + nω f = 0

and so
∫

�

(
� f + nω f − � f + nω f

)2 =
∫

�

(� f + nω f )2

=
∫

�

(� f )2 + 2nω

∫

�

f � f + n2ω2
∫

�

f 2.
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Thus

1

2

d2

dt2
F(�t )|t=0

= C2(n − 1)

n

∫

�

(� f )2 + C2(n − 1)

sn2c(r)

∫

�

f � f

−
∫

�

(� f )2 − 2nω

∫

�

f � f − n2ω2
∫

�

f 2

=
[
C2(n − 1)

n
− 1

] ∫

�

(� f )2 +
[
C2(n − 1)

sn2c(a)
− 2nω

] ∫

�

( f � f ) − n2ω2
∫

�

f 2

Now we choose f to be an eigenfunction of the Laplacian on (�, g) corresponding to the
nonzero eigenvalue ξ(k), that is,

�g f = −ξ(k) f,
∫

�

f = 0.

It is known that on �,

�g = 1

sn2c(a)
�η.

Hence the nonzero eigenvalues ξ(k) are

ξ(k) = k(k + n − 1)

sn2c(a)
, k = 1, 2, . . .

The sequence ξ(k) increases and diverges to the +∞ as k tends to +∞. For such f ,

1

2

d2

dt2
F(�t )|t=0

=
(
C2(n − 1)

n
− 1

)∫

�

(� f )2 +
(
C2(n − 1)

sn2c(a)
− 2nω

)∫

�

( f � f ) − n2ω2
∫

�

f 2

=
(
C2(n − 1)

n
− 1

)
ξ(k)2

∫

�

f 2 −
(
C2(n − 1)

sn2c(a)
− 2nω

)
ξ(k)

∫

�

f 2 − n2ω2
∫

�

f 2

=
[(

C2(n − 1)

n
− 1

)
ξ(k)2 −

(
C2(n − 1)

sn2c(a)
− 2nω

)
ξ(k) − n2ω2

] ∫

�

f 2

When C <

√
n−1
n , the coefficient of ξ2(k) in the last equality is negative. Hence, if ξ big

enough, the quadratic polynomial 1
2

d2

dt2
F(�t )|t=0 is negative. By the property of ξ(k), there

exists a k0 sufficiently large so that k ≥ k0, 1
2

d2

dt2
F(�t )|t=0 < 0. This is the case of the

simply connected Mn+1
c . Observe that the geodesic radius a of the geodesic sphere � can be

arbitrarily chosen only if it makes sense.
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IfMn+1
c is not simply connected,we consider the universal coveringmapπ : M̃ → Mn+1

c .
It is known that π is a local isometry. Let � ⊂ M̃ be a neighborhood of the pole o ∈ M̃
such that π : � → π(�) ⊂ M is an isometry. In �, by the conclusion of the simply
connected space form, there exists a geodesic sphere �̃ ⊂ � (with small geodesic radius)
and a deformation F̃(·, t) : �̃×(−ε, ε) → R, which has the conclusion of the theorem. Take
� = π(�̃) and the deformation F(·, t) = F̃(π−1(·), t). Then � and F satisfy the theorem.

��

The proof of Theorem 1.4 For the deformation F(x, t) given in Theorem 4.1 with �0 = S
n ,

the functional F satisfies

F(�t )|t=0 = d

dt
F(�t )|t=0 = 0,

d2

dt2
F(�t )|t=0 < 0. (4.27)

(4.27) implies that F(�t ) < 0 for t sufficiently small, that is, it holds on �t :∫

�t

(
H − H

)2
> C2

∫

�t

|A − H

n
g|2. (4.28)

By (4.28) and the identity:

|A − H

n
g|2 = |A − H

n
g|2 + 1

n

(
H − H

)2
, (4.29)

we have that for C <
√

n
n−1 ,

∫

�t

|A − H

n
g|2 >

(
1 + C2

n

)∫

�t

|A − H

n
g|2

> C2
∫

�t

|A − H

n
g|2. (4.30)

Since �t is arbitrarily close to S
n(a), the Ricci curvature Ric�t > 0. So we complete the

proof of theorem. ��

5 Proof of Theorem 1.6

In this section, we first give the needed evolution equation of sr (roughly r -th mean curva-
tures) under the general normal deform. Next we prove Theorem 1.6. For r ≥ 2, instead of
calculating the complicated evolution equations of Pr , we compute directly the corresponding
values at t = 0 by using the fact that � = �0 is totally umbilical (see (5.29)).

Consider the normal deformation F(x, t) of hypersurfaces in (4.1). Recall a result proved
by Reilly [18].

Proposition 5.1 [18] Let B = B(t) be a smooth one-parameter family of diagonalizable
linear transformation of the vector space V , σr the symmetric functions of the eigenvalues
of B and Qr the Newton transformation with respect to B. Then for r = 0, 1, . . . , n we have

∂tσr+1 = tr((∂t B)Qr ).
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Applying Proposition 5.1 to the shape operator A, by (4.11), we have

∂

∂t
(sr ) = tr((∂t A)Pr−1)

= −tr(Pr−1Hess f ) − f tr(Pr−1A
2) − c f trPr−1.

By (2.5) and (2.7),

∂

∂t
(sr ) = −tr(Pr−1Hess f ) − f

(
s1sr − (r + 1)sr+1

)− c(n − r + 1)sr−1.

So it holds that

Corollary 5.1 [18] Under (4.1),

∂

∂t
(sr ) = −tr(Pr−1Hess f ) − f tr(Pr−1A

2) − c f trPr−1 (5.1)

= −tr(Pr−1Hess f ) − f
(
s1sr − (r + 1)sr+1

)− c(n − r + 1)sr−1. (5.2)

To show Theorem 1.6, we will use the same approach as in the proof of Theorem 1.4. In
the rest of this section, we assume that F(x, t) : � × [0, T ) → Mn+1

c is the solution of the
normal deformation (3.1) and � is a totally umbilical hypersurface. Define the functional
G : �t = F(�, t) → R given by

G(�t ) = C2
∫

�

|P̊r |2 −
∫

�

(sr − sr )
2 , (5.3)

where C is a constant and the subscripts t of P̊r , sr and sr are omitted.
First we need some combinatorial identities.

Proposition 5.2

r∑
i=0

(−1)i
(

n

r − i

)
=
(
n − 1

r

)
(5.4)

(
n + 1

r

)
=
(
n

r

)
+
(

n

r − 1

)
(5.5)

n

(
n − 1

r

)
= (n − r)

(
n

r

)
(5.6)

r∑
i=0

(−1)i
(

n

r − i

)
i = −

(
n − 2

r − 1

)
(5.7)

(5.4), (5.5) and (5.6) are well known. Since we couldn’t find the adequate reference for
(5.7), for the completeness of the proof, we prove (5.7) here.
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Proof

r∑
i=0

(−1)i
(

n

r − i

)
i

= −
r∑

i=0

(−1)i
(

n

r − i

)
(r − i) +

r∑
i=0

(−1)i
(

n

r − i

)
r

= −
r−1∑
i=0

(−1)i
n(n − 1) . . . [n − (r − i) + 1]

(r − i)! (r − i) + r
r∑

i=0

(−1)i
(

n

r − i

)

= −n
r−1∑
i=0

(−1)i
(n − 1) . . . [n − 1 − (r − i − 1) + 1]

(r − i − 1)! + r

(
n − 1

r

)

= −n
r−1∑
i=0

(−1)i
(

n − 1

r − i − 1

)
+ r

(
n − 1

r

)

= −n

(
n − 2

r − 1

)
+ r

(
n − 1

r

)

= −n
n − r

n − 1

(
n − 1

r − 1

)
+ (n − r)

(
n − 1

r − 1

)

= −n − r

n − 1

(
n − 1

r − 1

)
. (5.8)

In the verification of (5.8), we used (5.4). By (5.6) and (5.8),

r∑
i=0

(−1)i
(

n

r − i

)
i = −

(
n − 2

r − 1

)
. (5.9)

��

Recall that � is a closed totally umbilical hypersurface, i.e., a geodesic sphere Sn(a) with
the geodesic radius a in the space form Mn+1

c . Denote by λ the principle curvatures of �. λ
is a constant. So for � = �0,

H = nλ, (5.10)

A = H

n
I = λI, (5.11)

Ak = λk I, (5.12)

sr =
∑

i1<···<ir

λi1 . . . λir =
∑

i1<···<ir

λr =
(
n

r

)
λr , (5.13)

sr = sr . (5.14)
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Moreover, by the definition (2.4) of Pr and (5.4), for 1 ≤ r ≤ n,

Pr =
r∑
j=0

(−1) j sr− j A
j

=
r∑
j=0

(−1) j
(

n

r − j

)
λr− jλ j I

= λr
(
n − 1

r

)
I. (5.15)

By (2.5), (5.6), (5.13), and (5.15).

P̊r = 0. (5.16)

So (5.16) and (5.14) imply that G(�t )|t=0 = 0. The first variation of G at t = 0 can be
calculated as follows.

∂t (|P̊r |2)|t=0 = ∂t [(P̊r ) ji (P̊r )ij ]|t=0

= [∂t (P̊r ) ji ](P̊r )ij |t=0 + (P̊r )
j
i ∂t [(P̊r )ij ]|t=0

= 0. (5.17)

∂t (sr − sr )
2|t=0 = 2(sr − sr )∂t (sr − sr )|t=0 = 0. (5.18)

So

d

dt
G(�t )|t=0 =

⎡
⎣C2

∫

�

|P̊r |2∂t (dvol) + C2
∫

�

∂t (|P̊r |2)dvol

−
∫

�

∂t (sr − sr )
2dvol −

∫

�

(sr − sr )
2∂t (dvol)

⎤
⎦ |t=0

= 0.

We obtain that

Proposition 5.3 For �, d
dt G(�t )|t=0 = 0.

Next we calculate the second variation of G(�t ) at t = 0. By (5.14), (5.16), (5.17) and (5.18),
Proposition 4.5 implies that

d2

dt2
G(�t )|t=0 = C2

∫

�

∂2t |P̊r |2|t=0 −
∫

�

∂2t (sr − sr )
2|t=0. (5.19)

We have

∂t (|P̊r |2) =
[
∂t (P̊r )

j
i

]
(P̊r )

i
j + (P̊r )

j
i

[
∂t (P̊r )

j
i

]
,

∂2t (|P̊r |2) =
[
∂t∂t (P̊r )

j
i

]
(P̊r )

i
j + 2

[
∂t (P̊r )

j
i

] [
∂t (P̊r )

i
j

]
+ (P̊r )

j
i

[
∂t∂t (P̊r )

j
i

]
.

So

∂2t (|P̊r |2)|t=0 = 2
[
∂t (P̊r )

j
i

] [
∂t (P̊r )

i
j

]
t=0

= 2|∂t P̊r |2t=0, (5.20)
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where the (1, 1)-tensor ∂t Pr is defined by (∂t Pr )
j
i := ∂t [(Pr ) ji ]. On the other hand, we have

∂t (sr − sr )
2 = 2(sr − sr )∂t (sr − sr ).

∂2t (sr − sr )
2 = 2(sr − sr )∂

2
t (sr − sr ) + 2[∂t (sr − sr )]2.

∂2t (sr − sr )
2(0) = 2[∂t (sr − sr )]2(0). (5.21)

So (5.19), (5.20) and (5.21) imply that

Proposition 5.4

d2

dt2
G(�t )|t=0 = 2C2

∫

�

(∂t |P̊r |)2|t=0 − 2
∫

�

[∂t (sr − sr )]2|t=0. (5.22)

By (2.5), (5.1), (5.13) and (5.15),

∂

∂t
(sr )|t=0 = −λr−1

(
n − 1

r − 1

)
trHess f |t=0 − f λr−1

(
n − 1

r − 1

)
λ2n − nc f λr−1

(
n − 1

r − 1

)

= −
(
n − 1

r − 1

)
λr−1(� f + nλ2 f + nc f ). (5.23)

Note on �, A = λI . Hence on �, A(Hess f ) = (Hess f )A. This property let us prove the
following conclusion.

Proposition 5.5

∂t (A
m)

j
i |t=0 = −m[(Hess f )Am−1 + f Am+1 + c f (Am−1)] ji |t=0 (5.24)

= −mλm−1[Hess f + λ2 f I + c f I ] ji |t=0 (5.25)

Proof We give the argument by induction. The conclusion holds for m = 1. Suppose
∂t (Am)

j
i |t=0 = −m[(Hess f )Am−1 + f Am+1 + c f (Am−1)] ji |t=0. Then

∂t (A
m+1)

j
i |t=0 = ∂t

[
Ak
i (A

m)
j
k

]
|t=0

= (∂t A
k
i )(A

m)
j
k |t=0 + Ak

i

[
∂t (A

m)
j
k

]
|t=0

= −[Hess f + f A2 + c f I ]ki (Am)
j
k |t=0

−mAk
i [(Hess f )Am−1 + f Am+1 + c f (Am−1)] jk |t=0

= −(m + 1)[(Hess f )Am + f Am+2 + c f (Am)] ji |t=0.

By induction, (5.24) holds. Take A = λI . Then

∂t (A
m)

j
i |t=0 = −m[λm−1(Hess f ) + f λm+1 I + c f λm−1 I ] ji |t=0,

which is just (5.25). ��
Proposition 5.5 implies the following

Proposition 5.6

∂t (P̊r )
j
i |t=0 = λr−1

(
n − 2

r − 1

)
(H̊ess f ) ji |t=0, (5.26)
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|∂t P̊r |2|t=0 = λ2(r−1)
(
n − 2

r − 1

)2

|H̊ess f |2|t=0, (5.27)

where H̊ess f = Hess f − � f
n I .

Proof By the definition (2.4) of Pr ,

∂t (Pr )
j
i |t=0 = ∂t

(
r−1∑
m=0

(−1)msr−m(Am)
j
i

)
|t=0

=
r−1∑
m=0

(−1)m(∂t sr−m)(Am)
j
i |t=0 +

r∑
m=0

(−1)msr−m∂t (A
m)

j
i |t=0

=
r−1∑
m=0

(−1)m
[
−
(

n − 1

r − m − 1

)
λr−m−1(� f + n f λ2 + nc f )λm I

]

+
r∑

m=0

(−1)m
(

n

r − m

)
λr−m[−mλm−1(Hess f + f λ2 I + c f I )]. (5.28)

By (5.4) and (5.7),

∂t (Pr )
j
i |t=0

= −
(
n − 2

r − 1

)
λr−1(� f + n f λ2 + nc f )I + λr−1

(
n − 2

r − 1

)
[Hess f + f λ2 I + f cI ]

= −λr−1
(
n − 2

r − 1

)
[(� f )I + (n − 1) f λ2 I + (n − 1)c f I − Hess f ] ji . (5.29)

Note P̊r = Pr − n−r
n sr g and ∂t g

j
i = 0. By (5.23) and (5.29), we have

∂t (P̊r )
j
i |t=0 = [

∂t (Pr )
j
i − n − r

n
(∂t sr )g

j
i − n − r

n
sr∂t g

j
i

]|t=0

= −λr−1
(
n − 2

r − 1

)
[(� f )I + (n − 1) f λ2 I + (n − 1)c f I − Hess f ] ji

+n − r

n

(
n − 1

r − 1

)
λr−1(� f + n f λ2 + nc f )I ji

= λr−1
(
n − 2

r − 1

)[
Hess f − 1

n
(� f )I + (n − 1)c f I

] j
i

= λr−1
(
n − 2

r − 1

)
(H̊ess f ) ji . (5.30)

(5.30) yields

|∂t P̊r |2|t=0 =
n∑

i, j=1

∂t (P̊r )
j
i |t=0∂t (P̊r )

i
j |t=0

= λ2(r−1)
(
n − 2

r − 1

)2

|H̊ess f |2 (5.31)

��
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Take ϕ = sr in Prop 4.5. It holds that

∂t sr |t=0 = [
f H(sr − sr ) + ∂t sr

]|t=0 = ∂t sr |t=0

= −λr−1
(
n − 1

r − 1

)
� f + nλ2 f + nc f |t=0

= −λr−1
(
n − 1

r − 1

)
(nλ2 + c) f

We will choose f later so that
∫
�

f = 0. For such f ,

∂t sr |t=0 = 0. (5.32)

Using (5.23), (5.27) and (5.32), by Proposition 5.22, we may calculate the second variation
of G at t = 0 as follows:

1

2

d2

dt2
G(�t )|t=0 = C2

∫

�

|∂t P̊r |2|t=0 −
∫

�

[∂t (sr − sr )]2|t=0

= λ2(r−1)

⎡
⎣C2

(
n − 2

r − 1

)2 ∫

�

|H̊ess f |2 −
(
n − 1

r − 1

)2 ∫

�

(� f +n f λ2 + nc f )2

⎤
⎦

= λ2(r−1)C2
(
n − 2

r − 1

)2 ⎡⎣n − 1

n

∫

�

(� f )2 + n − 1

sn2c(a)

∫

�

f � f

⎤
⎦

−λ2(r−1)
(
n − 1

r − 1

)2 ⎡⎣
∫

�

(� f )2+2n(λ2+c)
∫

�

f � f +n2(λ2+c)2
∫

�

f 2

⎤
⎦.

(5.33)

By (5.6), (n − 1)
(n−2
r−1

) = (n − r)
(n−1
r−1

)
. So it holds that

1

2

d2

dt2
G(�t )|t=0

= λ2(r−1)
(
n − 1

r − 1

)2[(C2(n − r)2

n(n − 1)
− 1

)∫

�

(� f )2

+
(
C2 (n − r)2

sn2c(a)(n − 1)
− 2n(λ2 + c)

)∫

�

f � f − n2(λ2 + c)2
∫

�

f 2
]

= λ2(r−1)
(
n − 1

r − 1

)2
⎧⎨
⎩α

∫

�

(� f )2 + β

∫

�

f � f + γ

∫

�

f 2

⎫⎬
⎭ (5.34)

where α = C2(n−r)2

n(n−1) − 1, β = C2 (n−r)2

sn2c (a)(n−1)
− 2n(λ2 + c), γ = −n2(λ2 + c)2.

If C <
√

n(n−1)
(n−r)2

, then α < 0. Similar to the proof of Theorem 4.1, we can prove that

Theorem 5.1 Let Mn+1
c be a space form of the constant sectional curvature c. Fix 2 ≤ r ≤

n − 1. Given C <
√

n(n−1)
(n−r)2

, there exists a closed totally umbilical hypersurface � in M and

a deformation F(·, t) of � such that
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d2

dt2
G(�t )|t=0 < 0,

where G(�t ) is given by (5.3).

The proof of Theorem 1.6 Let F(x, t)be thedeformationgiven inTheorem5.1with�0 = S
n

and C = C1 <
√

n(n−1)
(n−r)2

. Then Theorem 5.1 implies that for t sufficiently small,

∫

�t

(sr − sr )
2 > C2

1

∫

�t

|Pr − (n − r)sr
n

g|2. (5.35)

Take (�1)t = �t for sufficiently small t . So (1.9) holds.

Given C2 <
√
n, let C2

1 = n
(n−r)2

(C2
2 − 1). Then C1 <

√
n(n−1)
(n−r)2

. By (5.35) and the

identity:

|Pr − (n − r)sr
n

g|2 = |Pr − (n − r)sr
n

g|2 + (n − r)2

n
(sr − sr )

2, (5.36)

it holds that there exists a deformation �t , denoted by (�2)t so that

∫

�t

|Pr − (n − r)sr
n

g|2 >

(
1 + (n − r)2C2

1

n

)∫

�t

|Pr − (n − r)sr
n

g|2

= C2
2

∫

�t

|Pr − (n − r)sr
n

g|2. (5.37)

Clearly, the Ricci curvature Ric�t of �t is positive for t sufficiently small. ��
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