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Abstract. Let (T k, hk) = (S1
r1 × S1

r2 × ...× S1
rk
, dt21 + dt22 + ... + dt2k) be flat tori,

rk ≥ ... ≥ r2 ≥ r1 > 0 and (Rn, gE) the Euclidean space with the flat metric. We
compute the isoperimetric profile of (T 2 × Rn, h2 + gE), 2 ≤ n ≤ 5, for small and
big values of the volume. These computations give explicit lower bounds for the
isoperimetric profile of T 2 × Rn. We also note that similar estimates for (T k ×
Rn, hk + gE), 2 ≤ k ≤ 5, 2 ≤ n ≤ 7 − k, may be computed, provided estimates
for (T k−1 × Rn+1, hk−1 + gE) exist. We compute this explicitly for k = 3. We use
symmetrization techniques for product manifolds, based on work of A. Ros ([19])
and F. Morgan ([10]).

1. Introduction

The isoperimetric problem is a classical question in differential geometry. An isope-
rimetric region of volume t, 0 < t < V n(M), in a manifold (Mn, g), is a closed region
Ω of volume V n(Ω) = t, such that its boundary area is minimal among the compact
hypesurfaces Σ ⊂ M enclosing a region of volume t. Throughout the article, the
volume of a closed region Ω ⊂Mn will mean n−dimensional Riemannian measure of
Ω and we will refer to them as V n(Ω). On the other hand, the area of a closed region
Ω in the manifold Mn will mean the (n−1)−dimensional Riemannian measure of ∂Ω
and and we will denote it by V n−1(∂Ω).

Given a Riemannian manifold (Mn, g) of volume V , the isoperimetric function or
isoperimetric profile of (M, g) is the function I(M,g) : (0, V )→ (0,∞) given by

I(M,g)(t) = inf{V n−1(∂U) : V n(U) = t, U ⊂Mn, U a closed region}.
Note that the isoperimetric profile may be defined for manifolds of infinite volume.

We will simply write IM when the metric g is understood from context. A more
detailed treatment of this subject may be found in [19].

Although a classical problem, the isoperimetric profile is known for very few mani-
folds. It is known explicitly, for example, for space forms (Rn, gE), (Sn, g0), (Hn, gH),
where gE, g0 and gH are the Euclidean, the round and the hyperbolic metrics, respec-
tively. Other examples include cylinders of the type (Sn×R, g0 + dt2) by the work of
R. Pedrosa [13], and for the Riemannian product of a low dimensional space form with
S1, i.e., (S1×Rn, dt2+gE), (S1×Sn, dt2 +g0), (S1×Hn, dt2+gH) (2 ≤ n ≤ 7), by the
work of R. Pedrosa and M. Ritoré [14]. Other results in this direction include lower
bounds for isoperimetric profiles or characterizations of isoperimetric regions, see for
example, [11], [12], [15] and [17]. Nevertheless, for many seemingly simple products
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like (S2 × R2, g0 + gE) or (S1 × S1 × R2, dt2 + ds2 + gE), the explicit isoperimetric
profiles are not known.

Let (T 2, h2) be a standard flat torus, T 2 = R2/Γ, with Γ the orthogonal lattice
generated by {(2πr1, 0), (0, 2πr2)}, r1, r2 > 0. For example, the precise isoperimetric
profile of (T 2×R, h2 + dt2) is not known, and is conjectured to be a profile generated
by regions such as spheres (B3

R), cylinders (B2
R × [0, r]) and planes (T 2 × [0, r]),

R, r > 0. This conjecture was proven to be true for small volumes 0 < v < v∗1, for
some v∗1 > 0 by the work of L. Hauswirth, J. Pérez and A. Ros, in [6]. Moreover, one
may notice that the conjecture is also true for big volumes v > v∗∗1 , for some v∗∗1 >
0, through an immediate application of the Ros product Theorem ([19], Theorem
3.7), and a comparison with the isoperimetric profile of S2 × R, computed by R.
Pedrosa [13]. More precisely, let (T 2, h) be the flat torus with lattice generated by
{(2
√
π, 0), (0, 2

√
π)}. By direct computation V 2(T 2) = 4π = V 2(S2) and IS2 ≤ IT 2 .

Being S2 a model metric, we may apply the Ros product Theorem to the inequality.
This yields IS2×R ≤ IT 2×R.

Now, let Bn
R ⊂ Rn denote a ball of radius R > 0, and let fn : [0,∞) → [0,∞) be

the function given by

(1) fn(v) = V n+1(∂(T 2 ×Bn
R)),

with R such that v = V n+2(T 2 × Bn
R). With this notation, since T 2 × B1

R are actual
closed regions in T 2 × R, one has

IS2×R(v) ≤ IT 2×R(v) ≤ f1(v).

Explicit computations of IS2×R in the before cited work of R. Pedrosa [13], show that
for v ≥ v∗∗, IS2×R(v) = f1(v), with v∗∗ ≈ 16.66. It follows that IT 2×R(v) = f1(v) for
v ≥ v∗∗.

We may resume the above discussion in the following Theorem.

Theorem 1.1. (Theorem 18 in [6], together with [13] and [19])
Let (T 2, h) be a standard flat torus, T 2 = R2/Γ, with Γ the orthogonal lattice gener-

ated by {(2
√
π, 0), (0, 2

√
π)}. There are some v∗1, v

∗∗
1 > 0 such that the isoperimetric

profile of (T 2 × R, h + dr2) satisfies the following. For v < v∗1, IT 2×R(v) = IR3(v)

and for v > v∗∗1 , IT 2×Rn(v) = f1(v). Explicit estimates are v∗1 = 32π5/2

81
≈ 6.91 and

v∗∗1 ≈ 16.66.

In this article we paint a similar picture for the Riemannian manifold (T 2×Rn, h2+
gE), for 2 ≤ n ≤ 5 and gE the Euclidean metric on Rn. Our first result is the following.

Theorem 1.2. Let (T 2, h2) be a standard flat torus, T 2 = R2/Γ, with Γ the orthogonal
lattice generated by {(0, 2πr1), (2πr2, 0)}, 0 < r1 ≤ r2. For 2 ≤ n ≤ 5, there are
some ṽ∗n and ṽ∗∗n such that the isoperimetric profile of (T 2 ×Rn, h2 + gE) satisfies the
following. For v ≤ ṽ∗n, IT 2×Rn(v) = IS1×Rn+1(v) and for v ≥ ṽ∗∗n , IT 2×Rn(v) = fn(v).

Moreover, our proof gives simple formulas to compute explicit lower bounds for ṽ∗n
and upper bounds for ṽ∗∗n , as functions only of n, r1, r2. For example, a lower bound
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Figure 1. Before v∗2 ≈ 2.7 and after v∗∗2 ≈ 55.8, the isoperimetric
profile of (T 2 ×R2, h+ gE) is known precisely. In the interval between
v∗2 and v∗∗2 , is bounded above and below. See example 3.9 for details.
(T 2, h) is a standard flat torus, T 2 = R2/Γ, with Γ the orthogonal
lattice generated by {(2

√
π, 0), (0, 2

√
π)}. gE is the Euclidean metric.

for ṽ∗∗n is v∗∗n = max{an, bn}, where an is such that IS1
r1
×Rn+1(an)− fn(an) = 2βn(r1),

and bn such that IS1
r2
×Rn+1(bn)− fn(bn) = 2βn(r2). βn(r) being given by eq. (3).

On the other hand, an upper bound for ṽ∗n is v∗n = min{cn, vs}, where vs =
min{V n+2(S1

r1
× Bn+1

πr2
), V n+2(Bn+2

πr1
)} and cn is such that IS1

r1
×S1

r2
×Rn+1(cn) = K∗,

where K∗ > 0 is given by Lemma 3.4. See the proof of Theorem 1.2 for details on
these estimates. Numerical estimates for v∗2 ≤ ṽ∗2 and v∗∗2 ≥ ṽ∗2 for r1 = r2 = 1 are
v∗2 ≈ 5.25, and v∗∗2 ≈ 70.12.

The bounds for ṽ∗n and ṽ∗∗n we give are not optimal. In fact, we conjecture that
ṽ∗n = ṽ∗∗n . That is, IS1

r1
×S1

r2
×Rn(v) = Iscp(v), where Iscp(v) = min{IS1

r1
×Rn+1(v), fn(v)}.

Through the same symmetrization techniques one can obtain corresponding results
for T 3×Rn, based on the estimates for the isoperimetric profile of T 2×Rn. We first
define a corresponding function for the area of regions of the type V n+3(∂(T 3×Bn

R)).
Given a volume v consider the function gn(v) = V n+2(∂(T 3×Bn

R)), with R such that
V n+3(T 3 ×Bn

R) = v.

Theorem 1.3. Let (T 3, h3) be a standard flat k-torus, T 3 = S1
r1
× S1

r2
× S1

r3
, r1 ≤

r2 ≤ r3. Let 2 ≤ n ≤ 4. Suppose that there are some v∗n, v
∗∗
n , with v∗∗n ≥ v∗n > 0,

such that the following is satisfied. For v ≤ v∗n, IS1
r1
×S1

r2
×Rn(v) = IS1

r1
×Rn+1(v). For

v ≥ v∗∗n , IS1
r1
×S1

r2
×Rn(v) = fn(v).
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Then, there are some ũ∗n, ũ
∗∗
n , with ũ∗∗n ≥ ũ∗n > 0, such that the following is satisfied.

For v ≤ ũ∗n, IS1
r1
×Rn+2(v) = IS1

r1
×S1

r2
×S1

r3
×Rn(v). And for v ≥ ũ∗∗n , IS1

r1
×S1

r2
×S1

r3
×Rn(v) =

gn(v).

The proof of Theorem 1.3 gives explicit estimates for lower bounds for ũ∗n and
upper bounds for ũ∗∗n , based on those for v∗n and v∗∗n . Of course, one may combine
the ideas behind the proofs of Theorems 1.2 and 1.3 in an inductive way and obtain
corresponding results for T k ×Rn, 2 ≤ k ≤ 5, 2 ≤ n ≤ 7− k, based on the estimates
for (T k−1 × Rn, h+ gE).

The fact that, for big volumes, regions of the type M×Bn
R are isoperimetric regions

of manifolds the type Mk×Rn, where Mk is compact, was known to be true in general
(see for example the work of J. Gonzalo [4]). Nevertheless, no explicit estimates of
how big the volume should be, in order for this to happen, were known. On the other
hand, isoperimetric regions with small volumes were studied in the case T 2 × R, in
[6], using symmetries and properties exclusive of three manifolds. Our approach is
different, based on symmetrization techniques like the Ros product Theorem [19] and
others introduced by F. Morgan in [10]. We also treat the more general case T 2×Rn.

Estimates for v∗n and v∗∗n give a good understanding of the general shape of the
isoperimetric profile of (T 2 × Rn, h2 + gE). For example, figure 1 shows lower and
upper bounds for the graphic of the isoperimetric profile of (T 2 × R2, h+ gE); based
on computations of v∗2 and v∗∗2 .

Acknowledgments. The authors were supported by grant UNAM-DGAPA-PAPIIT
IA106918. The authors would like to thank Professor Adolfo Sánchez Valenzuela and
CIMAT Mérida for their hospitality, where part of this work was done. We would
also like to thank Professor Mario Eudave Muñoz from IMATE-UNAM Juriquilla, for
useful comments on the subject.

2. Notation and background

Existence and regularity of isoperimetric regions is a fundamental result due to the
works of Almgren [1], Grüter [5], Gonzalez, Massari, Tamanini [3], (see also Morgan
[9], Ros [19]).

Theorem 2.1. Let Mn be a compact Riemannian manifold, or non-compact with
M/G compact, being G the isometry group of M . Then, for any t, 0 < t < V (M),
there exists a compact region Ω ⊂ M , whose boundary Σ = ∂Ω minimizes area
among regions of volume t. Moreover, except for a closed singular set of Hausdorff
dimension at most n − 8, the boundary Σ of any minimizing region is a smooth
embedded hypersurface with constant mean curvature.

Note that T 2 × Rn has no boundary, and is compact if it is acted upon by its
isometry group. Also since we will only be dealing with the cases n + 2 ≤ 7, every
hypersurface Σ enclosing an isoperimetric region will be smooth and of constant mean
curvature (CMC). Throughout the article, Bn

R will denote an n-dimensional ball of
radius R in Rn.
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We will work only with Tori that are Riemannian products: (T 2, g2) = (S1
r1
×

S1
r2
, ds2 + dt2) or (T 3, g3) = (S1

r1
×S1

r2
×S1

r3
, ds2 + dt2 + du2), for some r1, r2, r3 ∈ R+.

Without loss of generality we will assume r1 ≤ r2 ≤ r3.
The isoperimetric profile of the Riemannian product S1

r × Rn, 2 ≤ n ≤ 7 is well
known, by the work of Pedrosa and Ritoré (Theorem 3.5 in [13]) and is given by

(2) IS1
r×Rn(v) =

{
(1 + n)

n
1+nω

1
1+n
n v

n
1+n , if v ≤ βn(r)

n
n−1
n (2πrωn−1)

1
nv

n−1
n , if v > βn(r)

where ωn = V n(Sn) and

(3) βn(r) = n(n−1)(n+1)(2πrωn−1)
n+1(1 + n)−n

2

ω−nn .

Note that βn(r) depends only on n and r. For fixed r and n, βn(r) is the critical
number such that for volumes less than βn(r), balls Bn+1

R ⊂ S1
r×Rn are isoperimetric;

while for volumes greater than βn(r), regions of the type S1
r × Bn

R ⊂ S1 × Rn are
isoperimetric. The isoperimetric profile is continuous. We will denote by αn(r) the
area of the isoperimetric regions of volume βn(r); this is, αn(r) = IS1

r×Rn(βn(r)).

3. The isoperimetric profile of T 2 × Rn

It was conjectured in [6] that the isoperimetric profile of T 2 × R is composed of
three parts: for small volumes, the solutions of the isoperimetric problem are spheres
(B3

R), then, for intermediate volumes, cylinders (S1 × B2
R), then, for big volumes,

planes (T 2 × B1
R). This was called the Iscp profile (spheres-cylinders-planes). The

conjecture is then that IT 2×R = Iscp. In the same article, the conjecture was proven
to be true for small volumes. The solutions were also proved to be unique and their
proof included tori of other types, more general than only orthogonal tori.

We propose a similar conjecture for T 2 × Rn: for small volumes, spheres Bn+2
R

are isoperimetric regions, for intermediate volumes, cylinders (S1 × Bn+1
R ), and for

big volumes, planes (T 2 × Bn
R). We will also call this the Iscp profile. We will not

discuss uniqueness of solutions to the isoperimetric problem. Our results make use of
equation (2), so that in the following, n is an integer such that 2 ≤ n ≤ 7.

Let Ω be an isoperimetric region in T 2×Rn = S1
r1
×S1

r2
×Rn. We may parameterize

S1
r1

by [0, 2πr1] and consider the slices Ωt, t ∈ [0, 2π r1),

Ωt = Ω ∩ ({t} × S1
r2
× Rn).

Then for each slice Ωt, we may compute its (n + 1)-volume and define a function
F1 : [0, 2πr1]→ R, by F1(t) = V n+1(Ωt) and F1(2πr1) = V n+1(Ω0).

Similarly, one may parameterize S1
r2

by [0, 2πr2) and consider the slices Ωs, s ∈
[0, 2πr2):

Ωs = Ω ∩ (S1
r1
× {s} × Rn).
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Likewise we may define F2 : [0, 2π r2] → R, by F2(s) = V n+1(Ωs) and F2(2πr2) =
V n+1(Ω0). Of course, both F1 and F2 are continuous. Let θm and θM , and σm and
σM , denote the minimum and maximum values of F1(t) and of F2(s) respectively.

We start with the following.

Lemma 3.1. If θm = 0 or σm = 0, then

IS1
r1
×Rn+1(V n+2(Ω)) ≤ V n+1(∂Ω).

Proof. Suppose θm = 0. Let t0 ∈ [0, 2πr1] be such that F1(t0) = θm = 0. We
construct a new closed region Ω∗ ⊂ [t0, t0 + 2πr1] × S1

r2
× Rn, in the following way.

For t ∈ [0, 2πr1), let Ω∗t0+t = Ωt. Also, let Ω∗t0+2πr1
= Ωt0 . That is, we are adding a

copy of Ωt0 at {t0 + 2πr1} × S1
r2
× Rn. Since, by hypothesis V n+1(Ωt0) = 0, we then

have V n+1(∂Ω) = V n+1(∂Ω∗) and V n+1(Ω) = V n+1(Ω∗). Note also that Ω∗ is a closed
region in R× S1

r2
× Rn, by continuity of F1. It follows that

(4) IS1
r2
×Rn+1(V n+2(Ω)) = IS1

r2
×Rn+1(V n+2(Ω∗)) ≤ V n+1(∂Ω∗) = V n+1(∂Ω).

Finally, since r1 ≤ r2, eqs. (2) and (4) imply

IS1
r1
×Rn+1(V n+2(Ω)) ≤ IS1

r2
×Rn+1(V n+2(Ω)) ≤ V n+1(∂Ω).

The proof of the case F2(s0) = 0 is very similar, as in this case Ω can also be
embedded isometrically in S1

r1
×R×Rn as a closed region, by adding an (n+ 1) zero

measure set Ωs0 . Hence in this case we also have IS1
r1
×Rn+1(V n+2(Ω)) ≤ V n+1(∂Ω).

�

Lemma 3.2. If θM ≤ βn(r2) or σM ≤ βn(r1), then IS1
r1
×Rn+1(V n+2(Ω)) ≤ V n+1(∂Ω).

Proof. We will suppose θM ≤ βn(r2); the proof of the case σM ≤ βn(r1) is similar.
We will also suppose θm > 0 and σm > 0 since the case θm = 0 or σm = 0 is treated
in Lemma 3.1.

The idea is to symmetrize the isoperimetric region Ω as in the proof of the Ros
Product Theorem ([19]). We construct a new region Ω∗ ⊂ S1

r1
×S1

r2
×Rn by replacing

each Ωt ⊂ {t}×S1
r2
×Rn with an isoperimetric region in {t}×S1

r2
×Rn. That is, we let

Ω∗t = {t} × Bn+1
R(t) , where R(t) > 0 is such that V n+1({t} × Bn+1

R(t)) = V n+1(Ωt). Since

θM ≤ βn(r2), then V n+1(Ωt) ≤ βn(r2) for each t ∈ [0, 2πr1) and hence {t} × Bn+1
R(t) ⊂

{t} × S1
r2
× Rn for each t.

Also, since F1(t) is continuous, the region Ω∗ is closed in S1
r1
×S1

r2
×Rn. Note also

that by construction V n+2(Ω∗) = V n+2(Ω).
Recall from eq. (2) that for v ≤ βn(r2), IS1

r2
×Rn(v) = IRn+1(v). Since θM ≤ βn(r2),

it follows that for each t ∈ [0, 2πr1):

V n+1(∂Ω∗t ) = V n+1(∂Bn+1
R(t)) = IRn+1(V n+2(Ωt)) = IS1

r2
×Rn(V n+2(Ωt)) ≤ V n+1(∂Ωt).

Arguing as in the proof of the Ros Product Theorem, from the last inequality we get

V n+1(∂Ω∗) ≤ V n+1(∂Ω).
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Moreover, since V n+2(Ω∗) = V n+2(Ω) and Ω∗ is a closed region in S1
r2
×Rn+1, we have

IS1
r2
×Rn+1(V n+2(Ω)) = IS1

r2
×Rn+1(V n+2(Ω∗)) ≤ V n+1(∂Ω∗) ≤ V n+1(∂Ω).

Since r1 ≤ r2 the conclusion of the lemma follows.
�

Recall the definition of fn(v) by equation (1). We prove the following.

Lemma 3.3. If θm ≥ βn(r2) or σm ≥ βn(r1), then

V n+1(∂Ω) = fn(V n+2(Ω)).

Proof. We will prove the case θm ≥ βn(r2). The other one is similar.
Recall from eq. (2) that for v ≥ βn(r2), isoperimetric regions in S1

r2
×Rn are of the

type S1
r2
× Bn

R. This means IS1
r2
×Rn(v) = V 1(S1

r2
)V n−1(∂Bn

R), for some R > 0 such

that v = V 1(S1
r2

)V n(Bn
R). We symmetrize the isoperimetric region Ω as in the proof

of the Ros Product Theorem: we replace each Ωt in {t} × S1
r2
× Rn by a product of

S1
r2

and ball Bn
R(t) ⊂ Rn such that V 1(S1

r2
)V n(Bn

R(t)) = V n+1(Ωt). We denote the new

region in S1
r1
×S1

r2
×Rn by Ω∗. Since F1(t) is continuous, and for each t we are using

a region of the type S1
r2
× Bn

R(t), the region Ω∗ is closed in S1
r1
× S1

r2
× Rn. Note also

that V n+2(Ω∗) = V n+2(Ω). And, since for each t ∈ [0, 2πr1) we have

V n(∂Ω∗t ) = IS1
r2
×Rn(V n+1(Ωt)) ≤ V n(∂Ωt),

it follows from the Ros product Theorem that

(5) V n+1(∂Ω∗) ≤ V n(∂Ω).

We now symmetrize Ω∗ ⊂ S1
r1
× S1

r2
×Rn with respect to the other factor, S1

r2
. We

parameterize S1
r2

by [0, 2π r2) and consider the slices Ω∗s, s ∈ [0, 2πr2):

Ω∗s = Ω∗ ∩ (S1
r1
× {s} × Rn).

For each slice we may compute its (n + 1)-volume and define a function G :
[0, 2πr2] → R, by G(s) = V n+1(Ω∗s) for [0, 2πr2) and G(2πr2) = V n+1(Ω∗0). Note
that G is continuous. Moreover, by construction, for each t and any s1, s2 ∈ [0, 2πr2],

{t} × {s1} ×Bn
R(t) = {t} × {s2} ×Bn

R(t).

This implies that both slices Ω∗s1 and Ω∗s2 have the same volume. It follows that G(s)
is constant.

We now claim that G(s) ≥ βn(r2): by hypothesis θm ≥ βn(r2), which implies

(6) V n+2(Ω) ≥ V 1(Sr1)βn(r2).

If the claim were not true, then G(s) < βn(r2) and we would have

V n+2(Ω∗) = V 1(Sr1)G(s) < V 1(Sr1)βn(r2),

which is ruled out by inequality (6), since V n+2(Ω∗) = V n+2(Ω).
We now construct a new region Ω∗∗ ⊂ S1

r1
× S1

r2
× Rn by letting each slice Ω∗∗s =

S1
r1
× {s} ×Bn

R0
, where R0 is such that V 1(S1

r1
)V n(Bn

R0
) = G(s).
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Since G(s) is constant, then R0 is constant, and we get V n+2(Ω∗∗) = V n+2(Ω∗) =
V n+2(Ω). Moreover, by continuity of G(s), the region Ω∗∗ is closed. And since
G(s) ≥ βn(r2), we have

V n(∂Ω∗∗s ) = V n(∂(S1
r1
× {s} ×Bn

R0
)) ≤ V n(∂Ω∗s).

Hence, using the Ros Product Theorem we get V n+1(∂Ω∗∗) ≤ V n+1(∂Ω∗). And
together with eq. (5):

V n+1(∂Ω∗∗) ≤ V n+1(∂Ω∗) ≤ V n+1(∂Ω).

Finally, by construction, we have that in fact

Ω∗∗ = S1
r1
× S1

r2
×Bn

R0
.

It follows that

fn(V n+2(Ω)) = V n+1(∂(S1
r1
× S1

r2
×Bn

R0
)) = V n+1(∂Ω∗∗) ≤ V n+1(∂Ω).

Being Ω isoperimetric, we conclude that fn(V n+2(Ω)) = V n+1(∂Ω).
�

We now prove that the case 0 < θm < βn(r2) < θM and 0 < σm < βn(r1) < σM
cannot occur for small areas of Ω.

Lemma 3.4. Suppose that 0 < θm < βn(r2) < θM and 0 < σm < βn(r1) < σM occurs.
Then there is some K∗ > 0 such that V n+1(∂Ω) ≥ K∗. Moreover, K∗ is independent

of Ω and depends only on r1, r2, n. In particular, is given by

(7) K∗ = max{V 1(S1
r1

) IRn+1(θ∗), V 1(S1
r2

) IRn+1(σ∗)},
where θ∗ ∈ (0, βn(r1)) is such that

(8)
1

2
V (S1

r2
)IRn+1(θ∗) + θ∗ = βn(r1),

and σ∗ ∈ (0, βn(r2)) such that

(9)
1

2
V (S1

r1
)IRn+1(σ∗) + σ∗ = βn(r2).

Remark 3.5. Since r1 and r2 are fixed, equations (8) and (9) are algebraic equations

of the type a x
n+1
n+2 + x = b, with a, b, n > 0. It is straightforward to check that a

solution exists and is unique for each equation.

Proof. We follow a construction by F. Morgan [10], which estimates lower bounds
for isoperimetric profiles of products. We consider the product of (S1

r1
, dt2) with

(S1
r2
× Rn, ds2 + gE). We start by defining a product manifold (0, V1) × (0,∞) ⊂

R2, where V1 = V 1(S1
r1

). And we equip this 2-dimensional manifold with a model
metric in the sense of the Ros product Theorem ([19]). (0, V1) and (0,∞) will have
Euclidean Lebesgue Measure and Riemannian metric 1

2
ds and ( 1

h(x)
)dr respectively,

where h(x) = IS1
r2
×Rn+1(x).

To show that this is in fact a model metric, it suffices to prove that in each interval,
(0, V1) and (0,∞), intervals of the type (0, t), t > 0, minimize perimeter, among closed
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sets S of given Euclidean length t. For the interval (0,∞) this holds because h(x)
is nondecreasing. On the other hand, for the interval (0, V1), we argue as follows.
Suppose S ⊂ (0, V1) is a closed set of perimeter t, that is not of the type (0, t); then
it must be a locally finite collection of closed intervals; then an interior interval must
be at least borderline unstable, because the factor 1

2
is constant. We conclude that S

does not minimize perimeter.
Minkowski content on (0, V1) and (0,∞) counts boundary points of intervals with

density 2 and h(x), respectively. Similarly, Minkowski content on (0, V1)× (0,∞) has
perimeter measured by

(10) ds2 = h2(v2)dv
2
1 + 22dv22.

It follows from the proof of the Ros Product Theorem that, for any v > 0,
IS1

r1
×(S1

r2
×Rn)(v) is bounded from below by the perimeter P (E) of the boundary δE of

some region E ⊂ (0, V1)× (0,∞). The area of E, A(E), satisfies v = A(E) and δE is
a connected boundary curve along which v2 is nonincreasing and v1 is nondecreasing.
The enclosed region E is on the lower left of δE. Hence

P (E) ≤ IS1
r1
×(S1

r2
×Rn)(v)

where

(11) P (E) =

∫
δE

√
h2(v2)dv21 + 22dv22.

and the area of the region E is given by

A(E) =

∫ ∫
E

dv1 dv2.

Since each term in the square root of eq. (11) is non-negative, we have

(12) P (E) ≥ 2

∫
δE

dv2

and

(13) P (E) ≥
∫
δE

h(v2)dv1.

Now, using the hypothesis 0 < θm < βn(r2) < θM , we have from eq. (12)

P (E) ≥ 2(βn(r2)− θm),

and from eq. (13),

P (E) ≥ min
v2
{h(v2)}

∫
δE

dv1 ≥ IS1×Rn(θm) V1.

That is,
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P (E) ≥ max{2(βn(r2)−θm), (V1) IS1
r2
×Rn(θm)} = max{2(βn(r2)−θm), (V1) IRn+1(θm)}

where the last equality follows from the fact that IS1
r2
×Rn(θm) = IRn+1(θm) (since

θm < βn(r2)). Hence, for the isoperimetric region Ω we have,

max{2(βn(r2)− θm), V1 IRn+1(θm)} ≤ P (E) ≤ V n+1(∂Ω).

By Remark 3.5, there is a unique θ∗ ∈ (0, βn(r2)) such that satisfies 2(βn(r2)−θ∗) =
V1IRn+1(θ∗), which is eq. (8). Note also that, as functions of θm, 2(βn(r2) − θm) is
decreasing while V1 IRn+1(θm) is increasing. This yields

(14) V1 IRn+1(θ∗) ≤ max{2(βn(r2)− θm), V1 IRn+1(θm)} ≤ P (E) ≤ V n+1(∂Ω),

regardless of the value of θm. One may obtain a similar result,

(15) V 1(S1
r2

) IRn+1(σ∗) ≤ P (E) ≤ V n+1(∂Ω),

being σ∗ ∈ (0, βn(r1)), such that satisfies eq. (9), by following the same analysis for
the product of (S1

r2
, dt2) with (S1

r1
×Rn, ds2 + gE) and using the hypothesis 0 < σm <

βn(r1) < σM .
Since both eqs. (14) and (15) occur, the conclusion of the Lemma follows.

�

We now prove some lower bounds for V n+1(∂Ω) for the case where 0 < θm <
βn(r2) < θM and 0 < σm < βn(r1) < σM occur.

Lemma 3.6. Suppose 0 < θm < βn(r2) < θM , and 0 < σm < βn(r1) < σM . Then

(16) IS1
r2
×Rn+1(v)− 2βn(r2) ≤ IS1

r1
×S1

r2
×Rn(v)

and

(17) IS1
r1
×Rn+1(v)− 2βn(r1) ≤ IS1

r1
×S1

r2
×Rn(v)

Proof. We construct a new closed region Ω∗ ⊂ [tm, tm+2πr1 ]×S1
r2
×Rn ⊂ R×S1

r2
×Rn,

with tm such that F1(tm) = θm > 0, in the following way. For t ∈ (0, 2πr1) let
Ω∗tm+t = Ωt. Also, let Ω∗tm+2πr1

= Ωtm and Ω∗tm = Ωtm .
Note that V n+2(Ω∗) = V n+2(Ω) and V n+1(∂Ω∗) = V n+1(∂Ω) + 2V n+1(Ωtm) =

V n+1(∂Ω) + 2θm.
Let v = V n+2(Ω). Since Ω∗ is actually a closed set in [tm, tm+2πr1 ] × S1

r2
× Rn ⊂

R× S1
r2
× Rn, it follows that

IS1
r2
×Rn+1(v) ≤ V n+1(∂Ω∗) = V n+1(∂Ω) + 2θm

Since θm < βn(r2), and Ω is isoperimetric, we have

IS1
r2
×Rn+1(v)− 2βn(r2) < IS1

r2
×Rn+1(v)− 2θm ≤ V n+1(∂Ω) = IS1

r1
×S1

r2
×Rn(v).
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Similarly, using 0 < σm < βn(r1) < σM , one may embed Ω in S1
r1
×Rn+1 by replacing

Ωsm with 2 copies of Ωsm , where F (sm) = σm. Following the same argument as before,
one gets

IS1
r1
×Rn+1(v)− 2βn(r1) ≤ V n+1(∂Ω) = IS1

r1
×S1

r2
×Rn(v).

�

We now prove a straightforward lemma that will be useful.

Lemma 3.7. Let a, b > 0, n ∈ N, n > 1. Consider the function ϕ(x) = x
n

n+1−a xn−1
n .

There is a unique x0 > 0 such that ϕ(x0) = 0 and ϕ(x) > 0 for x > x0. There is a
unique x1 > 0 such that ϕ(x1) = b and ϕ(x) > b for x > x1. Moreover x0 < x1.

Proof. For the first claim, we note that for x > 0, ϕ′(x) = 0 if and only if

x =

(
(n− 1)(n+ 1)

n2
a

)n(n+1)

.

Note that ϕ(0) = 0 < b, and ϕ(x) is decreasing for x > 0 until x1 = ( (n−1)(n+1)
n2 a)n(n+1) >

0 and increasing after that. This implies the first and second claims.
For the third claim it suffices to remark that ϕ(x) is still increasing after x0 and

that ϕ(x1) < 0 = ϕ(x0) < b = ϕ(x1); since b > 0. It follows that x0 < x1.
�

Remark 3.8. Note that since r1 and r2 are fixed, equations (18) and (19) are algebraic

equations on v of the type v
n

n+1 − a v n−1
n = b, where a, b, n > 0. By Lemma 3.7 they

have unique solutions v∗∗i > 0; and IS1
ri
×Rn+1(v) − fn(v) > 2βn(ri) for v > v∗∗i ,

for i = 1, 2. Also, IS1
ri
×Rn+1(v) − fn(v) = 0 has a unique solution v0i > 0, and

IS1
ri
×Rn+1(v) > fn(v) for v > v0i, for i = 1, 2. Lemma 3.7 also implies v0i < v∗∗i .

We now prove Theorem 1.2.

Proof. Let Ω ⊂ S1
r1
× S1

r2
× Rn be an isoperimetric region. Consider the functions

F1, F2 and the values θm, θM , σm, σM as before.
We begin with the case of big volumes. Let v∗∗ = max{an, bn}, where an is such

that

(18) IS1
r1
×Rn+1(an)− fn(an) = 2βn(r1),

and bn such that

(19) IS1
r2
×Rn+1(bn)− fn(bn) = 2βn(r2).

By Remark 3.8, for v > v∗∗,

(20) IS1
ri
×Rn+1(v)− fn(v) > 2βn(ri),

for i = 1, 2. Hence, Lemma 3.6 excludes the case 0 < θm < βn(r) < θM and 0 < σm <
βn(r) < σM . Remark 3.8 also states that v∗∗ > v0, where v0 = max{v01 , v02} and v0i
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is the unique v such that IS1
ri
×Rn+1(v) = fn(v). This implies that for v > v∗∗ > v0

(21) IS1
ri
×Rn+1(v) > fn(v).

Since IS1
r1
×S1

r2
×Rn(v) ≤ fn(v) for all v ≥ 0, inequality (21) excludes the following

cases, if V n+2(Ω) > v∗∗:

(1) θm = 0 or σm = 0, by Lemma 3.1.
(2) θM < βn(r2) or θM < βn(r1), by Lemma 3.2.

Thus, the only case left if v = V n+2(Ω) > v∗∗ is θm ≥ βn(r2) or σm ≥ βn(r1), which
implies IS1

r1
×S1

r2
×Rn(v) = fn(v) by Lemma 3.3.

We now treat the case of small volumes.
Let vs = min{V n+2(S1

r1
×Bn+1

πr2
), V n+2(Bn+2

πr1
)}.

Isoperimetric regions in S1
r1
× Rn+1 are either regions of the type Bn+2

R or S1
r1
×

Bn+1
R , which are realizable in S1

r1
× S1

r2
× Rn+1 if R < πr1 ≤ πr2. This implies

IS1
r1
×S1

r2
×Rn+1(v) ≤ IS1

r1
×Rn+1(v) for v ≤ vs.

Note that for R < πr2, S
1
r1
×Bn+1

R is a closed region in S1
r1
× S1

r2
× Rn.

Hence for v < vs
IS1

r1
×S1

r2
×Rn(v) ≤ IS1

r1
×Rn+1(v).

Lemma 3.1 implies that if θm = 0 or σm = 0, then for v < vs,

(22) IS1
r1
×Rn+1(v) ≤ IS1

r1
×S1

r2
×Rn(v) ≤ IS1

r1
×Rn+1(v).

By Lemma 3.2, for v < vs, these inequalities are also satisfied if θM ≤ βn(r2) or
σM ≤ βn(r1).

Note also that for v < min{vs, v01}, Lemma 3.3 excludes the case θm ≥ βn(r2) or
σm ≤ βn(r1). Otherwise we would have

IS1
r1
×Rn+1(v) > fn(v) = IS1

r1
×S1

r2
×Rn(v) < IS1

r1
×Rn+1(v).

Finally, let cn be such that

IS1
r1
×Rn(cn) = K∗,

where K∗ is the constant defined in Lemma 3.4.
Let v∗n = min{vs, cn, v01}. Then, for v < v∗n,

IS1
r1
×S1

r2
×Rn(v) ≤ IS1

r1
×Rn+1(v) < K∗.

By Lemma 3.4, this implies that the case 0 ≤ θm ≤ βn(r2) ≤ θM and 0 ≤ σm ≤
βn(r1) ≤ σM is excluded for v < v∗n.

We conclude that for v < v∗n,

IS1
r1
×S1

r2
×Rn(v) = IS1

r1
×Rn+1(v).

�

We now use these results to compute explicit lower bounds for the isoperimetric
profile of a manifold of the type (T 2 × R2, h2 + g2).
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Figure 2. Iscp(v) profile (solid line) is an upper bound for IT 2×R2(v).
The profile IS3

3×R(v) (dashed line) is a lower bound for IT 2×R2(v). Before

v∗2 ≈ 2.7 and after v∗∗ ≈ 55.8, the isoperimetric profile of (T 2 × R2) is
equal to the Iscp(v) profile.

Example 3.9. Let (R2, gE) be the 2-dimensional Euclidean space and (T 2, h) be
the 2-Torus with a flat metric, isometric to R/Γ with Γ the lattice generated by
{{2
√
π, 0}, {0, 2

√
π}}. Using Theorem 1.2 and its proof, one may make explicit esti-

mates of the isoperimetric profile of (T 2 × R2, h+ g2).

We are in the case r1 = r2 = 1√
π
, n = 2 of Theorem 1.2. By solving eqs. (18) and

(19) we get v∗∗2 ≈ 55.84. We also compute v∗2 ≈ 2.70, using equations (7), (8) and
(9). The Iscp(v) profile, given by Iscp(v) = min{IS1

r1
×R3(v), f2(v)}, is an upper bound

for IT 2×Rn(v), moreover, if v ≤ v∗2 or v ≥ v∗∗2 , then IT 2×R2(v) = Iscp(v). The solid line
graphic of figure 2 is the graphic of Iscp(v). In this case f2(v) = 4π

√
v.

One may compute lower bounds for the volumes between v∗2 and v∗∗2 . First, since
the Ricci curvature of (T 2×R2, h+ gE) is non-negative, it follows from a result by V.
Bayle ([2], p. 52) that the isoperimetric profile is concave. This implies that a line
joining the points (v∗, Iscp(v

∗)) and (v∗∗, Iscp(v
∗∗)) is also a lower bound for IT 2×R2(v).

A better lower bound for IT 2×R2(v) may be computed in the following way. Since the
isoperimetric profiles of (S2, g2) and (T 2, h) are known explicitly, it is straightforward
to check IS2 ≤ IT 2 . Here, g2 is the round metric with radius r = 1. Since S2 is a model
metric, it follows from the Ros symmetrization Theorem [19], that IS2×R2 ≤ IT 2×R2 .
On the other hand, it was proved in section 2.1 of [18] that IS3

3×R ≤ IS2×R2 , where

(S3
3 , g3) is the 3-sphere with the round metric and radius r = 3. It follows that

IS3
3×R ≤ IT 2×R2 . The isoperimetric profile of IS3

3×R was computed in [13] and its
graphic corresponds to the the dashed graphic of figure 2. Moreover, using that the
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isoperimetric profile of (T 2×R2, h+gE) is concave, it follows that any line joining the
point (v∗∗, Iscp(v

∗∗)) and the graphic of IS3
3×R(v) is also a lower bound for IT 2×R2(v).

Similarly, any line joining the point (v∗, Iscp(v
∗)) and the graphic of IS3

3×R(v) is also

a lower bound for IT 2×R2(v).
These lower bounds gives us a fair idea of the shape of IT 2×R2 in the interval (v∗2, v

∗∗
2 )

and are illustrated in figure 1.

4. The isoperimetric profile of T k × Rn

One may follow the arguments of the last section in order to understand the iso-
perimetric profile of T k × Rn for small and big volumes. In this section we present
the proof of Theorem 1.3, that is, the case k = 3. The more general case, 2 ≤ k ≤ 5,
2 ≤ n ≤ 7− k, is similar.

Let (T 3, h3) = (S1
r1
× S1

r2
× S1

r3
, ds21 + ds22 + ds33). Let Ω be an isoperimetric region

in (T 3 × Rn, h3 + gE). We parameterize S1
r3

, by [0, 2πr3) and consider slices Ωt,
t ∈ [0, 2πr3):

Ωt = Ω ∩ (S1
r1
× S1

r2
× {t} × Rn).

Then for each slice Ωt, we may compute its (n + 2)-volume and define a function
F : [0, 2π r3]→ R, by F (t) = V n+2(Ωt) and F (2πr3) = V n+2(Ω0).

Note that F is continuous. Let ηm and ηM denote the minimum and maximum
values of F , respectively.

Lemma 4.1. If ηm = 0, then IS1
r1
×S1

r2
×Rn+1(V n+3(Ω)) ≤ V n+2(∂Ω).

Proof. Suppose ηm = 0. Let t0 ∈ [0, 2πr3] be such that F (t0) = ηm = 0. We
construct a new closed region Ω∗ ⊂ S1

r1
× S1

r2
× [t0, t0 + 2πr3] × Rn. We denote

Ω∗ ∩ (S1
r1
× S1

r2
× {t} × Rn) by Ω∗t . For t ∈ [0, 2πr3), let Ω∗t0+t = Ωt. Also, let

Ω∗t0+2πr3
= Ωt0 . Ω∗ is a closed region by continuity of F . Also, since V n+2(Ωt0) = 0

we have V n+2(∂Ω) = V n+2(∂Ω∗) and V n+2(Ω) = V n+2(Ω∗). Hence

(23) IS1
r1
×S1

r2
×Rn+1(V n+3(Ω)) = IS1

r1
×S1

r2
×Rn+1(V n+3(Ω∗)) ≤ V n+2(∂Ω∗) = V n+2(∂Ω).

�

Let w∗n = min{v∗n, βn+1(r1)}, where v∗n is as in the hypothesis of Theorem 1.3 and
βn+1(r1) as in eq. (2). Hence, for v < w∗ we have

(24) IS1
r1
×S1

r2
×Rn(v) = IS1

r1
×Rn+1(v) = IRn+2(v)

Lemma 4.2. If ηM ≤ w∗n, then IS1
r3
×Rn+2(V n+3(Ω)) ≤ V n+2(∂Ω).

Proof. We symmetrize Ω by constructing a region Ω∗ as in the proof of Lemma 3.2.
We denote Ω∗ ∩ (S1

r1
× S1

r2
× {t} × Rn) by Ω∗t . Let Ω∗t = {t} ×Bn+2

R(t) , where R(t) > 0

is such that V n+2({t} ×Bn+2
R(t)) = V n+2(Ωt).

Note that

V n+2(Ω∗t ) = V n+2(Ωt)
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and since ηM < w∗n, each region {t} × Bn+1
R(t) is isoperimetric in {t} × S1

r1
× S1

r2
× Rn,

that is V n+1(∂Ω∗t ) ≤ V n+1(∂Ωt).
Arguing as in the proof of the Ros product Theorem ([19]), we get
V n+3(Ω∗) = V n+3(Ω) and V n+2(∂Ω∗) ≤ V n+2(∂Ω).
This implies

IS1
r3
×Rn+2(V n+3(Ω)) = IS1

r3
×Rn+2(V n+3(Ω∗)) ≤ V n+2(∂Ω∗) ≤ V n+2(∂Ω).

�

Let gn be the function given by gn(v) = V n+2(∂(S1
r1
× S1

r2
× S1

r3
× Bn

R)), where R
is such that V n+3(S1

r1
× S1

r2
× S1

r3
×Bn

R)) = v.

Lemma 4.3. Suppose ηm ≥ v∗∗n . If V n+3(Ω) < βn(r3)V
1(S1

r1
)V 1(S1

r2
), then

IS1
r1
×S1

r2
×Rn+1(V n+3(Ω)) ≤ V n+2(∂Ω).

On the other hand, if V n+3(Ω) ≥ βn(r3)V
1(S1

r1
)V 1(S1

r2
), then

(25) V n+2(∂Ω) = gn(V n+3(Ω)).

Proof. We construct a new region Ω∗. We denote Ω∗ ∩ (S1
r1
× S1

r2
× {t} ×Rn) by Ω∗t .

Let Ω∗t = {t} × S1
r1
× S1

r2
× Bn

R(t), with R(t) such that V n+2(S1
r1
× S1

r2
× Bn

R(t)) =

V n+2(Ωt). Since ηm > v∗∗n , regions of the type S1
r1
× S1

r2
× Bn

R(t) are isoperimetric in

S1
r1
× S1

r2
× Rn. Arguing as in the proof of the Ros product Theorem ([19]), we get

V n+3(Ω∗) = V n+3(Ω) and V n+2(∂Ω∗) ≤ V n+2(∂Ω).
We now symmetrize Ω∗. Let (Ω∗)p = Ω∗ ∩ ({p} × S1

r3
× Rn) where p ∈ S1

r1
× S1

r2
.

Let p, q ∈ S1
r1
× S1

r2
. Note that (Ω∗)p =

⋃
t∈S1

r3

(
Ω∗t ∩ ({p} × {t} ×Bn

R(t))
)

and

(Ω∗)q =
⋃
t∈S1

r3

(
Ω∗t ∩ ({q} × {t} ×Bn

R(t))
)

. Since R(t) is the same on both slices we

get,

(26) V n+1((Ω∗)p) = V n+1((Ω∗)q).

Since p, q where arbitrary, this implies

(27) V n+3(Ω) = V n+1((Ωp)V
1(Sr1)V

1(Sr2).

If V n+3(Ω) < βn(r3)V
1(S1

r1
)V 1(S1

r2
), then by eq. (27), V n+1((Ω∗)p) < βn(r3) and

hence balls Bn+1
R are isoperimetric regions in S1

r3
× Rn.

We construct a new region Ω∗∗ such that (Ω∗∗)p = {p}×Bn+1
R , p ∈ S1

r1
×S1

r2
with R

such that V n+1(Bn+1
R ) = V n+1((Ω∗)p) (note that R is independent of p, by eq. (26)).

Arguing as in the Ros Product Theorem, we then have V n+3(Ω∗∗) = V n+3(Ω∗) =
V n+3(Ω) and V n+2(∂Ω∗∗) ≤ V n+2(∂Ω∗) ≤ V n+2(∂Ω). This implies the first part of
the Lemma:

IS1
r1
×S1

r2
×Rn+1(V n+3(Ω)) ≤ V n+2(∂Ω).

On the other hand, if V n+3(Ω) ≥ βn(r3)V
1(S1

r1
)V 1(S1

r1
) then by eq. (27), V n+1((Ω∗)p) ≥

βn(r3) and hence S1
r3
×Bn

R are isoperimetric regions in S1
r3
× Rn.
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We then construct a new region Ω∗∗ such that (Ω∗∗)p = {p}×S1
r3
×Bn

R, p ∈ S1
r1
×S1

r2
,

with R such that V n+1(S1
r3
×Bn

R) = V n+1((Ω∗)p) (R is independent of p, by eq. (26)).
Arguing as in the Ros Product Theorem, we get V n+3(Ω∗∗) = V n+3(Ω∗) = V n+3(Ω)

and V n+2(∂Ω∗∗) ≤ V n+2(∂Ω∗) ≤ V n+2(∂Ω). This implies gn(V n+3(Ω)) ≤ V n+2(∂Ω).
Being Ω isoperimetric, we conclude that gn(V n+3(Ω)) = V n+2(∂Ω).

�

We now prove that the case ηM > w∗n cannot occur for small areas of Ω.

Lemma 4.4. Suppose that ηM > w∗n.
Then there is some C∗ > 0 such that

V n+2(∂Ω) > C∗.

C∗ is independent of Ω. In fact, it depends only on r1, r2, r3, n and is given by

C∗ = 2(w∗n − η∗)

where η∗ > 0 satisfies

(28)
1

2
V (S1

r3
)IRn+2(η∗) + η∗ = w∗n

Proof. The proof is similar to that of lemma 3.4. �

Remark 4.5. By remark 3.5, a solution to equation (28) exists and is unique.

We now prove a lower bound for the area of the region Ω, V n+2(∂Ω), for the case
ηm < v∗∗n .

Lemma 4.6. Suppose 0 < ηm < v∗∗n . Then

(29) IS1
r1
×S1

r2
×Rn+1(V n+3(Ω))− 2v∗∗n < V n+2(∂Ω)

Proof. We construct a new closed region Ω∗ ⊂ S1
r1
× S1

r2
× [tm, tm+2πr3 ]×Rn ⊂ S1

r1
×

S1
r2
× R × Rn, with tm such that F (tm) = ηm > 0, in the following way. We denote

Ω∗ ∩ (S1
r1
× S1

r2
× {t} × Rn) by Ω∗t . For t ∈ (0, 2πr3) let Ω∗tm+t = Ωt. Also, let

Ω∗tm+2πr3
= Ωtm and Ω∗tm = Ωtm .

Note that V n+3(Ω∗) = V n+3(Ω) and V n+2(∂Ω∗) = V n+2(∂Ω) + 2V n+2(Ωtm) =
V n+2(∂Ω) + 2ηm. Since Ω∗ is actually a closed set in S1

r1
× S1

r2
× R × Rn, it follows

that

IS1
r1
×S1

r2
×Rn+1(V n+3(Ω)) ≤ V n+2(∂Ω∗) = V n+2(∂Ω) + 2ηm

Since ηm < v∗∗n , we have eq. (29).
�

We now prove Theorem 1.3.

Proof. Let Ω ⊂ S1
r1
×S1

r2
×S1

r3
×Rn be an isoperimetric region. Consider the functions

F , gn and the values ηm, ηM as before.
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We begin with the case of big volumes. By Lemma 3.7 and Remark 3.8, there exists
u∗∗n such that for v > u∗∗n

IS1
r1
×S1

r2
×Rn+1(v)− 2v∗∗n > gn(v).

Being Ω isoperimetric, we have V n+1(∂Ω) ≤ gn(v). Hence, if V n+3(Ω) > u∗∗n ,

(30) IS1
r1
×S1

r2
×Rn+1(V n+3(Ω))− 2v∗∗n ≥ V n+2(∂Ω).

Hence, eq. (30) and Lemma 4.6 prevents ηm < v∗∗n from happening if V n+3(Ω) >
u∗∗n . This implies that for V n+3(Ω) > u∗∗n , ηm ≥ v∗∗n and by Lemma 4.3, that
V n+2(∂Ω) = gn(V n+3(Ω)).

We now treat the case of small volumes.
Suppose V n+2(∂Ω) < C∗. By Lemma 4.4, ηm < w∗n. This implies, by Lemma 4.1

and 4.2, that

min{IS1
r1
×S1

r2
×Rn+1(v), IS1

r3
×Rn+2(v)} ≤ IS1

r1
×S1

r2
×S1

r3
×Rn(v).

On the other hand, IS1
r1
×Rn+2(v) ≤ IS1

r3
×Rn+2(v) since r1 ≤ r3 and IS1

r1
×Rn+2(v) ≤

IS1
r1
×S1

r2
×Rn+1(v), if v ≤ v∗n+1.

Hence, if V n+3(Ω) ≤ v∗n+1 and V n+2(∂Ω) < C∗, we have

IS1
r1
×Rn+2(V n+3(Ω)) ≤ IS1

r1
×S1

r2
×S1

r3
×Rn(V n+3(Ω)).

Note also that if v < V 1(S1
r1

)V n(Br2), then isoperimetric regions in S1
r1
×Rn+2 are

realizable in S1
r1
× S1

r2
× S1

r3
× Rn. Hence, in this case,

IS1
r1
×Rn+2(V n+3(Ω)) ≥ IS1

r1
×S1

r2
×S1

r3
×Rn(V n+3(Ω)).

Let u0 > 0 be such that IS1
r1
×Rn+2(u0) = C∗ and u∗n = min{u0, v∗n+1, V

1(S1
r1

) V n+2(Bn+2
r2

))}
We conclude that if V n+3(Ω) ≤ u∗n,

IS1
r1
×Rn+2(V n+3(Ω)) = IS1

r1
×S1

r2
×S1

r3
×Rn(V n+3(Ω)).

�
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