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The problem of constructing copulas with a given diagonal section has been studied
by Sungur and Yang (1996) and Fredricks and Nelsen (1997a,b, 2002). The results
of Sungur and Yang are especially relevant because, among other results, they have
proven that an Archimedean copula is characterized by its diagonal section. The
results obtained by Fredricks and Nelsen allow one to build a singular copula with
a given a diagonal section. In all cases, the resulting copulas are symmetric. In this
article, we provide a family of absolutely continuous copulas with a fixed diagonal,
which can differ from another absolutely continuous copula almost everywhere with
respect to Lebesgue measure. It is important to mention that the asymmetry in the
proposed methodology is not an issue.
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1. Introduction

A bivariate copula is a function C � �0� 1�2 → �0� 1� with the following properties:

1. For every u� v in �0� 1�,

C�u� 0� = 0 = C�0� v�� (1)

C�u� 1� = u and C�1� v� = v� (2)

2. For every u1� u2� v1� v2 in �0� 1� such that u1 ≤ u2 and v1 ≤ v2,

C�u2� v2�− C�u2� v1�− C�u1� v2�+ C�u1� v1� ≥ 0� (3)
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It is well known (see, for example, Schweizer and Sklar, 1983) that for every
copula C and every �u� v� in �0� 1�2

W�u� v� ≤ C�u� v� ≤ M�u� v�� (4)

where W�u� v� �= max�u+ v− 1� 0� and M�u� v� �= min�u� v�� It is also
straightforward to show that W and M are themselves copulas, and they are known
as the Fréchet-Hoeffding lower and upper bounds, respectively.

A copula is also uniformly continuous on its domain (see, for example,
Schweizer and Sklar, 1983). That is, for every u1� u2� v1� v2 in �0� 1�

�C�u2� v2�− C�u1� v1�� ≤ �u2 − u1� + �v2 − v1�� (5)

The diagonal section of a copula is defined by 	C�u� �= C�u� u�� The above
definitions and properties have the following straightforward implications for the
diagonal section of a copula:

	C�0� = 0� 	C�1� = 1� (6)

0 ≤ 	C�u2�− 	C�u1� ≤ 2�u2 − u1�� for all u1� u2 in �0� 1� with u1 ≤ u2� (7)

max�2u− 1� 0� ≤ 	C�u� ≤ u� (8)

From now on, any function 	 � �0� 1� → �0� 1� satisfying (6), (7), and (8) will be
called simply a diagonal, while the function 	C will be referred to as the diagonal
section of a copula C.

If 	 is any diagonal, does there exist a copula C whose diagonal section is 	?
This question has been answered affirmatively by Sungur and Yang (1996), for the
case of Archimedean copulas. A copula C is said to be Archimedean if it satisfies the
following associativity equation

C�C�u� v�� w� = C�u�C�v� w��� for all u� v� w ∈ �0� 1�� (9)

and 	C�u� < u whenever 0 < u < 1� The following theorem is due to Ling (1965).

Theorem 1.1 (Ling, 1965). (i) Let C be an Archimedean copula. Then there exists
a strictly decreasing and convex (hence continuous) function 
 � �0� 1� → �0��� with

�1� = 0 such that for every �u� v� ∈ �0� 1�2

C�u� v� = 
�−1��
�u�+ 
�v��� (10)

where 
�−1� is the pseudo-inverse of 
 given by


�−1��x� �=
{

−1�x� 0 ≤ x ≤ 
�0��

0 
�0� < x < ��

(ii) Conversely, if 
 � �0� 1� → �0��� is a strictly decreasing and convex function
with 
�1� = 0� and 
�−1� is the pseudo-inverse of 
� then the function C defined on
�0� 1�2 by (10) and extended to �0� 1�2 by continuity is an Archimedean copula.
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An immediate consequence from Ling’s Theorem is that Archimedean copulas
are symmetric. The following theorem by Sungur and Yang (1996) gives an
alternative representation of the Archimedean class of copulas in terms of their
corresponding diagonal sections.

Theorem 1.2 (Sungur and Yang, 1996). Let C be an Archimedean copula and
	C�u� = C�u� u�. Then

C�u� v� = lim
n→� 	nC

(
	−n
C �u�+ 	−n

C �v�− 1
)
� (11)

where

	nC �= 	C � 	C � · · · � 	C �n times��

and

	−n
C �= 	−1

C � 	−1
C � · · · � 	−1

C �n times��

Without constraining to the Archimedean class of copulas, Fredricks and
Nelsen (1997b) proved that

K�u� v� = min�u� v� �1/2��	�u�+ 	�v���

is, in fact, a copula whose diagonal section is 	� It is immediate to observe that K
is symmetric. They also proved, among several other properties, that K is a singular
copula, that is �2K�u� v�/�u�v = 0 almost everywhere with respect to Lebesgue
measure in �0� 1�2�

Another type of copulas constructed from a given diagonal was presented by
Fredricks and Nelsen (2002) known as The Bertino family of copulas: For each
diagonal 	 define B	 on �0� 1�2 by

B	�u� v� �= min�u� v�− min
t∈�u�v�

	̂�t��

where 	̂�t� �= t − 	�t� for all t in �0� 1�� They proved that B	 is a symmetric singular
copula with diagonal section 	. Moreover, they proved that if C is any copula with
diagonal section 	� then B	 ≤ C on �0� 1�2�

The two types of copulas constructed with a given diagonal by Fredricks and
Nelsen happen to be symmetric and singular. If 	 is any diagonal, does there exist a
non Archimedean and absolutely continuous copula C whose diagonal section is 	?
As defined by Nelsen (1999), C is an absolutely continuous copula if

C�u� v� =
∫ u

0

∫ v

0

�2

�s�t
C�s� t�dt ds� (12)

In this case, it is common to call c�u� v� �= �2C�u� v�/�u�v the copula density. As
a consequence of the definition of copulas, in the case of absolutely continuous



652 Erdely and González-Barrios

copulas we have the following:

∫ 1

0
c�u� v�dv = 1� for all u in �0� 1�� (13)

∫ 1

0
c�u� v�du = 1� for all v in �0� 1�� (14)

∫ v2

v1

∫ u2

u1

c�u� v�du dv ≥ 0 for every u1 ≤ u2 and v1 ≤ v2 in �0� 1�� (15)

and the diagonal section may be written in terms of the copula density as

	C�u� =
∫ u

0

∫ u

0
c�s� t�ds dt� (16)

In the following section we will present a methodology to build families of
absolutely continuous copulas with a given diagonal, with no considerations about
being neither Archimedean nor symmetric. Before we proceed, it is important to
mention an interesting interpretation of diagonal sections given by Sungur and
Yang (1996): a diagonal section 	C is the distribution function of max�U� V where
U and V are continuous uniform variables on �0� 1� with joint distribution function
C� The results in the following section allow to build an absolutely continuous
joint distribution function for �U� V different from C but with the same given
distribution of max�U� V�

2. Construction of a New Family of Copulas

In this section we will construct a broad family of copulas using a fixed absolutely
continuous copula D�u� v�. The main idea is to construct families of copulas with
given restrictions, such as values of the copula on diagonal sections, or horizontal
and vertical sections, even including restrictions on closed subsets, in a few words,
to construct copulas with a given agreement region with D�u� v�� In the particular
case D�u� v� happens to be of the Archimedean class, we know from Sungur and
Yang (1996) that all the information of the copula is contained in the distribution
of max�U� V, and so the following methodology allows to build a new joint
distribution for �U� V with the given diagonal section D�u� u� as the agreement
region.

Let us consider the function

f�x� y� = sin�x� sin�y� for x� y ∈ �0� 2���

Then it is clear that if 0 ≤ a < b ≤ 2�, we have that

∫ b

a

∫ 2�

0
f�x� y�dx dy = 0 and

∫ 2�

0

∫ b

a
f�x� y�dx dy = 0�

that is, integrals of f along vertical or horizontal segments are always zero. We also
observe that f�x� y� = 0 on the border of �0� 2��2. We will use appropriate rescalings
of the function f�x� y� in order to construct families of absolutely continuous
copulas with given diagonals. In fact we will prove the following:
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Theorem 2.1. Let D�u� v� be an absolutely continuous copula with density
�2

�u�v
D�u� v� = d�u� v� which will be assumed to be continuous and positive on �0� 1�2.

Let 	�u� = D�u� u� be the diagonal section of D�u� v�. Then there exists a family of
absolutely continuous copulas �, not necessarily symmetric even when D is symmetric,
such that for every C ∈ � if 	C�u� = C�u� u�, then 	C�u� = 	�u�, and for almost every
�u� v� ∈ �0� 1�2 [�], where � is the Lebesgue measure on �0� 1�2, C�u� v� �= D�u� v�.

Proof. Let D�u� v� be an absolutely continuous copula with density d�u� v� =
�2

�u�v
D�u� v� which is continuous and positive on �0� 1�2. Since d�u� v� is continuous

and positive on �0� 1�2, which is compact, then there exists M > 0, such that
d�u� v� ≥ M for every �u� v� ∈ �0� 1�2.

Let �u �= ��u� v� ∈ �0� 1�2 � u ≤ v and �l �= ��u� v� ∈ �0� 1�2 � u ≥ v, be the
upper and lower triangles above and below the diagonal of �0� 1�2. Let 0 ≤ u1 <
u2 ≤ v1 < v2 ≤ 1, then the rectangle �u1� u2�× �v1� v2� ⊂ �u. Similarly, if 0 ≤ v1 <
v2 ≤ u1 < u2 ≤ 1, then the rectangle �u1� u2�× �v1� v2� ⊂ �l.

Now we rescale the function f given just before this theorem to the rectangle
J = �u1� u2�× �v1� v2�. That is, we consider

fJ �u� v� = sin
(
2��u− u1�

u2 − u1

)
sin

(
2��v− v1�

v2 − v1

)
1J �u� v�� (17)

where 1A denotes the indicator function of the set A. If u1 ≤ u ≤ u2 and v1 ≤ v ≤ v2,
then ∫ v

v1

∫ u

u1

fJ �s� t�ds dt

=
∫ v

v1

∫ u

u1

sin
(
2��s − u1�

u2 − u1

)
sin

(
2��t − v1�

v2 − v1

)
ds dt

= �u2 − u1��v2 − v1�

4�2

∫ 2��u−u1�
u2−u1

0

∫ 2��v−v1�
v2−v1

0
sin�w� sin�z�dw dz

= �u2 − u1��v2 − v1�

4�2

(
1− cos

(
2��u− u1�

u2 − u1

))(
1− cos

(
2��v− v1�

v2 − v1

))
�

Of course this integral is always non negative, and if u = u2 or v = v2, then∫ v

v1

∫ u

u1
fJ �s� t�ds dt= 0. On the other hand, as can be easily verified, if u= �u2 + u1�/2

and v = �v2 + v1�/2, then
∫ v

v1

∫ u

u1
fJ �s� t�ds dt = �u2 − u1��v2 − v1�/�

2, which is the
maximum value for this integral.

Let I1�1 = �0� 1/2�× �1/2� 1� and I1�2 = �1/2� 1�× �0� 1/2�, then I1�1 ⊂ �u and
I1�2 ⊂ �l. For k ≥ 2 and j = 1� 2� � � � � 2k, define

Ik�j �=




[
j − 1
2k

�
j

2k

]
×

[
j

2k
�
j + 1
2k

]
if j = 1� 3� � � � � 2k − 1

[
j − 1
2k

�
j

2k

]
×

[
j − 2
2k

�
j − 1
2k

]
if j = 2� 4� � � � � 2k�

Then for every k ≥ 2 and j = 1� 2� � � � � 2k, Ik�j ⊂ �u if j is odd and Ik�j ⊂ �l if j
is even, see Fig. 1, for the cases k = 1 and k = 2. If we denote the interior of a
set A by int�A�, then it is also clear that for any k and every j1� j2 ∈ �1� 2� � � � � 2k,
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Figure 1. Graph of the I ′k�js for k = 1� 2.

with j1 �= j2, we have that int�Ik�j1� ∩ int�Ik�j2� = ∅. We also have that for any k < l
and any j1 ∈ �1� 2� � � � � 2k and j2 ∈ �1� 2� � � � � 2l, int�Ik�j1� ∩ int�Il�j2� = ∅. We finally
observe that

�u =
�⋃
k=1

⋃
j=1�3�����2k−1

Ik�j and �l =
�⋃
k=1

⋃
j=2�4�����2k

Ik�j �

Now, for every k ≥ 1 and every �u� v� ∈ �0� 1�2 we define using (17)

f�k��k�1������k�2k ��u� v� =
2k∑
j=1

�k�jfIk�j �u� v� where ��k�j� ≤ M for every j = 1� 2� � � � � 2k�

It is important to observe that for any 0 ≤ a < b ≤ 1 and any selection of
�k�1� � � � � �k�2k ,

∫ 1

0

∫ b

a
f�k��k�1������k�2k ��u� v�du dv =

∫ b

a

∫ 1

0
f�k��k�1������k�2k ��u� v�du dv = 0� (18)

This property follows from the definition of f�k��k�1������k�2k � and the definition of the
subsets Ik�j , see Fig. 1. Now for n ≥ 1 define

fn�u� v� = d�u� v�+
n∑

k=1

f�k��k�1������k�2k ��u� v��

then fn depends on �1�1� �1�2� �2�1� � � � � �2�4� � � � � �n�1� � � � � �n�2n , that is 2+ 22 + · · · +
2n = 2n+1 − 2 parameters. From the selection of the �k�j , for k = 1� � � � � n and
j = 1� � � � � 2k, we have that every fn�u� v� is a non negative continuous function,
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since d�u� v� is continuous as well as every f�k��k�1������k�2k �. From Eq. (18) we also
obtain that ∫ 1

0

∫ 1

0
fn�u� v�du dv =

∫ 1

0

∫ 1

0
d�u� v� = 1�

Hence, for every n ≥ 1 and selection of parameters ��k�j� ≤ M , for k = 1� � � � � n
and j = 1� � � � � 2k, fn�u� v� is a continuous density. In fact, it is the density of an
absolutely continuous copula whose formula is given by

Cn�u� v� = D�u� v�+
n∑

k=1

2k∑
j=1

�k�j

22k+2�2

{
1− cos

(
2k+1��u− ��j − 1�/2k��

)}
× {

1− cos
(
2k+1��u− �j∗/2k��

)}
1Ik�j �u� v��

where j∗ = j if j is odd and j∗ = j − 2 if j is even. Here we observe that Cn�u� v� is
close to D�u� v� except for perturbations on every Ik�j . In fact, it is easy to see that

sup
�u�v�∈�0�1�2

�Cn�u� v�−D�u� v�� ≤ M

4�2
�

for every selection of the parameters �k�j . Of course, if every �k�j �= 0, then Cn�u� v� �=
D�u� v� for almost every �u� v� ∈ Ik�j , except only if u = �2j − 1�/2k+1, or if v = �2j +
1�/2k+1 with j odd, or v = �2j − 3�/2k+1 with j even.

If we define C�u� v� = limn→� Cn�u� v�, we obtain that C�u� v� is a copula
depending on an infinite number of parameters, if all of them are non zero, then
C�u� v� �= D�u� v� almost surely for the Lebesgue measure on �0� 1�2. We finally
observe that if �k�j �= �k�j+1 for any k ≥ 1 and any j = 1� 3� � � � � 2k − 1, then Cn�u� v�
is a non symmetric copula for any n ≥ k. In fact, we can construct, using the
methodology above, an almost everywhere asymmetric copula with respect to
Lebesgue measure. �

Example 2.1. Let D�u� v� = uv for �u� v� ∈ �0� 1�2. Then D is an absolutely
continuous copula with density d�u� v� = 1 for every �u� v� ∈ �0� 1�2. Let J =
�0� 1/2�× �1/2� 1�, if we define

C�u� v� =

uv+ 1

16�2
�cos�4�u�− 1�cos�4��v− 1/2��− 1 if �u� v� ∈ J

uv if �u� v� ∈ �0� 1�2\J�

Then C�u� v� is an asymmetric copula which coincides with D�u� v� on the diagonal.

We do have easy extensions of the Theorem 2.1, such as the following.

Corollary 2.1. Let D�u� v� be an absolutely continuous copula with density
�2

�u�v
D�u� v� = d�u� v� which we will be assumed to be continuous and positive on �0� 1�2.

Let n�m ≥ 1 and let 0 = u0 < u1 < u2 < · · · < un−1 < un = 1 and 0 = v0 < v1 <
v2 < · · · < vm−1 < vm = 1 any points. Consider the vertical sections Vk = ��u� v� ∈
�0� 1�2 � u = uk, for k = 0� � � � � n and the horizontal sections Hj = ��u� v� ∈ �0� 1�2 � v =
vj for j = 0� � � � � m. Then there exists an infinite family of copulas �, such that for
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every C ∈ �, C is absolutely continuous and C�u� v� = D�u� v� for every �u� v� ∈ Vk,
k = 0� 1� � � � � n and every �u� v� ∈ Hj , j = 0� 1� � � � � m.

The proof of this corollary follows the same steps as Theorem 2.1, by defining
the density of C on every Ik�j = �uk� uk+1�× �vj� vj+1�, for every k = 0� 1� � � � � n and
j = 0� 1� � � � � m.

The function f�u� v� = sin�u� sin�v� on �0� 2��2 can be substituted by any
function of the form f�u� v� = g�u�g�v� on �a� b�2, as long as a < b, g is continuous
with g�a� = g�b� = 0, and

∫ b

a
g�x�dx = 0.

In the above corollary the term “infinite family of copulas” is due to the
different ways of defining the density of C on every Ik�j = �uk� uk+1�× �vj� vj+1� and
the use of all the functions of the form f�u� v� = g�u�g�v� mentioned above.

Another way of proving Theorem 2.1, is to rescale the function

f�u� v� = sin�2�v� sin�2�u/v�1��u�v�∈�0�1�2 � u≤v�u� v��

and its symmetric version.
We can also find families of copulas that agree on closed sets with a given

absolutely continuous copula. For example, copulas that agree with the absolute
continuous copula D�u� v� on �1/4� 3/4�× �1/4� 3/4�, or even on circles such as
��u� v� ∈ �0� 1�2 � �u− 1/2�2 + �v− 1/2�2 ≤ 1/4, simply by noticing that the usual
topology on �0� 1�2 with the usual metric d��x� y�� �u� v�� �= ��x − u�2 + �y − v�2�1/2

is the same as the topology metrized by ���x� y�� �u� v�� �= max��x − u�� �y − v�
where the open balls are (open) rectangles.

In fact, from the remark above we have the following.

Corollary 2.2. Let D�u� v� be an absolutely continuous copula with density
�2

�u�v
D�u� v� = d�u� v� which we will be assumed to be continuous and positive on

�0� 1�2. Let C�u� v� another copula such that C�u� v� = D�u� v� on a largest closed
subset A ⊂ �0� 1�2. Then C�u� v� = D�u� v� for every �u� v� ∈ �0� 1�2 if and only if
A = �0� 1�2.

Proof. Assume that C�u� v� = D�u� v� on a closed subset A ⊂ �0� 1�2, but A �=
�0� 1�2. Then Ac, the complement of A is an open non empty set. Hence, we can
find 0 < u1 < u2 < 1 and 0 < v1 < v2 < 1, such that J = �u1� u2�× �v1� v2� ⊂ Ac. By
defining f on this rectangle as in Theorem 2.1, we obtain a copula which coincides
with D�u� v� on A but it is different from D on J . �

From Corollary 2.2, the only way to determine uniquely an absolutely
continuous copula is by giving its values on a dense subset of �0� 1�2.

The hypothesis of a copula having a positive density on �0� 1�2, can be also
weakened, obtaining similar results. For example, the density can be zero on the
border of �0� 1�2, or even the density can be zero on a closed region, and still the
construction will work outside this region.

It is important to notice that in all previous results, we can construct asymmetric
copulas that follow the given restrictions.
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3. Final Remarks

By the results obtained by Sungur and Yang (1996) we know that in the case of
Archimedean copulas the values of the diagonal 	�u� = C�u� u� determine uniquely
the behavior of the copula on �0� 1�2.

Outside the Archimedean family of copulas, Fredricks and Nelsen (1997a,b,
2002) provide examples of copulas with certain restrictions, such as the values of the
copula on the diagonal. These examples provide singular and symmetric copulas.

In this article, we provide a broad family of absolutely continuous copulas with
a fixed diagonal, which can differ from another absolutely continuous copula almost
everywhere with respect to Lebesgue Measure. Recalling form Sungur and Yang
(1996) that a diagonal section 	C is the distribution function of max�U� V where U
and V are continuous uniform variables on �0� 1� with joint distribution function
C� the obtained results allow to build an absolutely continuous joint distribution
function for �U� V different from C but with the same given distribution of
max�U� V�

In fact, we can extend these results to a finite number of horizontal and vertical
regions, as well as extending them to closed sets, which are not dense on �0� 1�2.

We notice that the asymmetry in the methodology proposed here, is not an
issue, since the construction itself allows to find asymmetric copulas.

In the present work we focused on bivariate copulas but it is possible to
extend our results for dimensions higher than two without dealing with the
compatibility problem because the starting point for building, say, an n-dimensional
asymmetric and absolutely continuous copula C�u1� � � � � un� would be a given
n-dimensional absolutely continuous copula D�u1� � � � � un� (see Theorem 2.1) and
so the proposed methodology does not deal with the compatibility with �n−m�-
dimensional marginal copulas, where 2 ≤ m < n� For example, with the analogous
ideas used in Example 2.1, define

C�u� v� w�

=



uvw + 1

64�3
�cos�4�u�− 1�

[
cos

(
4�

(
v− 1

2

))
− 1

]
�cos�4�w�− 1�� if �u� v� w� ∈ J�

uvw if �u� v� w� ∈ �0� 1�3\J�

where J = [
0� 1

2

]× [
1
2 � 1

]× [
0� 1

2

]
. Then C�u� v� w� is an asymmetric copula which

coincides with the independence copula ��u� v� w� = uvw on the diagonal.
We can also find families of n-dimensional copulas that agree on closed sets

with a given n-dimensional absolutely continuous copula, even on n-dimensional
spheres simply by noticing that the usual topology on �0� 1�n with the usual metric
d�x� u� �= ��x1 − u1�

2 + · · · + �xn − un�
2�1/2 is the same as the topology metrized by

��x� u� �= max��x1 − u1�� � � � � �xn − un� where the open balls are (open) n-cubes.
In the literature, many authors have worked on fitting Archimedean copulas to

real data. However, even the assumption of symmetry alone is too strong, as can
be seen from the constructions of copulas with restrictions in this work. We could
define some ways to measure asymmetry, for example, given a bivariate copula C:

�C �= sup
�u�v�∈�0�1�2

�C�u� v�− C�v� u���
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and use its empirical version to try to build a non parametric test of symmetry,
before thinking about fitting an Archimedean copula, since symmetry is a necessary
(but not sufficient) condition for such copulas. In the case that the test rejects the
null hypothesis H0 � C�u� v� = C�v� u� for all u� v ∈ �0� 1�, this would suggest that an
asymmetric copula should be considered for fitting, and there is no such a big list of
known asymmetric copulas to choose from, unlike the case of symmetric copulas.
The present work is a contribution to the list of families of asymmetric copulas.

As stated by Sungur and Yang (1996), since the diagonal section uniquely
determines the copula for the Archimedean class, it simplifies the model building,
fitting and checking process. They also notice that, within the class of Archimedean
copulas, a goodness of fit test can be carried out in terms of the diagonal section.
They mention as an example a test of independence using the fact that the
independence bivariate copula ��u� v� = uv is Archimedean: let �X� Y� be a random
vector with Archimedean copula C, then the following hypothesis are equivalent:

H0 � X and Y are independent ⇔ H0 � C = � ⇔ H0 � 	C�u� = u2�

For this purpose, a suitable test statistic is required, and we propose

Dn �= max
j=1�����n−1

∣∣∣∣�
(
j

n

)
−

(
j

n

)2∣∣∣∣�
where

�

(
j

n

)
�= 1

n

j∑
k=1

1�Yk≤Y�j�
� j = 1� � � � � n− 1�

We have obtained the exact distribution under H0� (Erdely and González-
Barrios, 2005). The assumption of an underlying copula of the Archimedean class is
too strong, so one may ask about the power of such test outside the Archimedean
class, which in principle leads to the question if there exists an absolutely continuous
copula C different from the independence copula � such that 	C�u� = u2� This
question motivated the present work and the answer is positive as we have already
shown. So one should be careful in using an independence test based on the diagonal
outside the Archimedean class.
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