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Introducción en español

El caṕıtulo 1 comienza con tres secciones que resumen algunos conceptos y resultados

importantes en relación a cópulas, haciendo énfasis en cópulas diagonales y arquimedianas.

Luego se incluye una sección para introducir la Ecuación Funcional de Schröder y la

relación que guarda con cópulas arquimedianas de acuerdo a un resultado de Frank (1996).

El caṕıtulo termina discutiendo algunas ideas y conceptos sobre concordancia, dependencia

y cópulas.

El caṕıtulo 2, inspirado en el hecho de que bajo la condición de Frank toda la información

sobre una cópula arquimediana está contenida en su sección diagonal, se exploran algunas

propiedades de la sección diagonal de la cópula emṕırica: cotas, incrementos, identificación

y conteo de todas las distintas trayectorias que puede seguir la diagonal emṕırica, y final-

mente, la distribución exacta de la diagonal emṕırica bajo la hipótesis de independencia,

para los casos bidimensional y tridimensional. Este último resultado abrió la puerta hacia

una propuesta de prueba no paramétrica de independencia, bajo el supuesto de que la

cópula subyacente pertenece a la familia arquimediana, ya que la cópula que representa la

independencia es del tipo arquimediano y satisface la condición de Frank, y por lo tanto

es la única cópula arquimediana que tiene sección diagonal δ(u) = u2.

Después de los resultados del caṕıtulo 2, una pregunta natural es si fuera de la familia ar-

quimediana existen cópulas absolutamente continuas con la misma diagonal que la cópula

que representa la independencia, pero diferentes de ella fuera de la diagonal. La respuesta

es en el sentido positivo, y en el caṕıtulo 3 se construye una amplia familia de cópulas

absolutamente continuas con sección diagonal dada, que pueden diferir the otra cópula

absolutamente continua casi en todas partes respecto a la medida de Lebesgue. Es impor-

tante estar consciente de esto, en caso de que se desee utilizar una prueba no paramétrica

de independencia basada en la sección diagonal, pero fuera de la familia arquimediana.

En el caṕıtulo 4 se da solución a un problema propuesto por Alsina, Frank y Schweizer

(2003), mismo que reaparece en Alsina, Frank y Schweizer (2006):
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iv INTRODUCCIÓN EN ESPAÑOL

Es posible diseñar una prueba de independencia estad́ıstica basada en los supuestos

de que la cópula subyacente es arquimediana y que su sección diagonal es δ(u) =

u2 ?

Se propone una prueba no paramétrica de independencia por medio de un estad́ıstico bi-

variado basado en la diagonal emṕırica y en su distribución exacta obtenida en el caṕıtulo

2, lo cual permite obtener la distribución exacta de cualquier estad́ıstico de prueba basado

en la diagonal emṕırica. Se llevó a cabo un estudio de simulación para comparar la po-

tencia de la prueba propuesta versus algunas bien conocidas puebas no paramétricas de la

literatura estad́ıstica: Spearman, Blum-Kiefer-Rosenblatt, Kallenberg-Ledwina, bajo tres

clases de cópulas, dos del tipo arquimediano y una tercera no arquimediana. Incluso se

hace una comparación de la prueba propuesta versus la prueba localmente más potente

basada en rangos.

Finalmente, en las conclusiones se hacen algunas observaciones y se discuten algunos pro-

blemas abiertos.



Introduction

Chapter 1 begins with three sections which summarize some important concepts and re-

sults regarding copulas, making emphasis on diagonal and Archimedean copulas. Then we

include one section to introduce Schröder’s Functional Equation and its relationship with

Archimedean copulas via a result by Frank (1996). We end this chapter discussing some

ideas and concepts around concordance, dependence, and copulas.

In Chapter 2, inspired in the fact that under Frank’s condition all the information about

an Archimedean copula is contained in its diagonal section, we explore some properties

of the diagonal section of the empirical copula: bounds, one-step increments, labeling

and counting all the different paths an empirical diagonal may follow, and finally, the

exact distribution of the empirical diagonal under the hypothesis of independence, for

the two-dimensional and three-dimensional cases. This last result opened the door to-

ward a proposal of a nonparametric test for independence, under the assumption that the

underlying copula belongs to the Archimedean family, since the copula that represents

independence is of the Archimedean type and satisfies Frank’s condition, and so it is the

unique Archimedean copula with diagonal section δ(u) = u2.

After the results of Chapter 2, a natural question was if outside the Archimedean family

there exist absolutely continuous copulas with the same diagonal section as the indepen-

dence copula, but different from it outside the diagonal? The answer is in the positive

sense, and in Chapter 3 we build a broad family of absolutely continuous copulas with

a fixed diagonal, which can differ from another absolutely continuous copula almost ev-

erywhere with respect to Lebesgue measure. It is important to be aware of this, in case

a nonparametric test for independence based on the diagonal section is used outside the

Archimedean family.

In Chapter 4 we solve an open problem proposed by Alsina, Frank and Schweizer (2003),

which again appeared in Alsina, Frank and Schweizer (2006):
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vi INTRODUCTION

Can one design a test of statistical independence based on the assumptions that

the copula in question is Archimedean and that its diagonal section is δ(u) = u2 ?

We propose a nonparametric test for independence via a bivariate statistic based on the em-

pirical diagonal and its exact distribution obtained in Chapter 2, which allows to obtain the

exact distribution of any test statistic based on the empirical diagonal. A simulation study

is performed to compare the power of the proposed test against some well-known nonpara-

metric tests in the statistical literature: Spearman, Blum-Kiefer-Rosenblatt, Kallenberg-

Ledwina, for three classes of copulas, two of the Archimedean type and a third one non

Archimedean. We also made a comparison of the proposed test’s power against the locally

most powerful rank test.

Finally, in the conclusions chapter we make some remarks and discuss some open problems.



Chapter 1

Preliminaries

1.1 Copulas: basic facts.

Let f and g be univariate probability density functions, that is f, g ≥ 0 and
∫

R f(x) dx =

1 ,
∫

R g(y) dy = 1 , and let F and G be their corresponding probability distribution func-

tions, respectively, that is F (x) =
∫ x

−∞ f(t) dt and G(y) =
∫ y

−∞ g(t) dt . If we define the

parametric family of bivariate functions h θ : R 2 → R such that

h θ(x, y) := f(x)g(y)
[

1 + θ(1− 2F (x))(1− 2G(y))
]
, (1.1)

it is straightforward to verify that {h θ : −1 ≤ θ ≤ 1 } is a family of bivariate probability

density functions with marginal densities always equal to f and g , that is h θ ≥ 0 and∫∫
R 2

h θ(x, y) dxdy = 1 ,

∫
R
h θ(x, y) dy = f(x) ,

∫
R
h θ(x, y) dx = g(y) .

This is a typical example to show that knowledge of the marginal distributions of a random

vector is not enough to assess the joint density function, even though marginal distributions

are obtainable from the joint density. (1.1) is known as the Farlie-Gumbel-Morgenstern

family of distributions and was discussed by Morgenstern (1956), Gumbel (1958, 1960), and

Farlie (1960); however, according to Nelsen (2006a) it seems that the earliest publication

of (1.1) is due to Eyraud (1938). According to Kotz and Seeger (1991):

In the last decade [1980s] it has become increasingly important to consider de-

pendence as more than an antithesis to independence, the latter being the basic

concept of mathematical probability theory. As a result, several methods have been

developed to impose dependence among random variables with given marginal dis-

tributions. The majority of bivariate methods are based on a well-known result due

1



2 CHAPTER 1. PRELIMINARIES

to Hoeffding (1940) and Fréchet (1951) which says that given any two random vari-

ables, X and Y, with respective c.d.f.s. [cumulative distribution functions] F1(x)

and F2(y) , the class Ψ(F1, F2) = {H(x, y) |H is a bivariate c.d.f. with marginals

F1(x) and F2(y)} contains an upper bound, H∗, and a lower bound H∗ . These are

bounds with respect to the partial ordering ≺ , [a transitive and antisymmetric rela-

tion] denoting stochastic dominance, that is if H,H ′ ∈ Ψ(F1, F2) then H ≺ H ′ iff

[if and only if] H(x, y) ≤ H ′(x, y) ∀(x, y) . Moreover, the so-called Fréchet bounds

have general expressions in terms of F1 and F2 , namely

H∗(x, y) = max{F1(x) + F2(y)− 1, 0} , (1.2)

H∗(x, y) = min{F1(x), F2(y)} . (1.3)

[. . . ] Several parametrized subsets of Ψ(F1, F2) which are linearly ordered with

respect to≺ [that is for all H,H ′ ∈ Ψ(F1, F2) either H ≺ H ′, H ′ ≺ H , or H = H ′]

have appeared in the literature [. . . ] there are the Farlie-Gumbel-Morgenstern,

among others [. . . ] were constructed according to the viewpoint that the way to

impose dependence is to increase (or decrease) everywhere the independent c.d.f.

F1(x)F2(y) without altering the marginals, thus creating a new c.d.f. closer in

value to H∗ (or H∗) [. . . ]

Fréchet (1951, 1957) and Féron (1956) made important contributions to the question of

determining the relationship between a multidimensional probability distribution function

and its lower dimensional margins. An effective answer to this question emerged as a result

of the collaboration between Abe Sklar and Berthold Schweizer. According to Schweizer

(1991) their collaboration began in the context of probabilistic metric spaces in 1957.

By 1958 they had made some progress and submitted a note describing their results to

M. Fréchet, and an exchange of letters began with him. In one of them, Fréchet raised

this question about determining the relationship between a multidimensional probability

distribution function and its lower dimensional margins.

Abe Sklar answered this question for one-dimensional margins. For example, let (X, Y ) be

a random vector with joint distribution function H(x, y) , then the marginal distribution

functions of X and Y are F (x) := H(x,∞) and G(y) := H(∞, y) , respectively. Sklar

(1959) proved that there exists a function C, which he called copula , which links the joint

distribution function to its marginals:

H(x, y) = C
(
F (x), G(y)

)
. (1.4)
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Before giving a formal definition of a copula, we may get some motivation using well-known

properties for bivariate probability distribution functions:

H(∞,∞) = 1 , H(x,∞) = F (x) , H(∞, y) = G(y) , H(x,−∞) = 0 = H(−∞, y) ,

and for every real numbers x1, x2, y1, y2 where x1 ≤ x2 and y1 ≤ y2 we have

H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1) = P
{

(X, Y ) ∈ [x1, x2 ]× [ y1, y2 ]
}
≥ 0 .

Using the above properties in combination with (1.4) we observe that

C(F (x), 1) = F (x) , C(1, G(y)) = G(y) , C(F (x), 0) = 0 = C(0, G(y)) ,

C(F (x2), G(y2))− C(F (x2), G(y1))− C(F (x1), G(y2)) + C(F (x1), G(y1)) ≥ 0 ,

for every real numbers x1, x2, y1, y2 where x1 ≤ x2 and y1 ≤ y2. If we define u := F (x)

and v := G(y) , we arrive to the following definition, which may be found in Schweizer and

Sklar (2005) or Nelsen (2006a):

1.1. Definition. A bivariate copula is a function C : [ 0, 1 ] 2 → [ 0, 1 ] with the following

properties:

1. For every u, v in [ 0, 1 ]

C(u, 0) = 0 = C(0, v) (1.5)

and

C(u, 1) = u , C(1, v) = v ; (1.6)

2. For every u1, u2, v1, v2 in [ 0, 1 ] such that u1 ≤ u2 and v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 . (1.7)

Even though we gave a probabilistic motivation for the above definition of copula, it is

important to notice that, strictly speaking, Definition 1.1 does not involve probabilis-

tic concepts at all, it is just about a real valued function with domain the unit square

which satisfies boundary conditions (1.5) and (1.6), and condition (1.7) which is called

2-increasing. The same comment applies to the formal version of Sklar’s Theorem, as we

will see later.

It follows that C is nondecreasing in each variable (let v1 = 0 or u1 = 0 in 1.7) and

uniformly continuous (since Definition 1.1 implies that C satisfies the Lipschitz condition

|C(u2, v2)−C(u1, v1)| ≤ |u2−u1|+|v2−v1|), for details of these and the following properties
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and definitions in this section see Nelsen (1995, 2006a) or Schweizer and Sklar (2005). An

immediate consequence of these two properties is that the horizontal, vertical and diagonal

sections of a copula C are all nondecreasing and uniformly continuous on [ 0, 1 ] where the

horizontal section, vertical section and diagonal section are functions from [ 0, 1 ] to [ 0, 1 ]

given by t 7→ C(t, a) , t 7→ C(a, t) , and δC(t) = C(t, t) , respectively, with a fixed in [ 0, 1 ].

1.2. Theorem. Let C be a copula. Then for every (u, v) in [ 0, 1 ] 2

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v) . (1.8)

It is straightforward to verify that the bounds in (1.8) are themselves copulas and are

commonly denoted by M(u, v) := min(u, v) and W (u, v) := max(u + v − 1, 0) . Thus for

every copula C and every (u, v) in [ 0, 1 ] 2 we have

W (u, v) ≤ C(u, v) ≤M(u, v) . (1.9)

The above inequality is the copula version of the Fréchet-Hoeffding bounds inequalities

(1.2) and (1.3), which we shall encounter later in terms of distribution functions, after

stating formally Sklar’s theorem. We refer to M as the Fréchet-Hoeffding upper bound and

W as the Fréchet-Hoeffding lower bound. A third important copula that we will frequently

deal with is the product copula Π(u, v) := uv .

1.3. Definition. A distribution function is a function F with domain the extended real

line (that is in R := R ∪ {−∞,∞}) such that

1. F is nondecreasing,

2. F (−∞) = 0 and F (∞) = 1 .

1.4. Definition. A bivariate joint distribution function is a function H with domain the

extended real plane (that is in R 2
:= R× R) such that

1. H is 2-increasing, that is for all x1, x2, y1, y2 in R with x1 ≤ x2 and y1 ≤ y2

H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1) ≥ 0 ,

2. H(x,−∞) = 0 = H(−∞, y) and H(∞,∞) = 1 .

Here we state an important quotation from Nelsen (2006a):



1.1. COPULAS: BASIC FACTS. 5

Note that there is nothing “probabilistic” in these definitions of distribution func-

tions. Random variables are not mentioned, nor is left-continuity or right-continuity.

All the [probability] distribution functions of one or two random variables usually

encountered in statistics satisfy either the first or the second of the above defini-

tions. Hence any results we derive for such distribution functions will hold when

we discuss random variables, regardless of any additional restrictions that may be

imposed.

1.5. Definition. The margins of a bivariate joint distribution function H are the functions

F and G given by F (x) := H(x,∞) and G(y) := H(∞, y) .

It is an immediate consequence of the above definitions that the margins of H are them-

selves distribution functions.

1.6. Theorem. Sklar (1959) Let H be a bivariate joint distribution function with mar-

gins F and G . Then there exists a copula C such that for all x, y in R

H(x, y) = C
(
F (x), G(y)

)
. (1.10)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

RanF ×RanG . Conversely, if C is a copula and F and G are distribution functions, then

the function H defined by (1.10) is a bivariate joint distribution function with margins F

and G .

Notation: RanF := {z : z = F (x) for some x} . For details of the proof see either Sklar

(1959, 1996a), Schweizer and Sklar (2005) or Nelsen (2006a). For a different proof, see

Carley and Taylor (2002).

1.7. Definition. Let F be a distribution function. Then a quasi-inverse of F is any

function F (−1) with domain [ 0, 1 ] such that

1. If t is in RanF, then F (−1)(t) is any number x in R such that F (x) = t , that is for

all t in RanF

F
(
F (−1)(t)

)
= t ;

2. If t is not in RanF, then

F (−1)(t) = inf{x |F (x) ≥ t} = sup{x |F (x) ≤ t} .

If F is strictly increasing, then it has but a single quasi-inverse. Moreover, F (−1) = F−1

where F−1 is the usual inverse.
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1.8. Corollary. Let H be a bivariate joint distribution with continuous margins F and

G , and let C be the unique copula such that (1.10) holds. Then for any (u, v) in [ 0, 1 ] 2

C(u, v) = H
(
F (−1)(u), G(−1)(v)

)
. (1.11)

For the particular case of random variables, if X and Y are continuous random variables

with marginal probability distribution functions F and G , respectively, and with joint

probability distribution function H, Sklar’s theorem implies that there exists a unique

copula, which we may denote CXY , such that H(x, y) = CXY
(
F (x), G(y)

)
. Moreover, if

C is any copula and F1 and G1 are (marginal) probability distribution functions, then

C
(
F1(x), G1(y)

)
is indeed a joint probability distribution function. It is important to

observe what was mentioned by Mikusiński et al (1991):

The copula C contains valuable information about the type of dependence that

exists between random variables having C as their copula [. . . ] One might think

of a copula as a canonical representative of all distributions H that correspond to

random variables X and Y which have a specific sort of relationship to each other.

Given a specific joint probability distribution function H of two continuous random vari-

ables with (marginal) probability distributions F and G, we may “extract” the associated

copula CXY using Corollary 1.8, and then build a new joint probability distribution H1

with the same copula but different (marginal) probability distribution functions F1 and G1,

that is H1(x, y) = CXY
(
F1(x), G1(y)

)
. So, for example, the exercise of building a bivari-

ate distribution with standard normal margins that is not the standard bivariate normal

becomes trivial. Also, we may extract the associated copula from the bivariate normal

distribution (called Gaussian copula) and use it to build a new bivariate distribution with

non-normal margins.

Here we have to be careful, for example we have a warning remark from Marshall (1996):

The marginals F and G can be inserted into any copula, so they carry no direct

information about the coupling; at the same time, any pair of marginals can be

inserted into C, so C carries no direct information about the marginals. This

being the case, it may seem reasonable to expect that the connections between

the marginals of H are determined by C alone, and any question about these

connections can be answered with knowledge of C alone.

Of course, things are not that simple. Some problems stem from the fact that

copulas are not unique when at least one marginal is discontinuous. In fact, the
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marginals can sometimes play a significant role as the copula in determining the

way in which they are coupled in H; in the extreme case, degenerate marginals

by themselves determine the joint distribution and any copula can be used. But

interaction between the copula and the marginals is often critical; copulas can look

quite different in different parts of their domain, and the relevant part is determined

by the range of the marginals.

[. . . ] Much of the literature regarding copulas has been based upon the assumption

that the marginals of H are continuous because this is a necessary and sufficient

condition for the copula of H to be unique.

But even in the context of continuous random variables, it is tempting to consider Sklar’s

theorem as an infinite source for building multivariate distributions of all kinds by just

choosing continuous margins and plugging them into any desired copula. Somehow, Mar-

shall and Olkin (1967) make emphasis on the importance of doing some additional work

when building a multivariate distribution:

[. . . ] The family of solutions

H(x, y) = F (x)G(y){1− α[1− F (x)][1−G(y)]} , |α| ≤ 1 , (1.12)

due to Morgenstern (1956) has been studied by Gumbel (1960) when F and G are

exponential. Gumbel also studied the bivariate distribution

H(x, y) = 1− ex − ey + e−x−y−δxy , 0 ≤ δ ≤ 1 , (1.13)

which has exponential marginals. However, we know of no model or other basis for

determining how these distributions might arise in practice.

By the way, for continuous margins F and G and applying Sklar’s theorem to (1.12) we

immediately identify the underlying (parametric) family of copulas

Cθ(u, v) = uv
[

1− θ(1− u)(1− v)
]
, |θ| ≤ 1 , (1.14)

known as the Farlie-Gumbel-Morgenstern family of copulas.

It would be nice to have a huge catalog of copulas which specifies the sort of dependence

or probabilistic interpretation each copula captures. An immediate consequence of Sklar’s

theorem for a random vector (X, Y ) of continuous random variables is that the product

copula Π(u, v) = uv is the copula of (X, Y ) if and only if X and Y are independent. Fréchet



8 CHAPTER 1. PRELIMINARIES

(1951) proved that M(u, v) = min(u, v) is the copula for (X, Y ) if and only if X and Y

are almost surely increasing functions of each other, and W (u, v) = max(u + v − 1, 0) is

the copula for (X, Y ) if and only if X and Y are almost surely decreasing functions of each

other. Random variables with copula M are often called comonotonic, and those with

copula W are often called countermonotonic. Mikusiński et al (1991) give probabilistic

interpretations of other types of copulas, such as Shuffles of Min, Hairpins, and convex

sums of copulas.

If U and V are continuous uniform random variables on (0, 1) then by Sklar’s theorem we

have that their joint probability distribution function H restricted to [ 0, 1 ] 2 equals the

associated copula CUV . A copula is itself a bivariate distribution with uniform margins on

[ 0, 1 ] . So, as stated by Nelsen (2006a):

[. . . ] each copula C induces a probability measure on [ 0, 1 ] 2 [. . . ] Hence, at a

intuitive level, the C-measure of a subset of [ 0, 1 ] 2 is the probability that two

continuous uniform (0, 1) random variables U and V with joint distribution C

assume values in that subset.

1.9. Definition. For any copula C let C(u, v) = AC(u, v) + SC(u, v) , where

AC(u, v) :=

∫ u

0

∫ v

0

∂ 2

∂s∂t
C(s, t) dtds , (1.15)

SC(u, v) := C(u, v)− AC(u, v) . (1.16)

If C ≡ AC on [ 0, 1 ] 2 — that is, if considered as a joint distribution function, C has a

joint density (usually referred as the copula density) given by ∂ 2C(u, v)/∂u∂v — then C

is absolutely continuous, whereas if C ≡ SC on [ 0, 1 ] 2 — that is, if ∂ 2C(u, v)/∂u∂v =

0 almost everywhere in [ 0, 1 ] 2 — then C is singular. Otherwise, C has an absolutely

continuous component AC and a singular component SC (in this case neither AC or SC

is a copula because neither has uniform (0, 1) margins). The C-measure of the absolutely

continuous component is AC(1, 1), and the C-measure of the singular component is SC(1, 1).

The support of a copula is the complement of the union of all open subsets of [ 0, 1 ] 2 with

C-measure equal to zero.

Most of the previous definitions and results are extended to the multivariate case, for

details see Schweizer and Sklar (2005) and Nelsen (2006a), so we will just point out those

which do not, as well as some issues that do not arise in the bivariate case.
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The extensions of the bivariate copulas M ,Π , and W to n dimensions are given by:

M (n)(u1, . . . , un) := min(u1, . . . , un) ; (1.17)

Π(n)(u1, . . . , un) := u1u2 · · ·un ;

W (n)(u1, . . . , un) := max(u1 + u2 + · · ·+ un − n+ 1, 0) .

M (n) and Π(n) are multivariate copulas (or n-copulas) for all n ≥ 2 , but W (n) fails to

be an n-copula for any n > 2 . However, we still have the n-dimensional version of the

Fréchet-Hoeffding bounds (1.9): If C is any n-copula, then for every u = (u1, . . . , un) in

[ 0, 1 ]n

W (n)(u) ≤ C(u) ≤M (n)(u) . (1.18)

Although the Fréchet-Hoeffding lower bound W (n) is never a copula for n > 2 , the above

inequality cannot be improved, see Nelsen (2006a):

1.10. Theorem. For any n ≥ 3 and any fixed u = (u1, . . . , un) in [ 0, 1 ]n, there exists an

n-copula Cu, which depends on u, such that Cu(u) = W (n)(u) .

For n = 2 we may just talk about univariate margins, which by definition (1.1) are the

identity function, that is C(u, 1) = u and C(1, v) = v . For n ≥ 3 and n-copulas, the

concept of m-margins is introduced, for 2 ≤ m ≤ n , defining an m-variate function by

setting n−m of the arguments of C equal to 1 . An n-copula thus has
(
n
m

)
m-margins. It

is straightforward to show that each m-margin of C is an m-copula. In the other direction,

however,
(
n
m

)
given m-copulas are not necessarily the m-margins of an n-copula; if they are,

then the m-copulas are said to be compatible. Whether certain given m-copulas may or

may not be m-margins of higher dimension copulas has become known as the compatibility

problem. Sklar (1996a) gives some examples of incompatibility. There is work done on

necessary and sufficient conditions for compatibility in 3-copulas: Dall’Aglio (1959, 1960,

1972), Quesada-Molina and Rodŕıguez-Lallena (1994), Joe (1997). For some cases in higher

dimensions see Joe (1996, 1997) .
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1.2 Diagonal copulas.

We begin this section with some definitions and lemmas from Schweizer and Sklar (2005):

1.11. Definition. A binary operation on a nonempty set S is a function T : S × S → S .

A binary system is a pair (S, T ) .

1.12. Definition. Let (S, T ) be a binary system. For any a in S, the vertical section of

T at a is the function ηa : S → S defined by

ηa(x) := T (a, x) ; (1.19)

and the horizontal section of T at a is the function ha : S → S defined by

ha(x) := T (x, a) . (1.20)

The diagonal section of the binary operation T is the function δT : S → S defined by

δT (x) := T (x, x) . (1.21)

Bivariate copulas are a particular type of binary operations on [ 0, 1 ] . If C is a bivariate

copula then from the previous section we know that for the binary system ([ 0, 1 ], C) and for

any a in [ 0, 1 ] the sections ηa , ha , and δC are all nondecreasing and uniformly continuous

functions on [ 0, 1 ] .

1.13. Definition. Let T be a binary operation on S. An element a of S is a left null element

of T if T (a, x) = ηa(x) = a for all x in S; a right null element of T if T (x, a) = ha(x) = a

for all x in S; and a null element of T if it is both a left and right null element of T.

Correspondingly, an element a of S is a left identity of T if T (a, x) = ηa(x) = x for all

x in S; a right identity of T if T (x, a) = ha(x) = x for all x in S; and an identity of T

if it is both a left and a right identity of T. An element a of S is idempotent under T if

T (a, a) = δT (a) = a , that is if a is a fixed point of δT .

Thus (left or right) null elements and (left or right) identities are idempotent elements.

1.14. Lemma. If a is a left null element and b a right null element of T, then a = b . If

a is a left identity and b a right identity of T, then a = b .

The above lemma implies that a binary operation can have at most one null element and

one identity. Idempotent elements that are neither null elements nor identities can be of

course much more numerous. In the case of copulas, 0 is the (unique) null element and 1

the (unique) identity.
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1.15. Definition. The dual of a bivariate copula C is the function C̃ : [ 0, 1 ] 2 → [ 0, 1 ]

defined by

C̃(u, v) := u+ v − C(u, v) . (1.22)

1.16. Lemma. The dual of a bivariate copula is a binary operation on [ 0, 1 ] , with identity

0 and null element 1 , which is continuous and nondecreasing in each variable, but not 2-

increasing (see (1.7)). If C̃1 and C̃2 are the dual of copulas C1 and C2, respectively, then

C̃1 ≤ C̃2 if and only if C2 ≤ C1. Hence every dual of a copula satisfies

M̃(u, v) ≤ C̃(u, v) ≤ W̃ (u, v) . (1.23)

The above lemma implies that the dual of a bivariate copula is not a copula. As pointed

out by Nelsen (2006a) if C is the copula of a pair of continuous random variables X and

Y, with marginal probability distributions F and G, respectively, and joint probability

distribution H, the dual of C expresses a probability of an event involving X and Y :

P[X ≤ x or Y ≤ y] = F (x) +G(y)−H(x, y) = C̃
(
F (x), G(y)

)
. (1.24)

The random variables max(X, Y ) and min(X, Y ) are the order statistics for X and Y, and

it is immediate to verify that their distribution functions are given by, respectively,

P[max(X, Y ) ≤ t] = C
(
F (t), G(t)

)
and P[min(X, Y ) ≤ t] = C̃

(
F (t), G(t)

)
, (1.25)

and in the particular case when F = G we get

P[max(X, Y ) ≤ t] = δC
(
F (t)

)
, (1.26)

P[min(X, Y ) ≤ t] = 2F (t)− δC
(
F (t)

)
. (1.27)

If we denote the diagonal section of the dual of a copula C by

δ̃C(t) := C̃(t, t) = 2t− δC(t) , (1.28)

then (1.27) may be rewritten as

P[min(X, Y ) ≤ t] = δ̃C
(
F (t)

)
. (1.29)

In a few words, δC
(
F (t)

)
and δ̃C

(
F (t)

)
are the distribution functions of the order statistics

max(X, Y ) and min(X, Y ), respectively, when X and Y are continuous random variables

with a common marginal distribution F and copula C.
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It immediately follows from the basic definitions and results given in the previous section

that if δ is the diagonal section of a copula then

δ(0) = 0 and δ(1) = 1 (that is 0 and 1 are fixed points of δ) ; (1.30)

0 ≤ δ(t2)− δ(t1) ≤ 2(t2 − t1) , for all t1, t2 in [ 0, 1 ] with t1 ≤ t2 ; (1.31)

max(2t− 1, 0) ≤ δ(t) ≤ t , for all t in [ 0, 1 ] . (1.32)

As proposed by Fredricks and Nelsen (1997b), any function from [ 0, 1 ] to [ 0, 1 ] satisfying

the above three properties will be called simply a diagonal, while the function δC(t) =

C(t, t) will be referred to as the diagonal section of C.

1.17. Lemma. (Fredricks and Nelsen, 1997b) Let δ be any diagonal and δ̃ its dual.

Then

i) δ̃ is a nondecreasing, absolutely continuous function mapping [ 0, 1 ] onto [ 0, 1 ] , and

t ≤ δ̃(t) ≤ min(2t, 1) , for all t in [ 0, 1 ] ;

ii) if δ is differentiable at t0 in the interior of [ 0, 1 ] , then

0 ≤ δ ′(t0) ≤ 2 and 0 ≤ δ̃ ′(t0) ≤ 2 .

If δ is any diagonal, does there exist a copula C whose diagonal section is δ ? This

question has already been answered affirmatively by Fredricks and Nelsen (1997a, 1997b,

2002). They made the following remark: For any copula C and any (u, v) in [ 0, 1 ] 2 ,

the 2-increasing property (1.7) implies that C(v, v) − C(u, v) − C(v, u) + C(u, u) ≥ 0 ;

so that if C is symmetric (that is if C(u, v) = C(v, u) for all (u, v) in [ 0, 1 ] 2 ), then

2C(u, v) ≤ δC(u) + δC(v) , or C(u, v) ≤ (1/2)[δC(u) + δC(v)] . Thus, if C is any symmetric

copula, then C(u, v) ≤ min(u, v, (1/2)[δC(u) + δC(v)]) . The following theorem proved that

this last upper bound (with δC replaced by any diagonal δ) is itself, like the Fréchet-

Hoeffding upper bound, a copula:

1.18. Theorem. (Fredricks and Nelsen, 1997b) Let δ be any diagonal, and set

Kδ(u, v) := min

(
u , v ,

δ(u) + δ(v)

2

)
. (1.33)

Then Kδ is a copula whose diagonal section is δ (that is δK = δ ). Moreover, if C is any

symmetric copula with diagonal section δ, then C ≤ Kδ on [ 0, 1 ] 2.
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Copulas of the form (1.33) were called diagonal copulas by Fredricks and Nelsen (1997a,

1997b). Although copula Kδ is completely determined by its diagonal δ , it is important

to mention than not every copula characterized by its diagonal is necessarily of the form

(1.33), as proved, for example, by Fredricks and Nelsen (2002):

1.19. Proposition. (Fredricks and Nelsen, 2002) Let δ be any diagonal and define

Bδ on [ 0, 1 ] 2 by

Bδ(u, v) :=


u− inf

u≤ t≤v
[ t− δ(t) ] , u ≤ v ,

v − inf
v≤ t≤u

[ t− δ(t) ] , v ≤ u .

Then Bδ is a symmetric copula with diagonal section δ. Moreover, if C is any copula with

diagonal section δ, then Bδ ≤ C on [ 0, 1 ] 2 .

In all cases, the results obtained by Fredricks and Nelsen (1997a, 1997b, 2002) lead to

symmetric singular copulas. If δ is any diagonal, does there exist an absolutely

continuous copula C whose diagonal section is δ ? We get a partial answer in the case

of Archimedean copulas (see next section). Archimedean copulas are always symmetric,

but it is also possible to build absolutely continuous copulas, not necessarily symmetric,

with a given diagonal (see chapter 3), as proved by Erdely and González-Barrios (2006a),

Nelsen, Quesada-Molina et al (2006), and Nelsen (2006b).

1.3 Archimedean copulas.

We will review the construction of this particular type of copulas through some results

from the point of view of functional equations, particularly in terms of certain solution of

the associativity equation.

According to Aczél (1966) or Castillo and Ruiz (1993), a functional equation may be

considered as an equation which involves independent variables, known functions, unknown

functions, and constants. The fact that it is excluded the possibility of infinitely many

variables or functions as well as the possibility of known and unknown operators and

functionals excludes the consideration of differential and integral equations, and other

equations which involve infinitesimal operators. The main interest in this field of study is

the substitution of known or unknown functions by other known or unknown functions.

Among many kinds of problems regarding functional equations, there is the problem of

representing multivariate functions by superpositions of functions of a smaller number of
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variables. Questions like, for example, given a bivariate function T, when is it possible to

find univariate functions f and g such that

T (x, y) = g
(
f(x) + f(y)

)
? (1.34)

By assuming certain properties on T it had been possible to have different representation

theorems of the form (1.34). We are specifically interested in a theorem by Ling (1965),

but before we proceed, we need to review some basic concepts involved with such result.

Let S be a nonempty set. T : S × S → S is an associative function if

T
(
T (x, y), z

)
= T

(
x, T (y, z)

)
, for all x, y, z in S . (1.35)

According to Definition 1.11 we may consider T as a binary operation on S. When T is

associative, the binary system (S, T ) is what is known as a semigroup. Some authors prefer

to use symbols such as ∗ to denote binary operators like T, so that when referring to a

semigroup (S, ∗) it is meant that

(x ∗ y) ∗ z = x ∗ (y ∗ z) , for all x, y, z in S . (1.36)

The T -powers (or simply the powers under ∗ ) of x ∈ S are the elements of S given

recursively by

x1 := x and xn+1 := xn ∗ x ≡ T (xn, x) (1.37)

for all positive integers n. Since both addition and multiplication are commutative opera-

tions on the integers, by induction we have

xm+n = xm ∗ xn = xn ∗ xm ≡ T (xm, xn) = T (xn, xm) (1.38)

and

xmn = (xm)n = (xn)m (1.39)

for all positive integers m,n and x in S. If T is associative and has an identity element

b then (1.37) can be extended to the nonnegative integers by defining x0 := b for all x

except left and right null elements of T. So for the diagonal section we have δT (x) = x 2

and simple induction yields

δ nT (x) = x 2n (1.40)

for all integers n ≥ 0 and all x in S.

If f : [ a, b ] → [ 0,∞ ] is a continuous and strictly decreasing function, the pseudo-inverse

of f is defined by

g(x) :=


b , if x is in [ 0, f(b) ] ,

f −1(x) , if x is in [ f(b), f(a) ] ,

a , if x is in [ f(a),∞ ] .

(1.41)
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It is immediate to verify that the pseudo-inverse g is continuous and nonincreasing.

1.20. Theorem. (Ling, 1965) Let S be a closed interval [ a, b ] and T : S × S → S be

an associative function satisfying the following conditions:

(1) T is continuous,

(2) T is nondecreasing in each variable,

(3) The endpoint b is a left identity, that is T (b, x) = x for all x in S,

(4) For all x in the interior of S, the diagonal section δT (x) = T (x, x) < x .

Then there exists a continuous and strictly decreasing function f : S → [ 0,∞ ] such that

T is representable in the form

T (x, y) = g(f(x) + f(y)) , (1.42)

where g is the pseudo-inverse of f.

The function f in (1.42) is called additive generator of T. Another important remark is that

if T satisfies the hypotheses of Ling’s theorem, then by (1.42) we have that T is symmetric:

T (x, y) = T (y, x) , for all x, y in S . (1.43)

Equivalently, (S, ∗) is said to be a commutative semigroup, that is

x ∗ y = y ∗ x , for all x, y in S . (1.44)

1.21. Definition. Let T be an associative binary operation on the interval [ a, b ] satisfying

1. T is nondecreasing in each variable, that is

T (x1, y1) ≤ T (x2, y2) (1.45)

for all x1, x2, y1, y2 in [ a, b ] such that x1 ≤ x2 and y1 ≤ y2.

2. The endpoint b is an identity of T, that is

T (x, b) = T (b, x) = x for all x in [ a, b ] . (1.46)

Then T is said to be Archimedean if for any x, y in the interior of [ a, b ] there is a positive

integer m such that xm < y. The binary system ( [ a, b ] , T ) is then called an Archimedean

semigroup.
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A typical example of an Archimedean semigroup would be ( [ 0, 1 ] , · ) with · the usual

multiplication operator on the real line. The following lemma is from Schweizer and Sklar

(2005):

1.22. Lemma. Let ( [ a, b ] , T ) be a semigroup, with T a continuous function. Then T is

Archimedean if and only if δT (x) < x for all x in the interior of [ a, b ] .

An immediate consequence of this lemma is that if ( [ a, b ] , T ) is an Archimedean semigroup

with T a continuous function then T admits Ling’s representation (1.42). Moreover, the

converse of Ling’s theorem is also true:

1.23. Lemma. (Ling, 1965) Let [ a, b ] be a closed interval, f : [ a, b ] → [ 0,∞ ] be a

continuous and strictly decreasing function, and g : [ 0,∞ ] → [ a, b ] the pseudo-inverse of

f. Then the bivariate function T defined by

T (x, y) := g
(
f(x) + f(y)

)
is continuous and ( [ a, b ] , T ) is a (commutative) Archimedean semigroup.

It is important to mention that the representation (1.42) is still possible under weaker

assumptions than those of Ling’s theorem, mainly without asking T to be continuous

but with other conditions instead, see Krause (1981) or Schweizer and Sklar (2005). The

following two results were taken from Schweizer and Sklar (2005):

1.24. Corollary. If ( [ a, b ] , T ) is an Archimedean semigroup with T a continuous func-

tion, then there is a c in [ a, b ] such that the diagonal section δT (x) = a for x in [ a, c ] ,

while δT is strictly increasing on [ c, b ] .

1.25. Corollary. If ( [ a, b ] , T ) is an Archimedean semigroup with T a continuous func-

tion, and T is strictly increasing in each variable on ] a, b ] 2 , then f(a) = ∞ , whence

g = f−1 and

T (x, y) = f−1
(
f(x) + f(y)

)
(1.47)

for all x, y in [ a, b ] .

Within the context of Archimedean semigroups and the results reviewed so far in this

section, we may now define a particular type of copulas:
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1.26. Corollary. Let C be a bivariate copula such that C is associative and δC(t) < t

for all t in the open interval ] 0, 1 [ . Then C admits Ling’s representation (1.42), that is,

there exists a continuous and strictly decreasing function ϕ : [ 0, 1 ] → [ 0,∞ ] such that C

is representable in the form

C(u, v) = ϕ[−1]
(
ϕ(u) + ϕ(v)

)
, (1.48)

where ϕ[−1] is the pseudo-inverse of ϕ .

The above corollary is an immediate consequence of Definition 1.1, the continuity of any

copula, Lemma 1.22 and Ling’s theorem. We should also notice that ( [ 0, 1 ] , C) is there-

fore an Archimedean semigroup, C is symmetric (commutative), and as a consequence of

Lemma 1.24 there is a t0 in [ 0, 1 ] such that δC(t) = 0 for t in [ 0, t0 ] and δC is strictly

increasing on [ t0, 1 ] .

1.27. Definition. An associative copula C such that δC(t) < t for all t in the open interval

] 0, 1 [ is called Archimedean copula.

In the particular case of an Archimedean copula, the definition of pseudo-inverse of its

(additive) generator ϕ as in (1.41) becomes

ϕ[−1](t) :=

ϕ−1(t) , 0 ≤ t ≤ ϕ(0) ,

0 , ϕ(0) ≤ t ≤ ∞ .
(1.49)

We also note that in case ϕ(0) =∞ , then ϕ[−1] = ϕ−1, the usual inverse.

Even though we may use Lemma 1.23 and a continuous and strictly decreasing function

ϕ : [ 0, 1 ] → [ 0,∞ ] to build a function C : [ 0, 1 ] 2 → [ 0, 1 ] such that ( [ 0, 1 ] , C) is a

commutative Archimedean semigroup, this is not sufficient to guarantee that C is indeed

a copula, further properties are required on the generator ϕ , as proved in Alsina, Frank

and Schweizer (2006) or Nelsen (2006a):

1.28. Theorem. Let ϕ : [ 0, 1 ] → [ 0,∞ ] be a convex, continuous, strictly decreasing

function such that ϕ(1) = 0 . Then the function C : [ 0, 1 ] 2 → [ 0, 1 ] given by

C(u, v) := ϕ[−1]
(
ϕ(u) + ϕ(v)

)
(1.50)

is an Archimedean copula.
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If a function ϕ satisfies the hypothesis of the above theorem, it is called (additive) generator

of the Archimedean copula. In case ϕ(0) = ∞ (and so ϕ[−1] = ϕ−1, the usual inverse), it

is said that ϕ is a strict generator, and in this case we have C(u, v) = ϕ−1
(
ϕ(u) + ϕ(v)

)
.

In case ϕ(0) <∞ it is called non-strict generator. It is also straight forward to verify that

if ϕ is a generator of a copula C, then for any constant k > 0 we have that kϕ is also a

generator of C.

For example, for any constant k > 0 , if ϕ1(t) := −k log t and ϕ2(t) := k(1 − t) for t in

[ 0, 1 ] , it is straightforward to verify that ϕ1 and ϕ2 satisfy the hypothesis of Theorem 1.28

and so they generate Archimedean copulas. In fact, ϕ1 is a strict generator and generates

the product copula Π(u, v) = uv , while ϕ2 is a non-strict generator and generates the

Fréchet-Hoeffding lower bound copula W (u, v) = max(u+ v − 1, 0) .

In the case of the Fréchet-Hoeffding upper bound copula M(u, v) = min(u, v), it cannot be

Archimedean since δM(t) = t , although it is an associative copula. For methods to build

associative non-Archimedean copulas see Mikusiński and Taylor (1999) or Schweizer and

Sklar (2005).

Theorem 1.28 is also a powerful tool in building families of parametric Archimedean copulas

by using parametrized generators. For example,

ϕθ(t) :=
1

θ

(
t−θ − 1

)
, θ ∈ [−1,∞ ) \ {0} , (1.51)

generates a parametric family of Archimedean copulas, discussed by Clayton (1978):

Cθ(u, v) =
[

max
(
u−θ + v−θ − 1 , 0

) ]−1/θ

. (1.52)

A list of different Archimedean families may be found in Nelsen (2006a), Alsina, Frank and

Schweizer (2006) or De Matteis (2001).

The level sets of a copula C are given by {(u, v) ∈ [ 0, 1 ] 2 : C(u, v) = t}. In the particular

case of Archimedean copulas and for t > 0, the level sets are in fact level curves since

ϕ[−1]
(
ϕ(u) + ϕ(v)

)
= t implies

v = ϕ[−1]
(
ϕ(t)− ϕ(u)

)
= ϕ−1

(
ϕ(t)− ϕ(u)

)
, (1.53)

where the replacement of ϕ[−1] by ϕ−1 is justified by the fact that ϕ(t) − ϕ(u) lies in the

interval [ 0, ϕ(0) [ . For t = 0, {(u, v) ∈ [ 0, 1 ] 2 : C(u, v) = 0} is called the zero set of C.

For many Archimedean copulas, their zero set is simply the union of the two line segments
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{0} × [ 0, 1 ] and [ 0, 1 ] × {0} (for example, Π(u, v) = uv); for others, their zero set has

positive area (for example, W (u, v) = max(u+v−1, 0)) and for such zero set the boundary

curve ϕ(u) +ϕ(v) = ϕ(0) is called the zero curve of C. The following theorem is proved in

Nelsen (2006a):

1.29. Theorem. The level curves of a bivariate Archimedean copula are convex.

One important remark about the diagonal section of Archimedean copulas: most of the

well-known families of Archimedean copulas have convex diagonals, but this is not true

in general, as an example we have copula 4.2.18 in Nelsen’s catalog (2006a) with, for

example, parameter θ = 2. Another example, provided by Mesiar (2006), using the non-

strict generator

ϕ(u) :=

{
1− 3

2
u , 0 ≤ u ≤ 1

2
,

1−u
2
, 1

2
≤ u ≤ 1 ,

which yields the non-convex diagonal section

δ(u) :=


0 , 0 ≤ u ≤ 1

3
,

2
3

(3u− 1) , 1
3
≤ u ≤ 1

2
,

2
3
u , 1

2
≤ u ≤ 3

4
,

2u− 1 , 3
4
≤ u ≤ 1 .

It is important to mention that, recently, Durante, Quesada-Molina, and Sempi (2006) have

introduced and studied a class of bivariate copulas depending on two univariate functions,

which generalizes the Archimedean family.

For the multivariate case, we are led naturally to the problem of analyzing whether the

function C : [ 0, 1 ]n → [ 0, 1 ] given by

C(u1, . . . , un) = ϕ[−1]
(
ϕ(u1) + ϕ(u2) + · · ·+ ϕ(un)

)
, n ≥ 3 , (1.54)

is a copula, and in such case we would call it multivariate Archimedean copula. For this

purpose we need the following definition from Widder (1946):

1.30. Definition. A function g is completely monotonic on an interval J if it is continuous

and it has derivatives of all orders that alternate in sign, that is if g satisfies

(−1)k
d k

d t k
g(t) ≥ 0 (1.55)

for all t in the interior of J and k = 0, 1, 2, . . .
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By a result from Widder (1946), if g(t) is completely monotonic on [ 0,∞ [ and g(c) = 0

for some finite c > 0 , then g must be identically zero on [ 0,∞ [ . As a consequence, if the

pseudo-inverse ϕ[−1] of an Archimedean generator ϕ is completely monotonic, it has to be

positive on [ 0,∞ [ and so ϕ is a strict generator, that is ϕ[−1] = ϕ−1, the usual inverse.

Kimberling (1974) obtained necessary and sufficient conditions for a strict generator ϕ to

generate multivariate Archimedean copulas. See also Nelsen (2006a) or Alsina, Frank and

Schweizer (2006):

1.31. Theorem. Let ϕ be a strict Archimedean generator. The function C given by (1.54)

is a multivariate copula for all n ≥ 2 if and only if ϕ−1 is completely monotonic on [ 0,∞ [ .

An immediate example is the case of the (strict) generator of the bivariate product copula

given by ϕ1(t) = − log t , so ϕ−1
1 (t) = e−t ; it is clear that ϕ−1 is completely monotonic and,

as expected, it generates the multivariate product copula Π(u1, . . . , un) = u1u2 · · ·un .

Another example is the case of the Clayton family of copulas. In the bivariate case its

generator is given by (1.51) and it is strict only if θ > 0 , in which case ϕ−1
θ is completely

monotonic, generating the multivariate Clayton family of copulas given by

Cθ(u1, . . . , un) =
(
u−θ1 + · · ·+ u−θn − n+ 1

)−1/θ

. (1.56)

1.4 Schröder’s functional equation.

If C is an Archimedean copula with (additive) generator ϕ, according to (1.50) the diagonal

section of C , δ(u) = C(u, u), may be directly expressed in terms of such generator:

δ(u) = ϕ[−1]
(
2ϕ(u)

)
, u ∈ [ 0, 1 ] . (1.57)

The details of the proof of Ling’s representation theorem (Theorem 1.20) show the impor-

tant role of assumption (4), that is δ(u) < u for u in the interior of the closed interval

under consideration. So one may ask, as observed by Darsow and Frank (1983), how much

information about an Archimedean C is contained in its diagonal section. In other words,

given δ , what can be said about ϕ ?

First let’s assume that ϕ is a strict generator. Then by (1.49) we have that ϕ[−1] = ϕ−1,

the usual inverse, and (1.57) may be written as

ϕ
(
δ(u)

)
= 2ϕ(u) , u ∈ [ 0, 1 ] . (1.58)
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The above equation is a particular case of Schröder’s functional equation

ϕ ◦ δ = λϕ , λ 6= 0, 1, a constant, (1.59)

which has been studied in one form or another, according to Kuczma (1968), since the late

nineteenth century:

[(1.59)] appeared for the first time about 1870 [Schröder (1871)] in connection with

the problem of continuous iteration (cf. Chapter IX). A fundamental theorem about

the existence and uniqueness of analytic solutions of [(1.59)] was then proved by G.

Koenigs [(1884)], and therefore equation [(1.59)] is often called also the Koenigs

equation or the Schröder-Koenigs equation [...] The authors have mainly paid

attention to analytic solutions on the complex plane. The Schröder equation for

functions of a real variable has been dealt in the [twentieth] century.

In the abstract of Sungur and Yang (1996) they made the following statement:

It is shown that for the Archimedean class, the diagonal copula uniquely determines

the corresponding copula.

They defined in their article as “diagonal copula” what has been defined in the present

work in (1.21) as diagonal section. The above statement by Sungur and Yang (1996) is

wrong. Frank (1996) announced:

We explore the following question [...] When is an associative copula C uniquely

determined by its diagonal δ(x) = C(x, x) ? [...] a sufficient, but not necessary,

uniqueness condition for Archimedean C is given by [the left derivative] δ ′(1) = 2.

This is an almost immediate consequence of standard results on convex solutions

of Schröder’s equation (with a new, direct proof) via the representation of these

copulas. We present some related conditions and illustrate non-uniqueness by con-

structing families of copulas having identical diagonals.

The above quotation from Frank (1996) is a report of meeting in the Thirty-third Inter-

national Symposium on Functional Equations, May 21 - May 27, 1995, held in Caldes de

Malavella, Catalonia, Spain. According to Schweizer (2006) the relevant paper has not been

published. Such result is now included in the recently published book by Alsina, Frank

and Schweizer (2006), pp. 151-155, including an example with the construction of different

Archimedean copulas that have the same diagonal, which contradicts the statement by

Sungur and Yang (1996). The problem of finding conditions under which an Archimedean
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copula is or is not uniquely determined by its diagonal section has been also studied in the

context of triangular norms, see for example Klement, Mesiar and Pap (2000) and Klement

and Mesiar (2005).

From a remark from Itô (1996) we have that if ϕ1 is a solution of ϕ
(
δ(u)

)
= λ δ(u) and

if g1 is a solution of g
(
δ(u)

)
= g(u) then it is straightforward to verify that the product

ϕ1g1 is also a solution of (1.59). A trivial solution for g
(
δ(u)

)
= g(u) is g1 = k , being k

any constant, and in such case we have that if ϕ1 is a solution of (1.59) then k ϕ1 is also

a solution. The following result is a particular case of Theorem 6.6 in Kuczma (1968) (or

Theorem 2.3.12 in Kuczma et al (1990)):

1.32. Theorem. Let the function γ : [ 0, 1 ] → [ 0, 1 ] be such that 0 < γ(u) < u for all

u ∈ ] 0, 1 [ , and γ ′(0) = 1
2
. If s(u) is a solution of the functional equation

s
(
γ(u)

)
=

1

2
s(u) (1.60)

such that the function s(u)/u is monotonic in ] 0, 1 [ , then

s(u) = k lim
n→∞

2nγ n(u) , (1.61)

where γ n is the n-th iteration of γ, that is the composition of γ with itself n times, and k

any constant.

The following result is part of what was announced by Frank (1996), and now included in

Alsina, Frank and Schweizer (2006) only defining the functions needed for the proof. For

completeness we present the proof of the following:

1.33. Theorem. (Frank, 1996) If C is an Archimedean copula whose diagonal δ satisfies

δ ′(1−) = 2 then it is uniquely determined by its diagonal.

Proof: We first consider the case of a strict generator ϕ , then from (1.41), (1.49), and

(1.57), we have that δ is continuous and strictly increasing in [ 0, 1 ] , and so it has an inverse

δ−1. By defining a function γ on [ 0, 1 ] via γ(u) := 1 − δ−1(1− u) for u in [ 0, 1 ] we have

that γ is continuous and strictly increasing, γ(0) = 0, and 0 < γ(u) < u for all u ∈ ]0, 1[ .

Now define s(u) := ϕ(1 − u) and substituting the definitions of γ and s in (1.58) we get

that this functional equation is equivalent to (1.60) and so we may apply Theorem 1.32

by requiring s(u)/u to be monotonic and lim
u→ 0

[ γ(u)/u ] =
1

2
. This last condition is fulfilled

if γ is right-differentiable in zero and γ ′(0 +) = 1
2

which is equivalent to δ ′(1−) = 2 .
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Since we are dealing with an Archimedean copula the generator ϕ is convex and so it

is s(u) = ϕ(1 − u) , then by Proposition 6.3.2 in Dudley (2002) we have that s(u)/u is

monotonic. Applying Theorem 1.32 we obtain the following formula for ϕ in terms of

diagonal δ :

ϕ(u) = k lim
n→∞

2n
[
1− δ−n(u)

]
, (1.62)

where δ−n is the composition of δ−1 with itself n times, and k is any positive constant, since

we require that ϕ ≥ 0 . So far we have considered the case where ϕ is a strict generator. In

the case of a non-strict generator, that is ϕ(0) < ∞ , if we define α := ϕ−1(ϕ(0)/2) , then

from (1.49) and (1.57) we get

δ(u) =

{
ϕ−1(2ϕ(u)) , if α ≤ u ≤ 1 ,

0 , if 0 ≤ u ≤ α ,
(1.63)

that is, δ = 0 in [ 0, α ] and δ is strictly increasing in [α, 1 ] . We notice that α ≤ 1
2

by

(1.32). Then

ϕ(δ(u)) =

{
2ϕ(u) , if α ≤ u ≤ 1 ,

ϕ(0) , if 0 ≤ u ≤ α .
(1.64)

We have that for 0 ≤ u ≤ α , ϕ(δ(u)) = ϕ(0) since δ(u) = 0 in such interval, so it just

remains to solve ϕ(δ(u)) = 2ϕ(u) for α ≤ u ≤ 1 , and we proceed as in the case of a

strict generator, by taking w = (u − α)/(1 − α) which takes values in [0, 1], and solving

ϕ(δ(w)) = 2ϕ(w).

From now on we will refer to the condition δ ′(1−) = 2 as Frank’s condition. An important

example of an Archimedean copula that satisfies Frank’s condition is the case of the product

copula Π(u, v) = uv , which characterizes a couple of independent continuous random

variables, via Sklar’s Theorem, and so it is uniquely determined by its diagonal section

δΠ(u) = u2. This fact is crucial for the work done in this thesis. Frank’s condition

is satisfied by 13 out of 22 copulas in the catalog of Archimedean copulas provided by

Nelsen (2006a). From Alsina, Frank and Schweizer (2006) we have the following remark:

[Frank’s condition] is not nearly as stringent as it might seem at first sight. Thus,

since δW
′(1−) = δΠ(1−) = 2, [where W is Frechet-Hoeffding’s lower bound

copula (1.9)] we have δC
′(1−) = 2 whenever W ≤ C ≤ Π.

As a consequence of the above remark, for all the parametric families of Archimedean

copulas {Cθ : θ ∈ Θ} for which there exists a subset Θ0 ⊆ Θ such that Cθ ≤ Π for all θ

in Θ0 , the subfamily {Cθ : θ ∈ Θ0} satisfies Frank’s condition. This will be the case of

negative quadrant dependence (see Definition 1.35 and (1.80) in section 1.5).
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In Alsina et al (2006), Section 3.8, a counterexample is given, in order to show that if ϕ is a

generator for an Archimedean copula C such that ϕ ′(1−) = 0, or equivalently δC
′(1−) < 2,

where δC is the diagonal of the copula C, then the diagonal does not characterize uniquely

the generator ϕ. Alsina et al (2006) provide a parametric family of generators {ϕβ : 0 <

β ≤ 1/(1 + 8π)} such that their diagonal section δβ = δC but Cβ1 6= Cβ2 for β1 6= β2 . The

details will be done to show that the given upper bound for β is not sharp, by providing a

sharp one.

Let 0 < β ≤ 1 and define for 0 < x < 1

ϕβ(x) = ln(x)2 + 2nβ sin

(
ln(x)2

2n

)
if 2n+1π ≤ ln(x)2 < 2n+2π, (1.65)

for n ∈ Z. First we observe that (1.65) is equivalent to

ϕβ(x) = ln(x)2 + 2nβ sin

(
ln(x)2

2n

)
if exp(−

√
2n+2π) < x ≤ exp(−

√
2n+1π), (1.66)

for n ∈ Z. Since

lim
n→∞

exp(−
√

2n+2π) = 0 and lim
n→−∞

exp(−
√

2n+2π) = 1.

Then ϕβ(x) is defined and it is continuous on (0, 1), to see that this holds, observe that

2n+1π ≤ ln(x)2 < 2n+1π if and only if 2π ≤ ln(x)2

2n
< 4π. (1.67)

Therefore, sin
(

ln(x)2

2n

)
has a whole period for each n ∈ Z, in fact, for each n ∈ Z

ϕβ(exp(−
√

2n+1π)−) = 2n+1π + 2nβ sin(2π)

= 2n+1π

= 2(n−1)+2π + 2n−1β sin(4π)

= ϕβ(exp(−
√

2(n−1)+2π)+).

Now we observe that ϕβ is differentiable and its derivative is given by

ϕ′β(x) =
2 ln(x)

x

(
1 + β cos

(
ln(x)2

2n

))
if 2n+1π ≤ ln(x)2 < 2n+2π, (1.68)

for 0 < x < 1, equivalently,

ϕ′β(x) =
2 ln(x)

x

(
1 + β cos

(
ln(x)2

2n

))
if 2π ≤ ln(x)2

2n
< 4π, (1.69)
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for 0 < x < 1. We also have continuity of ϕ′β(x), since for each n ∈ Z,

ϕ′β(exp(−
√

2n+1π)−) =
−2
√

2n+1π

exp(−
√

2n+1π)
(1 + β cos(2π))

=
−2
√

2n+1π

exp(−
√

2n+1π)
(1 + β)

=
−2
√

2(n−1)+2π

exp(−
√

2(n−1)+2π)
(1 + β cos(4π))

= ϕ′β(exp(−
√

2n+1π)+).

Now, we know that ϕβ(x) is convex if and only if ϕ′β(x) is increasing, see for example

Pečarič et al (1992), Theorem 1.4. We want to find the values of β, if any, such that ϕβ(x)

is convex on (0, 1).

Let u2 = ln(x)2

2n
, for 0 < x < 1, then u = ln(x)√

2n
, hence x = exp(

√
2nu). Also, for n ∈ Z,

2n+1π ≤ ln(x)2 < 2n+2π if and only if 2π ≤ u2 < 4π if and only if −
√

4π < u ≤ −
√

2π.

(1.70)

Therefore, (1.68) is equivalent to

ϕ′β(u;n) =
2
√

2nu

exp(
√

2nu)

(
1 + β cos(u2)

)
for −

√
4π < u ≤ −

√
2π and every n ∈ Z. (1.71)

Hence, to show that (1.68) is increasing for some 0 < β < 1 is equivalent to show that

(1.71) is increasing for some 0 < β < 1. First we observe that for large positive values of

n, ϕ′β(u;n) behaves like 2
√

2nu
exp(
√

2nu)
which decreases to −∞ as n → ∞, for every −

√
4π <

u ≤ −
√

2π. On the other hand as n becomes smaller, or more negative, the denominator

exp(
√

2nu) in equation (1.71) approaches 1 and
√

2nu approaches zero. It can be shown

that ϕ′β(u);n is increasing for “large” values of n, but for small values of n and some β′s it

is not increasing anymore. In Table 1 we present the values of β, the first value of n ∈ Z for

which ϕ′β(u;n), given in equation (1.71), is not increasing, and the corresponding interval

in which ϕβ ceases to be convex. Observe that from Table 1.1, the maximum value of n,

for which ϕβ is not convex, decreases with β and the corresponding interval in which ϕβ

ceases to be convex moves to the right with endpoints approaching 1.

Now we obtain the second derivative ϕ′′β(u;n). We know that if ϕ′′β(u;n) ≥ 0 for each

n ∈ Z, then ϕβ(u) is a convex function.

ϕ′′β(u;n) =
2
√

2n − 2n+1u

exp(
√

2nu)
(1 + β cos(u2))− 4

√
2nβ sin(u2)

exp(
√

2nu)
(1.72)

=
2
√

2n

exp(
√

2nu)

(
1 + β

(
cos(u2)− 2u2 sin(u2)

))
− 2n+1u

exp(
√

2nu)
(1 + β cos(u2))
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for −
√

4π < u ≤ −
√

2π. We observe that the last expression on the right hand of (1.72)

approaches 0 very quickly when n→ −∞. We also observe that exp(
√

2nu) approaches 1

uniformly for every −
√

4π < u ≤ −
√

2π as n→ −∞. Therefore, ϕ′′β(u;n) behaves like

2
√

2n
(
1 + β

(
cos(u2)− 2u2 sin(u2)

))
for 2π ≤ u2 < 4π, (1.73)

as n tends to −∞. Hence, letting v = u2, the sign of ϕ′′β(u : n) is given by the sign of

g(v) = K(1 + β(cos(v)− 2v sin(v))) for 2π ≤ v < 4π, (1.74)

whereK = 2
√

2n. Therefore, we only need to find the maximal value of β for which g(v) ≥ 0

for any 2π ≤ v < 4π. This is equivalent to find the minimum of k(v) = cos(v)− 2v sin(v)

for 2π ≤ v < 4π. By analyzing the functions k and (1.74), we observe that if β ≤ 0.062548

then g(v) ≥ 0. Hence, the function ϕβ(x) is convex for β ≤ 0.062548, which agrees with

the results in Table 1.1.

In Alsina et al (2006), page 155, it is mentioned that ϕβ(x) is convex if 0 < β ≤ 1
1+8π

=

0.038266, which of course is true. However, this bound for β is not sharp as shown above,

since convexity of ϕβ also holds for β ≤ 0.062548, in fact this a sharp bound for convexity

of ϕβ.

1.5 Dependence and copulas.

As a brief introduction to this section we quote part of the preface from Drouet and Kotz

(2001):

The concept of dependence permeates our Earth and its inhabitants in a most

profound manner. Examples of interdependent meteorological phenomena in nature,

interdependence in medical, social, and political aspects of our existence, not to

mention economic structures, are too numerous to be cited individually. Moreover,

the dependence is obviously not deterministic but of a stochastic nature.

It is therefore somewhat surprising that the concepts and measures of dependence

did not receive sufficient attention in the statistical literature, at least until as

late as 1966 when the pioneering paper by E.L. Lehmann [see Lehmann (1966)]

has appeared. The concept of correlation (and its modifications) introduced by

F. Galton in 1885 dominated statistics during some 70 years of the 20-th century,

practically serving as the only measure of dependence, often resulting in somewhat

misleading conclusions. The last 20-th century have witnessed a rapid resurgence

in investigations of dependence properties from statistical and probabilistic points
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Table 1.1: Values of n and intervals for which ϕβ(x) ceases to be convex

β maximal value of n for non convexity corresponding interval

0.9 7 [3.8× 10−18, 4.8× 10−13)

0.8 5 [1.9× 10−9, 6.9× 10−7)

0.7 4 [6.9× 10−7, 4.4× 10−5)

0.6 4 [6.9× 10−7, 4.4× 10−5)

0.5 3 [4.4× 10−5, 0.00083)

0.4 1 [0.0066, 0.0288)

0.3 1 [0.0066, 0.0288)

0.2 -1 [0.08, 0.17)

0.1 -5 [0.53, 0.64)

0.09 -6 [0.64, 0.73)

0.08 -7 [0.73, 0.80)

0.07 -10 [0.89, 0.92)

0.069 -10 [0.89, 0.92)

0.068 -11 [0.92, 0.94)

0.067 -11 [0.92, 0.94)

0.066 -12 [0.94, 0.96)

0.065 -13 [0.96, 0.97)

0.064 -14 [0.97, 0.98)

0.063 -18 [0.993, 0.995)

0.0626 -24 [0.9991, 0.9994)

0.06255 -35 [0.99998, 0.99999)

0.062549 -39 [0.999995, 0.999996)

0.062548 −∞ does not exist

of view but the first –and to the best of our knowledge– the only text (of some

400 pages) devoted to dependence concepts (by Harry Joe) appeared as late as

1997 [see Joe (1997)]. Moreover, it seems to us that no Department of Statistics

(or/and Mathematics) in the U.S.A. and Europe offer courses dealing specifically

with dependence concepts and measures.
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We recall that the correlation between two random variables X and Y is defined by

r(X, Y ) :=
Cov(X, Y )√
V(X)V(Y )

,

provided the existence of second moments. Before we continue a critique against the use

of correlation as a dependence measure, we review the following property for copulas, see

Nelsen (2006a):

1.34. Theorem. Let X and Y be continuous random variables with copula CXY . If α and β

are strictly increasing functions on RanX and RanY, respectively, then Cα(X)β(Y ) = CXY .

Thus CXY is invariant under strictly increasing transformations of X and Y.

This result is also valid for the general multivariate case, see Schweizer and Sklar (2005).

The above theorem in connection with the concept of correlation deserved the following

comment by Embrechts et al (2003a):

Copulas provide a natural way to study and measure dependence between random

variables. As a direct consequence of [Theorem 1.34], copula properties are invariant

under strictly increasing transformations of the underlying random variables. Linear

correlation (or Pearson’s correlation) is most frequently used in practice as a measure

of dependence. However, since linear correlation is not a copula-based measure

of dependence, it can often be quite misleading and should not be taken as the

canonical dependence measure [. . . ] The popularity of linear correlation stems

from the ease with which it can be calculated and it is a natural scalar measure

of dependence in elliptical distributions (with well-known members such as the

multivariate normal and the multivariate t-distribution). However most random

variables are not jointly elliptically distributed, and using linear correlation as a

measure of dependence in such situations might prove very misleading. Even for

elliptically jointly distributed random variables there are situations where using linear

correlation [. . . ] does not make sense. We might choose to model some scenario

using heavy-tailed distributions such as t2-distributions. In such cases the linear

correlation coefficient is not even defined because of infinite second moments.

Moreover, we find in Embrechts et al (1999) a list of pitfalls within the use of linear

correlation:

Correlation is a minefield for the unwary. One does not have to search far in the

literature of financial risk management to find misunderstanding and confusion.

This is worrying since correlation is a central technical idea in finance [. . . ] :
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1. Correlation is simply a scalar measure of dependency; it cannot tell us every-

thing we would like to know about the dependence structure of risks.

2. Possible values of correlation depend on the marginal distribution of the risks.

All values between −1 and 1 are not necessarily attainable.

3. Perfectly positively dependent risks do not necessarily have a correlation of 1;

perfectly negatively dependent risks do not necessarily have a correlation of

−1.

4. A correlation of zero does not indicate independence of risks.

5. Correlation is not invariant under transformations of the risks. For example,

logX and log Y generally do not have the same correlation as X and Y.

6. Correlation is only defined when the variances of the risks are finite. It is not

an appropriate dependence measure for very heavy-tailed risks where variances

appear infinite.

After these “complaints” against the use (and abuse) of correlation and its limitations in

modeling under more general dependence relations, we proceed to show how copulas are a

useful tool for this purpose.

In his pioneering work, Lehmann (1966) gives three different definitions of what he called

positive dependence. We will just state one of them, and then we will discuss it under the

framework of copulas. For random variables X and Y, the following definition compares

the probability of any quadrant X ≤ x, Y ≤ y under the joint distribution H of (X, Y )

with the corresponding probability in the case of independence:

1.35. Definition. Quadrant dependence. We say that the pair (X, Y ) or its [joint]

distribution H is positively quadrant dependent if

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) , for all x, y. (1.75)

The dependence is strict if inequality holds for at least some pair (x, y). The family of all

[joint] distributions H satisfying (1.75) will be denoted by F1. Similarly, (X, Y ) or H is

negatively quadrant dependent if (1.75) holds with the inequality sign reversed, and the

totality of negatively quadrant dependent distributions will be denoted by G1. To simplify

the notation we shall write (X, Y ) ∈ F to mean that the distribution of (X, Y ) belongs to

F.

1.36. Lemma. (Lehmann, 1966):
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(i) (X,X) ∈ F1 for all X

(ii) (X, Y ) ∈ F1 ⇔ (X,−Y ) ∈ G1

(iii) (X, Y ) ∈ F1 implies
(
r(X), s(Y )

)
∈ F1 for all non-decreasing functions r and s. The

concept of positive quadrant dependence is thus invariant under non-decreasing trans-

formations (and similarly under non-increasing transformations) of both variables.

(iv) The set of inequalities (1.75) is equivalent to that obtained by replacing one or both

of the inequalities X ≤ x or Y ≤ y by the corresponding X < x or Y < y.

(v) The set of inequalities (1.75) is equivalent to each of the following, where again the

equality signs inside the probabilities are optional:

P(X ≤ x, Y ≥ y) ≤ P(X ≤ x)P(Y ≥ y) (1.76)

P(X ≥ x, Y ≤ y) ≤ P(X ≥ x)P(Y ≤ y) (1.77)

P(X ≥ x, Y ≥ y) ≥ P(X ≥ x)P(Y ≥ y). (1.78)

Intuitively, X and Y are positively quadrant dependent if the probability that they are

simultaneously small (or simultaneously large) is at least as large as it would be if they were

independent. Examples of this kind of dependence are the case when Y = s(X) for any

random variable X and any non-decreasing function s, or Y = X +V for any independent

random variables X and V.

If X and Y have joint distribution function H, with continuous margins F and G, respec-

tively, and copula C, then (1.75) is equivalent to

H(x, y) ≥ F (x)G(y) , for all (x, y) in R 2 , (1.79)

and by virtue of Sklar’s theorem:

C(u, v) ≥ uv = Π(u, v) , for all (u, v) in [ 0, 1 ] 2 . (1.80)

So in order to investigate quadrant dependence between two continuous random variables

it suffices to analyze the underlying copula and compare it to the product copula.

For example, if the underlying copula is a member of the Farlie-Gumbel-Morgenstern family

introduced in (1.14), then it is straightforward to verify that there is positive quadrant

dependence whenever θ ≥ 0, and negative quadrant dependence whenever θ ≤ 0. We

notice that for this family of copulas we have that C0 = Π. Amblard and Girard (2002)
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proposed a semiparametric family of copulas, which includes as a particular case the Farlie-

Gumbel-Morgenstern family, and it is given by:

Cθ(u, v) = uv + θψ(u)ψ(v) , θ ∈ [−1, 1 ] , (1.81)

where ψ must satisfy ψ(0) = ψ(1) = 0 and the Lipschitz condition

|ψ(u)− ψ(v)| ≤ |u− v| , for all (u, v) in [ 0, 1 ] 2 . (1.82)

With ψ(x) = x(1−x) we have the particular case of the Farlie-Gumbel-Morgenstern family.

Since the Amblard-Girard family of copulas is characterized by ψ it is not a surprise that

its authors proved that, for example, positive quadrant dependence may be determined by

analyzing certain property of ψ : Let θ > 0, X and Y continuous random variables with

underlying Amblard-Girard copula, then X and Y are positively quadrant dependent if

and only if either for all u ∈ [ 0, 1 ] ψ(u) ≥ 0 , or for all u ∈ [ 0, 1 ] ψ(u) ≤ 0. We should

notice that for this broad family of copulas, ψ plays a role similar to the generator of an

Archimedean copula. It is important to mention that there exists a more general class of

copulas, which may or may not be symmetric, that contains the Amblard-Girard family as

a particular case, as proved by Rodŕıguez-Lallena and Úbeda-Flores (2004), by determining

the cases in which the function C given by

C(u, v) = uv + f(u)g(v) (1.83)

is a copula, for f and g real functions defined on [ 0, 1 ] and for all u, v in [ 0, 1 ] .

In the case of Archimedean copulas, we note that if ϕ(0) <∞ (that is, if ϕ is a non-strict

generator) then the support of the Archimedean copula C it generates (recall Definition

1.9) is the set {(u, v) ∈ [ 0, 1 ] 2 : ϕ(u) + ϕ(v) ≤ ϕ(0)}; so it follows that copulas with such

generator cannot have the positive quadrant dependence since for some u, v > 0 we have

C(u, v) = 0. If X and Y are continuous random variables with an underlying Archimedean

copula with strict generator ϕ, then they are positive quadrant dependent if the following

functional inequality holds:

ϕ(u) + ϕ(v) ≤ ϕ(uv) , for all (u, v) in ] 0, 1 ] 2. (1.84)

Lehmann (1966) also proved that, provided that the covariance of X and Y exists, then

Cov(X, Y ) ≥ 0 characterizes positive quadrant dependence, but we may need to talk about

this type of dependence in presence of random variables whose moments do not exist, and
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this is a pitfall in relying on covariance, as quoted from Embrechts et al (1999) at the

beginning of this section.

In addition to Lehmann (1966) we may find more on definitions of different types of depen-

dence in Harris (1970), Esary and Proschan (1972), Shaked (1977), Block and Ting (1981),

and Block et al (1982). The work of Kimeldorf and Sampson (1987, 1989) introduced a

unified framework for studying and relating various concepts of positive dependence, be-

ginning with a formal definition of what it should be understood by positive dependence.

For an extensive list of types of dependence see Joe (1997), and for some equivalences of

different types of dependence in terms of copulas see Nelsen (1991, 2006a).

Even though dependence relations between random variables is one of the most widely

studied topics in probability theory and statistics, when reviewing the literature in this

subject it is surprising to notice the lack of a formal definition for what exactly it should

be understood by a measure of dependence. It is also common to find expressions such as

measure of association within a context in which it is not clear if it is a synonym of measure

of dependence, or if this last one is a particular type of a measure of association. Moreover,

sometimes when talking about dependence, concepts such as concordance measure are

brought into the discussion, without making clear if this last one is a particular type of

dependence measure, or maybe a particular type of an association measure. It seems like

for a long time there has been a “fuzzy boundary” among expressions such as association,

concordance, correlation and dependence.

Blomqvist (1950) proposed what he called a measure of dependence between two random

variables, but when defining it explicitly he uses the expression

As a measure of correlation we define [. . . ]

Within the context of his work the reader could hardly have a clear idea of what the

author understood by measure of dependence, nor if measure of correlation is a synonym

or a particular case of a measure of dependence.

Another example: Kruskal (1958) outlines the historical development of ordinal measures

of association. Among them, the author includes well-known measures such as Kendall’s

tau and Spearman’s rho, which are concordance measures, as we shall see later in this

section. So, whatever it should be understood by measure of association, this suggests

that concordance measures are a particular case of them. But in the introduction of his

work the author started with a question:



1.5. DEPENDENCE AND COPULAS. 33

What is meant by the degree of association or dependence between two random

variables with a joint distribution?

Should we infer that the author considers degree of association and degree of dependence

as synonyms? Even by reading the entire work, one cannot answer this question because

after the above quoted question the author only uses the expression measure of association,

with no further mention to measure of dependence or degree of dependence.

As far as it was possible to investigate, a formal definition of measure of association was

not found, just quite general and vague ideas of what is meant with this terminology. As

stated by Kruskal (1958):

There are infinitely many possible measures of association, and it sometimes seems

that almost as many have been proposed at one time or another. On the other

hand, it has been argued that, except in special cases, it is fatuous to attempt to

represent the degree of association of a bivariate population by a single number.

Since the first edition of Nelsen (2006a), which dates from 1999, we may understand mea-

sures of association as a general expression which includes, among others, the following

specific two types of measures:

• Measures of Concordance

– Kendall’s τ (1938)

– Spearman’s ρ (1904)

– Gini’s γ (1914)

– Blomqvist’s β (1950)

• Measures of Dependence

– Schweizer-Wolff’s σ (1981)

– Hoeffding’s Φ (1940)

– Fernández-González Barrios’s δ (2004)

We may find a different classification approach in Drouet and Kotz (2001), but we will just

briefly make some comments on Nelsen’s classification.
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1.5.1 Measures of Concordance.

Informally, as stated by Nelsen (2006a):

[. . . ] a pair of random variables are concordant if “large” values of one tend to be

associated with “large” values of the other and “small” values of one with “small”

values of the other.

1.37. Definition. Two observations (xi, yi) and (xj, yj) from a random vector (X, Y ) of

continuous random variables are concordant if xi < xj and yi < yj or xi > xj and yi > yj.

Similarly, they are discordant if xi < xj and yi > yj or xi > xj and yi < yj.

Equivalently, (xi, yi) and (xj, yj) are concordant if (xi − xj)(yi − yj) > 0 and discordant if

(xi− xj)(yi− yj) < 0. For further insight into this concept see Kruskal (1958) or Lehmann

(1975).

1.38. Definition. (Nelsen 2002, 2006a) Let (X1, Y1) and (X2, Y2) be random vectors of

continuous random variables with (possibly) different joint distributions H1 and H2, but

with common margins F and G. The concordance function Q between H1 and H2 is defined

by

Q(H1, H2) := P
[

(X1 −X2)(Y1 − Y2) > 0
]
− P

[
(X1 −X2)(Y1 − Y2) < 0

]
. (1.85)

Equivalently, Q is the difference between the probabilities of concordance and discordance

of (X1, Y1) and (X2, Y2).

1.39. Theorem. If in addition to Definition 1.38 the random vectors are independent,

with underlying copulas C1 and C2, respectively, then

Q(C1, C2) ≡ Q(H1, H2) = 4

∫∫
[ 0,1 ] 2

C2(u, v) dC1(u, v)− 1 = Q(C2, C1) . (1.86)

In a few words, concordance between two independent random vectors of continuous ran-

dom variables may be calculated just in terms of their underlying copulas. This is crucial

in defining the following three measures:

1.40. Definition. Let X and Y be continuous random variables whose copula is C. We

define the following measures based on the concordance function:

a) Kendall’s tau: τC := Q(C,C) ,



1.5. DEPENDENCE AND COPULAS. 35

b) Spearman’s rho: ρC := 3Q(C,Π) ,

c) Gini’s gamma: γC := Q(C,M) +Q(C,W ) ,

where Π, M and W are the product copula, and Fréchet-Hoeffding upper and lower bound

copulas, respectively.

Of course, the above definitions are not the original ones, they were defined in terms of the

random variables involved. For example, Kendall’s tau was originally defined as

τXY := P
[

(X1 −X2)(Y1 − Y2) > 0
]
− P

[
(X1 −X2)(Y1 − Y2) < 0

]
, (1.87)

where (X1, Y1) and (X2, Y2) are independent random vectors with common joint distribu-

tion. But it has been proved, see Nelsen (2002, 2006a) and Li et al (2002), that the above

three measures, in the case of continuous random variables, may be expressed just in terms

of the underlying copula, which is not a surprise since by Sklar’s theorem the dependence

structure is uniquely determined by the copula.

Moreover, in defining measures of association between continuous random variables, as

suggested by Drouet and Kotz (2001), we may consider the possibility of stating as a

desirable property that such measures should be marginally free, that is, defined just in

terms of the underlying copula. This would lead us to reject linear correlation as a measure

of association, as we shall see later in this section.

Going back to Definition 1.40, we may interpret those measures as follows: Kendall’s τ

measures how concordant (or discordant) would be independent observations of a random

vector of continuous random variables with copula C; Spearman’s ρ measures how concor-

dant (or discordant) would be independent observations of a random vector of continuous

random variables with copula C compared to the product copula, or just briefly, in terms

of concordance how close or far is C from the copula Π which represents independence;

Gini’s γ measures, in terms of concordance, how close or far is the underlying copula C

from the Fréchet-Hoeefding bounds, that is, how close or far are the involved continuous

random variables from being comonotonic or countermonotonic (see section 1.1).

In view of Theorem 1.39 and other results by Nelsen (2002, 2006a) and Li et al (2002) we

may arrive to the following equivalent expressions for the discussed concordance measures:

τC = 1− 4

∫∫
[ 0,1 ] 2

∂

∂u
C(u, v)

∂

∂v
C(u, v) dudv , (1.88)

ρC = 12

∫∫
[ 0,1 ] 2
C(u, v) dudv − 3 , (1.89)
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γC = 4

[ ∫ 1

0

C(u, 1− u) du −
∫ 1

0

[
u− C(u, u)

]
du

]
. (1.90)

Blomqvist (1950) proposed what he called a (sample) “measure of dependence” or (sam-

ple) “measure of correlation,” which happens to be a measure based on the concept of

concordance since for a random vector (X, Y ) the population version of the sample version

he defined would be:

βXY := P
[

(X −mX)(Y −mY ) > 0
]
− P

[
(X −mX)(Y −mY ) < 0

]
, (1.91)

where mX and mY are the medians of X and Y, respectively. In words of Blomqvist (1950):

Let (x1, y1) · · · (xn, yn) be a sample from a two-dimensional population with cdf

[cumulative distribution function] F (x, y), and consider the two sample medians x̃

and ỹ. The cdf F (x, y) is assumed to have continuous marginal cdf’s F1(x) and

F2(y) in order that the probability of obtaining two equal x-values or two equal

y-values in the sample will be zero. Let the x, y-plane be divided into four regions

by the lines x = x̃ and y = ỹ. It is the clear that some information about the

correlation between x and y can be obtained from the number of sample points,

say n1, belonging to the first or third quadrants compared with the number, say

n2, belonging to the second or fourth quadrants [. . . ] As a measure of correlation

we define

q′ =
n1 − n2

n1 + n2

=
2n1

n1 + n2

− 1 (−1 ≤ q′ ≤ 1) .

It is straightforward to verify, see Nelsen (2002, 2006a), that in the case of a pair of contin-

uous random variables X and Y with underlying copula C we may calculate Blomqvist’s

measure just in terms of the copula:

βC = 4C

(
1

2
,

1

2

)
− 1 . (1.92)

So far, the four concordance measures analyzed in this subsection have in common that

they use the concept of concordance, each one in a different way, having therefore their

own interpretation. Nelsen (2002, 2006a) adopted from Scarsini (1984) the following set of

“desirable” properties for a measure of concordance:

1.41. Definition. Let X and Y be any continuous random variables with underlying

copula C. A numeric measure of association between these two random variables, which

will be denoted by κX,Y or κC , is a measure of concordance if it satisfies the following

properties:
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1. κ is defined for every pair of continuous random variables;

2. −1 ≤ κX,Y ≤ 1 , κX,X = 1 , κX,−X = −1 ;

3. κX,Y = κY,X ;

4. If X and Y are independent, then κX,Y = κΠ = 0 ;

5. κ−X,Y = κX,−Y = −κX,Y ;

6. If C1 and C2 are copulas such that C1(u, v) ≤ C2(u, v) for all (u, v) in [ 0, 1 ] 2 , then

κC1 ≤ κC2 ;

7. If {(Xn, Yn)} is a sequence of continuous random variables with underlying copulas

Cn, and if {Cn} converges pointwise to C, then limn→∞ κCn = κC .

As a consequence of the above definition we have the following two theorems:

1.42. Theorem. Let κ be a measure of concordance for continuous random variables X

and Y :

1. If Y is almost surely an increasing function of X, then κX,Y = κM = 1 ;

2. If Y is almost surely a decreasing function of X, then κX,Y = κW = −1 ;

3. If α and β are almost surely strictly monotone functions on RanX and RanY, re-

spectively, then κα(X),β(Y ) = κX,Y .

1.43. Theorem. If X and Y are continuous random variables with underlying copula C,

then Kendall’s τC , Spearman’s ρC , Ginni’s γC , and Blomqvist’s βC , satisfy the properties

in Definition 1.41, and therefore the properties in Theorem 1.42.

An important remark on Definition 1.41: A concordance measure equal to zero does not

imply independence, so if κX,Y = 0 we will just refer to the random variables X and Y as

non-concordant. For example, let X a continuous random variable uniformly distributed

on [−1, 1 ] and define Y := |X|; by using (1.11) it is straightforward to verify that the

four measures of concordance mentioned in Theorem 1.43 are equal to zero, in spite of the

obvious dependence between X and Y.

Even though concordance measures do not characterize independence, some of them had

been used to build nonparametric tests of independence with null hypothesis H0 : κ = 0

against the alternative H1 : κ 6= 0, see for example Lehmann (1975), Hollander and Wolfe

(1999), Gibbons and Chakraborti (2003). We will discuss such tests in chapter 4.



38 CHAPTER 1. PRELIMINARIES

We discussed in this subsection bivariate measures of concordance. For a discussion on the

general case of multivariate measures of concordance see Joe (1990, 1997), Nelsen (1996a,

2002, 2006a), Taylor (2006), Dolati and Úbeda-Flores (2006).

1.5.2 Measures of Dependence.

In the same year in which Abe Sklar introduced the concept of copula, Rényi (1959)

proposed a set of axioms for a measure of dependence for pairs of random variables, that

is, a list of properties that certain quantities which are used to measure the strength of

dependence between two random variables should satisfy. In 1959 Rényi himself showed

that, among various well-known measures of dependence, the only one which satisfied all

of his axioms was the maximal correlation coefficient for a pair of random variables X and

Y defined by

S(X, Y ) := sup
f , g

r
(
f(X), g(Y )

)
, (1.93)

where r denotes Pearson’s correlation coefficient, and the supremum is taken over all Borel

functions f and g for which such correlation is defined. As mentioned by Schweizer and

Wolff (1981), such measure has major drawbacks: it equals to 1 too often and is generally

not effectively computable. In addition, they gave several examples which indicate that, at

least for nonparametric measures, Rényi’s conditions are too strong, and so they proposed

a modified version of them:

1.44. Definition. Let X and Y be any continuous random variables with underlying

copula C. A numeric measure of association between these two random variables, which

will be denoted by µX,Y or µC , is a measure of dependence if it satisfies the following

properties:

1. µ is defined for every pair of continuous random variables;

2. 0 ≤ µX,Y ≤ 1 ;

3. µX,Y = µY,X ;

4. X and Y are independent if and only if µX,Y = µΠ = 0 ;

5. µXY = 1 if and only if each of X and Y is almost surely a strictly monotone function

of the other;

6. If α and β are strictly monotone almost surely on RanX and RanY, respectively,

then µα(X),β(Y ) = µX,Y ;
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7. If {(Xn, Yn)} is a sequence of continuous random variables with underlying copulas

Cn, and if {Cn} converges pointwise to C, then limn→∞ µCn = µC .

It is important to emphasize the fourth property since it implies that measures of depen-

dence do characterize independence, and so concordance measures may not be considered

dependence measures.

Definition 1.44 is exactly as it appears in Nelsen (2006a), in the original work by Schweizer

and Wolff (1981) they also include the following property:

8. If the joint distribution of X and Y is bivariate normal, with correlation coefficient

r, then µX,Y is a strictly increasing function of |r| .

In contrast with concordance measures where specific ways of involving the concept of

concordance define each measure, Schweizer and Sklar (2005) suggested to measure how

close/far is the underlying copula of continuous random variables from the only copula

that represents independence:

[. . . ] the fact that the surface for Π (the copula of independence) lies midway

between the surfaces for W and M (the copulas of extreme monotone dependence)

it is natural to use any measure of distance between surfaces as a measure of

dependence for pairs of random variables.

It is important to make clear in which sense Π lies “midway” between W and M. A

straightforward verification shows that if C1 and C2 are copulas then any convex linear

combination of them is also a copula, that is Cθ = (1− θ)C1 + θC2 with θ in [ 0, 1 ] , so the

surface of the copula 1
2
(W + M) lies midway between W and M under the usual metric

for the real line, and it is certainly not equal to Π. Schweizer and Sklar (2005) made clear

that they refer to the fact that

M(u, v)− Π(u, v) = Π(u, 1− v)−W (u, 1− v) (1.94)

for all (u, v) in [ 0, 1 ] , whence the graph of W is a “twisted” reflection of the graph of M

in the graph of Π. So, as mentioned by Schweizer and Wolff (1981):

[. . . ] any suitable normalized measure of distance between the surfaces z = C(u, v)

and z = uv, e.g., any Lp-distance, should yield a symmetric, nonparametric measure

of dependence.
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From Nelsen (2006a) we have that for any p in [ 1,∞ [ the Lp-distance between C and Π

is given by

fC(p) :=
(
kp

∫∫
[ 0,1 ] 2
|C(u, v)− uv| pdudv

)1/p

, (1.95)

where kp is a constant chosen so that (1.95) is fC(p) = 1 whenever C equals M or W (and

so properties 2 and 5 in Definition 1.44 are satisfied).

1.45. Theorem. For each p in [ 1,∞ [ the Lp-distance fC(p) is a measure of dependence,

where

kp =
Γ(2p+ 3)

2
[

Γ(p+ 1)
] 2 . (1.96)

Particular cases are: fC(1) which is known as the σ of Schweizer and Wolff (1981), and

[ fC(2) ] 2 which is known as the dependence index Φ of Hoeffding (1940). In the particular

case of the measure of dependence studied by Schweizer and Wolff (1981) given by

σC := 12

∫∫
[ 0,1 ] 2
|C(u, v)− uv | dudv , (1.97)

we may interpret it as a measure of “average absolute distance” between the joint distri-

bution of a pair of continuous random variables (represented by their copula C) and the

independence joint distribution (represented by Π(u, v) = uv).

Schweizer and Wolff (1981) also studied the properties of the L∞-distance between C and

Π given by

δX,Y = δC := 4 sup
(u,v)∈ [ 0,1 ] 2

|C(u, v)− uv | , (1.98)

and they proved that this measure satisfies all except property 5 in Definition 1.44. We

will discuss more about this measure later in this subsection under the work by González-

Barrios (2003b) and Fernández and González-Barrios (2004).

Embrechts et al (2003a) proposed “desired properties of a dependence measure,” which we

will denote ξ, for a pair of random variables:

E0. ξ assigns a real number to any pair of random variables X and Y ;

E1. ξ(X, Y ) = ξ(Y,X) (symmetry);

E2. −1 ≤ ξ(X, Y ) ≤ 1 (normalization);

E3. ξ(X, Y ) = 1 if and only if X and Y are comonotonic;
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ξ(X, Y ) = −1 if and only if X and Y are countermonotonic;

E4. For T : R→ R strictly monotonic on the range of X :

ξ(T (X), Y ) =

ξ(X, Y ) T increasing,

−ξ(X, Y ) T decreasing.

E5. ξ(X, Y ) = 0 if and only if X and Y are independent;

but they also proved that there is no dependence measure satisfying E4 and E5: Let (X, Y )

be uniformly distributed on the unit circle S 1 in R 2, so that (X, Y ) = (cos Θ, sin Θ) with

Θ uniformly distributed on ] 0, 2π [ . Since (−X, Y ) has the same distribution as (X, Y ) we

have

ξ(−X, Y ) = ξ(X, Y ) = ξ(X,−Y ) ,

which implies ξ(X, Y ) = 0 although X and Y are dependent. With the same argumentation

it can be shown that the measure is zero for any spherical distribution in R 2 .

If E5 is required, Embrechts et al (2003a) suggested to consider measures which only assign

non-negative values, and in such case they proposed the amended properties:

E2b. 0 ≤ ξ(X, Y ) ≤ 1 ;

E3b. ξ(X, Y ) = 1 if and only if X and Y are comonotonic or countermonotonic;

E4b. For T : R→ R strictly monotonic: ξ(T (X), Y ) = T (X, Y ) .

We notice that E0, E1, E2b, E3b, E4b, and E5 are equivalent and/or weaker properties

than some of those included in Definition 1.44. In opinion of Embrechts et al (2003a):

If we restrict ourselves to the case of continuous random variables there are de-

pendence measures that fulfill all of E1, E2b, E3b, E4b and E5, although they are

in general measures of theoretical rather than practical interest [. . . ] The disad-

vantage of all of these measures is that they are constrained to give non-negative

values and as such cannot differentiate between positive and negative dependence

and that it is often not clear how to estimate them.

Drouet and Kotz (2001) proposed “desirable properties of a measure of dependence”:

(D1) Standardization: The values of an index are between 0 and 1 .
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(D2) Independence: If X and Y are independent, the index should be zero.

(D3) Functional dependence: If one variable is a function of the other, the index

must be equal to 1 .

(D4) Increasing property: The index should increase as the dependence increases.

(D5) Invariance: The index should be invariant with respect to a linear transfor-

mation of the variables. A stronger condition would be that the index is

marginally free, i.e. the measure of the dependence is the same as the corre-

sponding measure on the copula.

(D6) Symmetry: If the variables are exchangeable, then the index should be sym-

metric.

(D7) Relationship with measures for ordinal variables: If the index is defined for

both ordinal and continuous variables, there should be a close relationship

between the two measures.

(D8) Interpretability. This is a very delicate and intangible property. Roughly speak-

ing, it means that the numerical value of this index can be translated into a

qualitative meaningful measure.

A few comments on some of the above proposed properties, in the case of continuous

random variables: (D2) is not an if-and-only-if condition, so this would be compatible with

the definition of a concordance measure rather than those we have discussed for dependence

measures which do imply independence whenever they are equal to zero; (D3) may be too

strong, not only because we would have to discard Lp-distances, also because with no

restrictions on the functional relationship it is possible to build dependence relationships

between two continuous random variables for which it would be difficult to reach the

maximum value 1 , as we will see later in this subsection; it is not clear what should it

be understood by “increasing dependence” in (D4); the invariance property as stated in

(D5) may be considered as extremely weak since it is a common and desirable required

property that the dependence measure remains unchanged at least under strictly increasing

transformations of the variables (not only linear) due to the fact that the underlying copula

is the same (see Theorem 1.34).

Wolff (1980) worked on n-dimensional extensions of the bivariate dependence measures

(1.97) and (1.98), and for such purpose he proposed higher dimensional analogues of mod-

ified Rényi’s axioms, designed as requisites for a symmetric nonparametric measure of

dependence:
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1.46. Definition. Let (X1, . . . , Xn) be a random vector of continuously distributed ran-

dom variables. A numberR is a multivariate dependence measure if it satisfies the following:

W1. R is defined for any (X1, . . . , Xn).

W2. R(X1, . . . , Xn) = R(℘(X1, . . . , Xn)) for all permutations ℘ of (X1, . . . , Xn).

W3. 0 ≤ R(X1, . . . , Xn) ≤ 1.

W4. R(X1, . . . , Xn) = 0 if and only if X1, . . . , Xn are independent.

W5. R(X1, . . . , Xn) = 1 if and only if each of X1, . . . , Xn is an increasing function almost

surely of the others.

W6. If f1, . . . , fn are all strictly increasing, then R(X1, . . . , Xn) = R(f1(X1), . . . , fn(Xn)).

W7. Let the joint distribution of (X1, . . . , Xn) be multivariate normal and let rij be the

correlation coefficient of Xi and Xj. If the rij are either all nonnegative or all non-

positive, then R is a strictly increasing function of each of the |rij|.

W8. If the sequence {(X1m, . . . , Xnm)} converges in law to (X1, . . . , Xn), then

lim
m→∞

R(X1m, . . . , Xnm) = R(X1, . . . , Xn).

Let f : [ 0, 1 ]n → [ 0, 1 ] be any integrable function, and let I denote the operator

I(f) :=

∫
[ 0,1 ]n
· · ·
∫
f(u1, . . . , un) du1 · · · dun . (1.99)

Recalling definitions in (1.17), we have that

I(W (n)) =
1

(n+ 1)!
, I(Π(n)) =

1

2n
, I(M (n)) =

1

n+ 1
. (1.100)

Wolff (1980) noticed that I(M (2) − Π(2)) = I(Π(2) − W (2)) (which is a consequence of

(1.94)), but that this symmetry breaks down in higher dimensions. Moreover, by defining

an := I(M (n) − Π(n)) , bn := I(Π(n) −W (n)) , (1.101)

we have that limn→∞(bn/an) = 0 , that is, as n increases, the graphs of z = W (n)(u1, . . . , un)

and z = Π(n)(u1, . . . , un) are much closer to one another than the graphs of

z = M (n)(u1, . . . , un) and z = Π(n)(u1, . . . , un) .
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Let n ≥ 2 and let (X1, . . . , Xn) have continuous marginal distributions and copula C. By

defining the multivariate versions of (1.97) and (1.98):

σn := a−1
n I( |C − Π(n) | ) , (1.102)

δn := t−1
n S( |C − Π(n) | ) , (1.103)

where the operator S is

S(f) := sup
(u1,...,un)∈ [ 0,1 ]n

| f(u1, . . . , un) | , (1.104)

and

tn := S( |M (n) − Π(n) | ) =
n− 1

n(n/(n−1))
, (1.105)

Wolff (1980) proved the following:

1.47. Theorem. For any n > 2, the quantity σn satisfies all the conditions in Definition

1.46, and the quantity δn all except W5.

González-Barrios (2003b) and Fernández and González-Barrios (2004) proposed what they

called a multidimensional dependency measure:

δX1,...,Xn := sup
(x1,...,xn)∈Rn

∣∣∣FX1,...,Xn(x1, . . . , xn)−
n∏

i= 1

FXi(xi)
∣∣∣ , (1.106)

where FX1,...,Xn is the joint distribution function of the Xi’s and FXi is the distribution

function of Xi. They proved the following:

1.48. Theorem. For any random variables X1, . . . , Xn :

FG1. δX1,...,Xn = δXω(1),...,Xω(n)
for every permutation ω of {1, 2, . . . , n} .

FG2. δX1,...,Xn = 0 if and only if X1, . . . , Xn are independent.

FG3. For every xi ∈ R and i ∈ {1, 2, . . . , n}

−
(
n− 1

n

)n
≤ FX1,...,Xn(x1, . . . , xn)−

n∏
i= 1

FXi(xi) ≤
(

1

n

) 1
n−1
(

1− 1

n

)
< 1 .

Hence 0 ≤ δX1,...,Xn ≤ 1 . Besides the bounds above can be attained.

FG4. 0 ≤ δX1,X2 ≤ δX1,X2,X3 ≤ · · · ≤ δX1,...,Xn−1 ≤ δX1,...,Xn .
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An important remark on the above theorem is the fact that the random variables are not

required to be continuous. In case they are, if their underlying copula is C then by virtue

of Sklar’s theorem we have that (1.106) becomes

δC := sup
(u1,...,un)∈ [ 0,1 ]n

∣∣C(u1, . . . , un)−
n∏

i= 1

ui
∣∣ . (1.107)

So far, what we find in the literature is that there is no consensus on what a definition of a

measure of concordance or a measure of dependence should be. Some authors have proposed

what they think are useful measures, analyzed their properties, and then proposed such

properties as a set of “desirable properties” for any concordance or dependence measure.

It is beyond the purpose of this thesis to provide final definitions in these matters, but we

will make some additional remarks:

A1. In the case of continuous random variables, for all the measures of concordance and

dependence analyzed in this section it had been always possible to calculate them in terms

of the underlying copula, which should not be a surprise since Sklar’s theorem suggests that

the dependence structure is uniquely determined by such copula, therefore (as suggested by

Drouet and Kotz in D5) we may consider to require dependence or concordance measures

to be computable just in terms of the corresponding copula.

A2. Drouet and Kotz (2001) proposed, among others, the following “desirable property”

for a measure of dependence:

(D4) Increasing property: The index should increase as the dependence increases.

Although it was not clarified by the authors in which sense dependence is considered to be

“increased”, for the multivariate case we may consider including in this category property

FG4 in Theorem 1.48.

A3. We began section 1.4 with quotations from Drouet and Kotz (2001) and Embrechts

(1999, 2003a) which strongly question the general usefulness of the linear correlation coef-

ficient. Among the complaints, Embrechts (1999) includes:

Correlation is not invariant under transformations of the risks. For example, logX

and log Y generally do not have the same correlation as X and Y.

Recalling Theorem 1.34, we have that the underlying copula for a vector (X, Y ) of con-

tinuous random variables is the same as for (α(X), β(Y )) with α and β strictly increasing

functions, and this suggests to require concordance and dependence measures to be in-

variant, at least, under strictly increasing transformations of the random variables. It is
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in this sense why we already mentioned that we consider the “desirable property” D5 in

Drouet and Kotz (2001) extremely weak because it only requires invariance under linear

transformations of the variables.

A4. Another complaint against the linear correlation coefficient was the following by

Embrechts (2003a):

[. . . ] linear correlation is not a copula-based measure of dependence, it can often

be quite misleading and should not be taken as the canonical dependence measure.

The following lemma is due to Hoeffding (1940), but it did not become widely known until

it was quoted by Lehmann (1966):

1.49. Lemma. If H denotes the joint and F and G the marginal distributions of random

variables X and Y, then

E(XY )− E(X)E(Y ) =

∫∫
R 2

[
H(x, y)− F (x)G(y)

]
dxdy , (1.108)

provided the expectations on the left hand side exist.

In the particular case X and Y are continuous, if the corresponding copula is C, then by

making the substitution u = F (x) and v = G(y) we obtain the following expression for the

linear correlation coefficient via Corollary 1.8:

r(X, Y ) =
1√

V(X)V(Y )

∫∫
[ 0,1 ] 2

[
C(u, v)− uv

]
dF−1(u)dG−1(v) . (1.109)

The linear correlation coefficient is not a function of C alone, it is not a copula-based

measure since it also depends on the marginal behavior of X and Y, and this might be

misleading since, without changes on the dependence structure uniquely determined by the

copula, the linear correlation coefficient may report different values just by changing the

marginal distributions.

A5. In Lancaster (1963) and Kimeldorf and Sampson (1978) a random variable Y is

defined to be completely dependent on a random variable X if there exists a function g

such that

P [Y = g(X) ] = 1 . (1.110)

As mentioned by Kimeldorf and Sampson (1978):

Y is completely dependent on X if Y is perfectly predictable from X. The random

variables X and Y are defined (see Lancaster (1963)) to be mutually completely de-

pendent (MCD) if Y is completely dependent on X and X is completely dependent
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on Y. Equivalently, X and Y are MCD if (1.110) holds for some one-to-one function

g. The concept of mutual complete dependence is, in a real sense, directly opposite

to that of stochastic independence, in that mutual complete independence entails

complete predictability of either random variable from the other, while stochastic

independence entails complete unpredictability.

There is a result which proves that there exist mutually completely dependent random

variables whose joint distribution function approximates as much as desired the distribution

function of two independent random variables with the same marginals, a result that

could make questionable to consider, for example, strict monotone relationships between

random variables as the opposite extreme of independence in Definition 1.44(5), or E3b in

Embrechts (2003a), or D3 in Drouet and Kotz (2001), or W5 in Wolff’s Definition 1.46.

By Definition 1.9 it is straightforward to verify that the Fréchet-Hoeffding upper bound

copula M(u, v) = min(u, v) is a singular copula whose support is the main diagonal of

[ 0, 1 ] 2 , that is the graph of v = u for u in [ 0, 1 ] . Mikusiński et al (1991, 1992) constructed

a particular type of singular copulas that they called Shuffles of Min as follows:

The mass distribution for a shuffle of M can be obtained by (1) placing the mass

for M on [ 0, 1 ] 2 , (2) cutting [ 0, 1 ] 2 vertically into a finite number of strips, (3)

shuffling the strips with perhaps some of them flipped around their vertical axes of

symmetry, and then (4) reassembling them to form the square again. The resulting

mass distribution will correspond to a copula called a shuffle of M.

For example:

M
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Formally (Nelsen, 2006a), a shuffle of M is determined by a positive integer n, a finite

partition {Ji} = {J1, J2, · · · , Jn} of [ 0, 1 ] into n closed subintervals, a permutation γ on
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the set Sn := {1, 2, . . . , n}, and a function ω : Sn → {−1, 1} where ω(i) is −1 or 1 according

to whether or not the strip Ji × [ 0, 1 ] is flipped. We denote permutations by the vector

of images (γ(1), γ(2), . . . , γ(n)). The resulting shuffle of M may then be unambiguously

denoted by M(n, {Ji}, γ, ω), where n is the number of connected components in its support.

The probabilistic interpretation of a Shuffle of Min given by Mikusiński et al (1991):

[. . . ] we say that a function f is strongly piecewise strictly monotone if and only if

[the extended real plane] R 2
can be partitioned into a finite number of rectangles

such that in each column and in each row of rectangles there is exactly one rectangle

having a nonempty intersection with the graph of f and that portion of the graph

of f is strictly monotone [. . . ] The copula for (X, Y ) is a shuffle of Min if and only

if X and Y are strongly piecewise strictly monotone functions of each other.

Equivalently, if the copula of (X, Y ) is a shuffle of Min then, because the support of

any shuffle is the graph of a one-to-one function, it follows that X and Y are mutually

completely dependent (MCD) in the sense of Lancaster (1963).

1.50. Theorem. (Mikusiński et al, 1991) The shuffles of Min are dense in the set of

all copulas endowed with the sup norm. That is, for any given copula C and for all ε > 0

there exists a shuffle of M , which we denote Cε, such that

sup
u,v ∈ [ 0,1 ]

|C(u, v)− Cε(u, v) | < ε . (1.111)

If we choose C = Π, as remarked by Nelsen (2006a), the above theorem implies that there

are MCD random variables whose joint distribution functions are arbitrarily close to the

joint distribution function of independent random variables with the same marginals. As

noted in Mikusiński et al (1991), this implies that in practice, the behavior of any pair of

independent continuous random variables can be approximated so closely by a pair of MCD

continuous random variables that it would be impossible, experimentally, to distinguish one

pair from the other. Moreover, under these ideas Kimeldorf and Sampson (1978) proved

that it is possible to construct a sequence {(Xn, Yn)} of pairs of MCD random variables

which converge in law to a pair (X, Y ) of independent random variables. This is the reason

why the “desired property” D3 in Drouet and Kotz (2001) might be too strong.

This last result recalls the classical discussion on Determinism,1 a philosophical point of

view defended by Laplace2 in the 18 th century which states that all events are completely

1The New Encyclopædia Britannica, Ready Reference (1998), Vol.4, p.39.
2Encyclopedia of Statistical Sciences (1982), Vol.1, pp.405-411.
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determined, and that “randomness” is just an euphemism for the impossibility (possibly

temporary) to explain a certain behavior in a deterministic way. The shuffles of Min might

suggest, from a deterministic point of view, that what we pretend to state as independence

could be sometimes lack of ability in finding a relationship. So it seems that there is still

a lot of work to be done on the problem of dependence among random variables, how to

define it and measure it.
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Chapter 2

Empirical diagonal and properties

We have seen so far that, in the case of Archimedean bivariate copulas, the diagonal

section contains all the information we need to build the copula in case Frank’s condition

δ ′(1−) = 2 is satisfied, and in such case this leads us to concentrate in studying and

estimating the diagonal. The main benefit of this fact is a reduction in the dimension of

the estimation, from 2 to 1 in the case of bivariate copulas, and from m to 1 in the case of

m-variate copulas. The results in this chapter for the bivariate case are included in Erdely

and González-Barrios (2006b).

2.1 Bivariate case.

Let S := {(x1, y1), . . . , (xn, yn)} denote a sample of size n from a random vector of continu-

ous random variables (X, Y ) . As defined by Nelsen (2006a), the bivariate empirical copula

is the function Cn given by

Cn

(
i

n
,
j

n

)
=

1

n

∑
(x , y)∈S

1]−∞ , x(i) ]× ]−∞ , y(j) ](x, y) ,

where x(i) and y(j) denote the order statistics of the sample, for i and j in {1, . . . , n} , and

Cn( i
n
, 0) = 0 = Cn(0, j

n
) .

Remark. A bivariate empirical copula is not a copula, but a (two-dimensional) subcopula,

for details of subcopulas see Nelsen (2006a).

2.1. Definition. The bivariate empirical diagonal is the function δn given by

δn

(
j

n

)
:= Cn

(
j

n
,
j

n

)
j = 0, 1, . . . , n .

51
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Without loss of generality we may assume that the xk values in S are ordered, then

δn

(
j

n

)
=

1

n

j∑
k= 1

1]−∞ , y(j) ](yk) , j = 1, . . . , n− 1 , (2.1)

and δn(0) = 0 , δn(1) = 1 . It is clear from above that δn is a nondecreasing function of j .

Moreover, by Fréchet-Hoeffding bounds :

max

(
2j

n
− 1, 0

)
≤ δn

(
j

n

)
≤ j

n
. (2.2)

2.2. Proposition.

δn

(
j + 1

n

)
− δn

(
j

n

)
∈
{

0,
1

n
,

2

n

}
. (2.3)

Proof:

δn

(
j + 1

n

)
− δn

(
j

n

)
=

1

n

[
1]−∞ , y(j+1) ](yj+1) +

j∑
k= 1

(
1]−∞ , y(j+1) ](yk)− 1]−∞ , y(j) ](yk)

)]
,

=
1

n

[
1]−∞ , y(j+1) ](yj+1) +

j∑
k= 1

1] y(j) , y(j+1) ](yk)
]
,

=
1

n

[
1]−∞ , y(j+1) ](yj+1) +

j∑
k= 1

1{y(j+1)}(yk)
]
,

and since any of the last two indicator functions may independently take the value 0 or 1

the result follows.

This means that all the possible paths {δn( j
n
) : j = 0, 1, . . . , n} are between the paths

{max(2j
n
− 1, 0) : j = 0, 1, . . . , n} and { j

n
: j = 0, 1, . . . , n} with jumps of size 0, 1

n
, or 2

n

between consecutive steps.

Let X be a continuous uniform random variable in ] 0, 1 [ and define the random variable

Y := X . Then the corresponding copula for (X, Y ) is the Fréchet-Hoeffding upper bound

copula M(u, v) := min(u, v) . In this case, a size n sample of observations of (X, Y ) would

be S = {(x1, x1), . . . , (xn, xn)} , and applying formula (2.1) we get δn( j
n
) = j

n
, which

is the Fréchet-Hoeffding upper bound in (2.2). If, instead, we define Y := 1 − X , the

corresponding copula for (X, Y ) is the Fréchet-Hoeffding lower bound copula W (u, v) :=

max(u+ v − 1, 0) , and δn( j
n
) equals the lower bound in (2.2).

Extensive work has been done to study convergence of the empirical copula Cn to the true

copula C : Deheuvels (1979, 1981), van der Vaart and Wellner (1996), Fermanian et al

(2004). These results automatically guarantee the convergence of the empirical diagonal

δn to δC , the true diagonal section of the copula.
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2.3. Definition. Let us define the bivariate diagonal random path by the vector

T =

(
∆

(
0

n

)
,∆

(
1

n

)
, . . . ,∆

(n
n

))
where

∆

(
j

n

)
:=

1

n

j∑
k= 1

1]−∞ , Y(j) ](Yk) , j = 1, . . . , n− 1 , (2.4)

with ∆(0) = 0 , ∆(1) = 1 .

Associated to the diagonal random path we may define the diagonal random increments by

the vector I :=
(
∆
(

1
n

)
−∆

(
0
n

)
,∆
(

2
n

)
−∆

(
1
n

)
, . . . ,∆

(
n
n

)
−∆

(
n−1
n

))
so that knowledge

of T = (t0 = 0, t1, . . . , tn−1, tn = 1) is equivalent to knowledge of I = (i1, . . . , in) , where

ij = tj − tj−1 and tj =
∑ j

k= 1 ik .

Alternatively, we may write I = (i1, . . . , in) = 1
n
(b 1, . . . , bn) where the b j ∈ {0, 1, 2} .

Moreover, in = 1 − tn−1 = 1 −
∑n−1

k= 1 ik so knowledge of B := (b 1, . . . , bn−1) completely

specifies any path. Different values of B can be labeled as vectors of ternary numbers.

For example, with n = 7 the Fréchet-Hoeffding lower bound path {max(2j
n
− 1, 0) : j =

0, 1, . . . , n} is specified by the vector (0, 0, 0, 1, 2, 2), while the Fréchet-Hoeffding upper

bound path { j
n

: j = 0, 1, . . . , n} is specified by the vector (1, 1, 1, 1, 1, 1).

In general, the upper bound path is specified by the ternary representation of

n−2∑
k= 0

3k =
3n−1 − 1

2
, (2.5)

while for the lower bound path we need the ternary representation of

2 ·
n/2− 2∑
k= 0

3k = 3n/2−1 − 1 , if n even, (2.6)

2 ·
(n−1)/2− 2∑

k= 0

3k = 2 · 3(n−1)/2−1 − 1 , if n odd. (2.7)

But not every ternary representation between (2.6) or (2.7) and (2.5) will generate a valid

path. For example, for n = 6 we have that the ternary representation (0, 2, 2, 1, 0) is a

number between (0, 0, 0, 2, 2) and (1, 1, 1, 1, 1) but the generated path is out of Fréchet-

Hoeffding bounds. In general, we just have to check which of the ternary representations

satisfy

max

(
2j

n
− 1, 0

)
≤ tj ≤

j

n
≡ max(2j − n, 0) ≤

j∑
k= 1

b k ≤ j , j = 1, . . . , n− 1 . (2.8)
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We will call an admissible diagonal path any vector of ternary numbers satisfying the

Fréchet-Hoeffding conditions (2.2), or equivalently, conditions (2.8). We wish to count the

number of admissible paths for n ≥ 2. For this purpose, we have to recall the concept of

Catalan numbers, see for example Barcucci and Verri (1992):

The sequence of Catalan numbers, defined by

Em :=
1

m+ 1

(
2m

m

)
, (2.9)

has been widely studied and it has been proved that it is the sequence that enumer-

ates a lot of classes of combinatorial objects, such as the partitioning of a polygon

into triangles, the bracketing of the non-associative product of m + 1 terms, the

binary trees with n nodes, and some walks on the integral lattice.

For the case of walks on the integral lattice, we look at walks of m + k unit steps into

upward and rightward directions, starting at the origin (0, 0) and ending at (m, k). The

number of such paths without further restrictions is
(
m+k
k

)
, as exactly k of the m+k steps

are upward steps. Now consider just those upward-rightward paths with k ≤ m, that is,

paths remaining on or under the diagonal. For this to happen it is necessary to have at

any step of the path an accumulated number of rightward steps equal o larger that the

number of upward steps: “a rightward step before any upward step.”

For the case k = m it is proved in Theorem 3.1 in Barcucci and Verri (1992) that Em is

the number of the under-diagonal rightward-upward one-step walks on the integral lattice.

An equivalent result is the classical Chung-Feller Theorem, see Chung and Feller (1949),

or Feller (1968) in its chapter On fluctuations in coin-tossing and random walks. For the

general case, by a result in Bailey (1996), we may calculate the number of under-diagonal

rightward-upward one-step walks on the integral lattice, starting at (0, 0) and ending at

(m, k), by
m+ 1− k
m+ 1

(
m+ k

m

)
, k ≤ m. (2.10)

In its original version, Bailey (1996) obtains (2.10) by counting the number of sequences

with non-negative partial sums that consist of m positive 1’s and k negative 1’s. An

equivalent result is found in Engleberg (1965).

In the the following result we find the exact number of admissible paths for any n ≥ 2.

2.4. Proposition. Let Pn denote the number of admissible paths for the bivariate empirical

diagonal δn of n points in [ 0, 1 ] 2 and n ≥ 2. Then

Pn =

[[n/2 ]]∑
r0 = 0

(
n
r0

)(
n− r0
r0

)
r0 + 1



2.1. BIVARIATE CASE. 55

where [[ x ]] denotes the greatest integer less than or equal to x.

Proof: Let (x1, y1), . . . , (xn, yn) ∈ [ 0, 1 ] 2 be n points and let δn be their empirical diagonal.

Let r0, r1 and r2 denote the number of zeros, ones and twos, respectively, in the empirical

diagonal nδn. Then r0 + r1 + r2 = n and r1 + 2r2 = n, so r0 = r2 . Hence

r1 + 2r0 = n, (2.11)

any nonnegative integers r0 and r1 satisfying (2.11), could provide an admissible path for

the empirical diagonal whenever the Fréchet-Hoeffding bounds are satisfied. Observe that

r0 ≤ [[n/2 ]] , by (2.8).

If δn = 1
n
(b 1, b 2, . . . , bn) is an admissible path, then b 1 = 0 or b 1 = 1, and for 2 ≤ i ≤ n

b i = 0, 1 or 2. We observe that the restrictions
∑n

i=1 b i = n and
∑j

i=1 b i ≤ j must be

fulfilled. The basic rule to find admissible paths is “zero before two.” That is if some

b i = 2, then there exists 1 ≤ j < i such that b j = 0. For example if n = 5 and r0 = 1 , then

(0, 1, 1, 2, 1) is an admissible path, but (2, 1, 1, 0, 1) is not admissible, since for example∑3
i=1 b i = 4 6≤ 3. Therefore, given the number of zeros among the b i

′s, we only have to

see where can they be located in the vector (b 1, . . . , bn), following the basic rule. Observe

that the ones can be located any place.

So first assume that r0 = 0 and r1 = n, then the only path, which by the way is admissible,

is (1, 1, . . . , 1), that is, Fréchet-Hoeffding upper bound path. Now fix some r0 such that

1 ≤ r0 ≤ [[n/2 ]] . We have to count all the admissible paths that follow the basic rule “zero

before two.” Since the ones can be located any place, we just have to count the different

ways in which we can locate the zeros and the twos. First, we have to choose r0 + r2 = 2r0

places for the zeros an twos out of the n places available, which can be made in
(
n

2r0

)
different ways. This last number has to be multiplied by the number of different ways in

which we can locate the r0 zeros and the r2 = r0 twos in the 2r0 chosen places, but always

following the basic rule. We may relate the zeros to rightward unit steps and the twos to

upward unit steps in (2.10) with m = k = r0, so the number of admissible paths with r0

zeros is given by (
n

2r0

)(
2r0

r0

)
1

r0 + 1
=

1

r0 + 1

(
n

r0

)(
n− r0

r0

)
. (2.12)

The result now follows summing over all possible values of r0.

Remark. (2.12) also simplifies in terms of a multinomial coefficient to

1

r0 + 1

(
n

r0, r1, r2

)
, (2.13)
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where r2 = r0 and r0 + r1 + r2 = n. This may be understood as follows: the multinomial

coefficient along with the restriction r0 +r1 +r2 = n represents the number of permutations

of repeated elements (r0 zeros, r1 ones, and r2 twos, in this case), but some of these

permutations do not follow the basic rule “zero before two,” so the role of the factor
1

r0+1
is to leave just those permutations that follow the rule. To understand how this

factor is obtained, we need some combinatorics concepts as in, for example, Callan (2006),

considering the problem of building sequences of 1’s and -1’s, and their partial sums:

A balanced n-path is a sequence of n [1’s] and n [-1’s], represented as a path

of unit upsteps (1, 1) and downsteps (1,−1) from (0, 0) to (2n, 0) [...] A Dick

n-path is a balanced n-path that never drops below the de x-axis (ground level)

[...] the parameter X on balanced n-paths defined by X = “number of upsteps

above ground level” is uniformly distributed over {0, 1, 2, . . . , n} and hence divides

the
(

2n
n

)
balanced n-paths into n + 1 equal-size classes, one of which consists of

the Dick n-paths (the one with X = n). Indeed, for 1 ≤ i ≤ n , a bijection from

balanced n-paths with X = 0 (inverted Dick paths) to those with X = i is as

follows. Number the upsteps from right to left and top to bottom, starting with

the last upstep. Then remove the first downstep [−1] encountered directly west of

upstep i to obtain the subpaths P and Q, and reassemble as Q [−1]P.

So the problem of counting the different ways of allocating the zeros and twos following the

basic rule is the same as counting the number of Dick n-paths, using the 1’s to represent

zeros, and the -1’s to represent twos (remember that the ones may be allocated any place,

so they will be allocated in the remaining places), and the result (2.13) follows.

Now we will calculate the probability of any given (admissible) path, under the hypothesis

of independence.

2.5. Theorem. Let S = {(X1, Y1), . . . , (Xn, Yn)} be a random sample from the random

vector of continuous random variables (X, Y ) . If X and Y are independent and if T =

(t0 = 0, t1, . . . , tn−1, tn = 1) is an admissible diagonal path, then

P
[
T = (t0 = 0, t1, . . . , tn−1, tn = 1)

]
=

1

n!

n∏
j= 1

f(j) ,

where f(j) is obtained in terms of the following formula, for j = 1, . . . , n :

f(j) =


1 if n(tj − tj−1) = 0 ,

2(j − n tj−1)− 1 if n(tj − tj−1) = 1 ,

(j − 1− n tj−1)2 if n(tj − tj−1) = 2 .
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Proof: From the continuity assumption we know that, with probability one, there are no

ties among theXi
′s or the Yi

′s. Without loss of generality we may assume that the Xk (k =

1, . . . , n) are ordered, so we have, by independence of X and Y , that the probability of the

random sample {(X1, Y1), . . . , (Xn, Yn))} equals that of {(X1, Yσ(1)), . . . , (Xn, Yσ(n))} where

σ(1), . . . , σ(n) is any permutation of (1, . . . , n) , and every permutation has probability

(n!)−1.

By rescaling we can assume that Xi = i, for i = 1, 2, . . . , n and Yσ(i) = σ(i), for i = 1, . . . , n.

Hence the sample S is a subset of the grid {1, 2, . . . , n} × {1, 2, . . . , n} := I 2
n . In fact, for

every i ∈ {1, 2, . . . , n} there exists a unique j = σ(i) ∈ {1, 2, . . . , n} such that (i, σ(i)) ∈ S.

That is, for any horizontal or vertical segment in the grid I2
n there is exactly one point that

belongs to the sample S.

In order to calculate P
[
T = (0, t1, . . . , tn−1, 1)

]
we just need to count the number of

orderings of {Y1, . . . , Yn} that would lead to the admissible path (t0 = 0, t1, . . . , tn−1, tn =

1) . We will show that this probability is given by (n!)−1
∏n

j= 1 f(j) .

Let B = (b 1, b 2, . . . , bn) be the vector of ternary numbers which is equivalent to the

admissible diagonal path T = (t0 = 0, t1, . . . , tn−1, tn = 1) , that is b i = n(ti − ti−1) for

i = 1, 2, . . . , n. Define

K := min{i ∈ {1, . . . , n} | b i > 0}.

Since B is an admissible diagonal path, we have that all the b i
′s are equal to 0, 1 or 2,

except for b 1 which equals 0 or 1, and
∑n

i=1 b i = n. Then K ≤ [[n/2 ]] by (2.8). Therefore,

if K = 1 it means that b 1 = 1, and then (1, 1) ∈ S, and there is only one possibility for

σ(1), that is σ(1) = 1.

So, assume that K > 1, from the definition of the bivariate empirical copula it is clear that

nti = nCn

(
i

n
,
i

n

)
= card(S ∩ ({1, . . . , i} × {1, . . . , i})) for i = 1, 2, . . . , n,

where card(·) stands for cardinality of a set. So nti gives us the number of sample points

in the sample S that belong to the sub-grid {1, . . . , i}2. Since K > 1, then b 1 = · · · =

bK−1 = 0, which is equivalent to t1 = · · · = tK−1 = 0.

Now, first assume that bK = 1, or equivalently ntK = 1. Then we observe that the

intersection of the sub-grid {1, . . . , K−1}×{1, . . . , K−1} and the sample S is empty, but

the intersection of the sub-grid {1, . . . , K}×{1, . . . , K} and the sample S contains a unique

point. By noticing that ({1, . . . , K} × {1, . . . , K})\({1, . . . , K − 1} × {1, . . . , K − 1}) =

{(1, K), (2, K), . . . , (K,K), (K,K−1), . . . , (K, 1)} we can select the point of the sample in

2K − 1 = 2(K − ntK−1)− 1 forms, if for example we select the point (2, K) then we know

that any point of the form (2, j) for j 6= K, and any point of the form (l,K) with l 6= 2 do
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not belong to the sample, that is, we cancel one column and one row and the remaining

points that were not selected.

The other possibility is bK = 2. Then we observe that the intersection of the sub-grid

{1, . . . , K − 1} × {1, . . . , K − 1} and the sample S is empty, but the intersection of the

sub-grid {1, . . . , K} × {1, . . . , K} and the sample S contains exactly two points. Just

as above we know that, ({1, . . . , K} × {1, . . . , K})\({1, . . . , K − 1} × {1, . . . , K − 1}) =

{(1, K), (2, K), . . . , (K,K), (K,K − 1), . . . , (K, 1)} contains two points of the sample S.

Observe that (K,K) can not be a sample point, since in that case, none of the points

(1, K), . . . (K − 1, K), (K,K − 1), . . . , (K, 1) can belong to the sample. Therefore we can

select one point from (1, K), . . . , (K − 1, K) and another from (K,K − 1), . . . , (K, 1), that

is we have (K − 1)2 = (K − 1− ntK−1)2 possible choices. After selecting these two points

we can not repeat the same indexes for columns or rows, so we cancel two columns and

two rows and the remaining points which were not selected.

Now we define

K1 := min{i ∈ {K + 1, . . . , n} | b i > 0},

and we proceed inductively by reducing the dimension of the grid. As an example consider

that n = 5, and the admissible path is given by T = (0 = t0, t1 = 0, t2 = 0, t3 = 1/5, t4 =

3/5, t5 = 5/5 = 1), or equivalently B = (b 1 = 0, b 2 = 0, b 3 = 1, b 4 = 2, b 5 = 2), in this case

K = min{i ∈ {1, . . . , 5} | b i > 0} = 3.

We first notice that (1, 1), (1, 2), (2, 1) and (2, 2) are not sample points, since K = 3, see

Figure 2.1.
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Now, b 3 = 1, so we have to select only one point in the set {(1, 3), (2, 3), (3, 3), (3, 2), (3, 1)},
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that is we have 5 = 2(3 − 5t2) − 1 choices. Assume we select (1, 3), then we cancel the

remaining elements not selected and those of the first column and the third row, see Figure

2.2.

Figure 2.2:

-

6

×

×

⊙×
×

×

×

×

·

·

×

×

×

·

·

·

·

×

·

·

·

·

×

·

·

1 2 3 4 5

1

2

3

4

5

0

Now

K1 = min{i ∈ {4, 5} | b i > 0} = 4,

and b 4 = 2, in this case we have to select one point between (2, 4) and (3, 4) and another

between (4, 1) and (4, 2), that is 22 = (4 − 1 − 5t3)2 = (3 − 5(1/5))2 choices, recall that

(4, 4) can not be selected. Assume we select (3, 4) and (4, 1), so we cancel the third and

fourth columns and the first and fourth row, and the points that were not selected, see

Figure 2.3.
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Figure 2.4:
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Finally,

K2 = min{i ∈ {5} | b i > 0} = 5,

since b 5 = 2 we have two select two points between (2, 5) and (5, 2) recall that (5, 5) can

not be selected, this can be done only in 1 = 12 = (5− 1− 5t4)2 = (5− 1− 5(3/5))2 way,

see Figure 2.4.

Therefore the number of permutations that lead to the diagonal path T is 1·1·5·22 ·12 = 20,

and hence the probability of T is 20/5! = 1/6.

2.2 Trivariate case and further.

We recall from (1.17) and (1.18) that if C is any m-copula, then for every (u1, . . . , um) in

[ 0, 1 ]m we have that

max(u1 + · · ·+ um −m+ 1 , 0) ≤ C(u1, . . . , um) ≤ min(u1, . . . , um) , (2.14)

but the Fréchet-Hoeffding lower bound is never a copula for m > 2 , and the above inequal-

ity cannot be improved, see Theorem 1.10. According to (2.14) we have that the diagonal

section of an m-copula satisfies

max(mu−m+ 1, 0) ≤ δ(u) ≤ u , u ∈ [ 0, 1 ] . (2.15)

Particularly, the product (or independence) m-copula Π(m)(u1, . . . , um) = u1u2 · · ·um has

a diagonal section δΠ(u) = um. For an Archimedean m-copula, from Kimberling (1974) we
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have that its generator must be strict and completely monotonic, see Definition 1.30 and

Theorem 1.31, and in such case we have the following expression for its diagonal section:

δ(u) = ϕ−1
(
mϕ(u)

)
, u ∈ [ 0, 1 ]m , (2.16)

or equivalently

ϕ
(
δ(u)

)
= mϕ(u) , (2.17)

which again leads us to Schröder’s functional equation, see (1.59). As a particular case

of Theorem 6.6 in Kuczma (1968) (or Theorem 2.3.12 in Kuczma et al (1990)), let the

function γ : [ 0, 1 ] → [ 0, 1 ] be such that 0 < γ(u) < u for all u ∈ ] 0, 1 [ , and γ ′(0) = 1
m
.

If s(u) is a solution of the functional equation

s
(
γ(u)

)
=

1

m
s(u) (2.18)

such that the function s(u)/u is monotonic in ] 0, 1 [ , then

s(u) = k lim
r→∞

m rγ r(u) , (2.19)

where γ r is the r-th iteration of γ, that is the composition of γ with itself r times, and k

any constant. And by a similar argument as in Frank’s Theorem, see Theorem 1.33, we

have that if C is an Archimedean m-copula whose diagonal δ satisfies

δ ′(1−) = m (2.20)

then it is uniquely determined by its diagonal. That is the case, for example, of the product

m-copula, which in the context of a m-dimensional random vector of continuous random

variables represents independence.

We will now analyze analogous properties of the empirical diagonal as done in the previous

section, for the case m = 3 , hoping that this suffices to convince the reader that analogous

results may be obtained for higher dimensions.

Let S := {(x1, y1, z1), . . . , (xn, yn, zn)} denote a sample of size n from a random vector of

continuous random variables (X, Y, Z) . Analogously as defined by Nelsen (2006a), we may

define the trivariate empirical copula as the function Cn given by

Cn

(
i

n
,
j

n
,
k

n

)
=

1

n

∑
(x , y , z)∈S

1]−∞ , x(i) ]× ]−∞ , y(j) ]× ]−∞ , z(k) ](x, y, z) ,

where x(i) , y(j) and z(k) denote the order statistics of the sample, for i, j and k in {1, . . . , n} ,
and Cn(x, y, z) = 0 , whenever any of x, y or z equals 0.
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2.6. Definition. The trivariate empirical diagonal is the function δn given by

δn

(
j

n

)
:= Cn

(
j

n
,
j

n
,
j

n

)
j = 0, 1, . . . , n .

Without loss of generality we may assume that the xk values in S are ordered, then

δn

(
j

n

)
=

1

n

j∑
k= 1

1]−∞ , y(j) ]× ]−∞ , z(j) ](yk, zk) , j = 1, . . . , n− 1 , (2.21)

and δn(0) = 0 , δn(1) = 1 . It is clear from above that δn is a nondecreasing function of j .

Moreover, by Fréchet-Hoeffding bounds :

max

(
3j

n
− 2, 0

)
≤ δn

(
j

n

)
≤ j

n
. (2.22)

2.7. Proposition.

δn

(
j + 1

n

)
− δn

(
j

n

)
∈
{

0,
1

n
,

2

n
,

3

n

}
. (2.23)

Proof: Define the set A(j) := ]−∞, y(j) ]× ]−∞, z(j) ] . Then

n

[
δn

(
j + 1

n

)
− δn

(
j

n

)]
=

j+1∑
k= 1

1A(j+1)(yk, zk) −
j∑

k= 1

1A(j)(yk, zk) ,

= 1A(j+1)(yj+1, zj+1) +

j∑
k= 1

[
1A(j+1)(yk, zk) − 1A(j)(yk, zk)

]
,

= 1A(j+1)(yj+1, zj+1) +

j∑
k= 1

1A(j+1) \A(j)(yk, zk) .

Since the last two indicator functions may take values 0 or 1 independently, and since the

set A(j + 1) \ A(j) may contain 0, 1 or 2 points, the result follows.

This means that all the possible paths {δn( j
n
) : j = 0, 1, . . . , n} are between the paths

{max(3j
n
− 2, 0) : j = 0, 1, . . . , n} and { j

n
: j = 0, 1, . . . , n} with jumps of size 0, 1

n
, 2
n

or 3
n

between consecutive steps.

2.8. Definition. Let us define the trivariate diagonal random path by the vector

T =

(
∆

(
0

n

)
,∆

(
1

n

)
, . . . ,∆

(n
n

))
where

∆

(
j

n

)
:=

1

n

j∑
k= 1

1A(j)(Yk, Zk) , j = 1, . . . , n− 1 , (2.24)

with ∆(0) = 0 , ∆(1) = 1 , and A(j) := ]−∞, Y(j)]× ]−∞, Z(j)] .



2.2. TRIVARIATE CASE AND FURTHER. 63

Associated to the diagonal random path we may define the diagonal random increments by

the vector I :=
(
∆
(

1
n

)
−∆

(
0
n

)
,∆
(

2
n

)
−∆

(
1
n

)
, . . . ,∆

(
n
n

)
−∆

(
n−1
n

))
so that knowledge

of T = (t0 = 0, t1, . . . , tn−1, tn = 1) is equivalent to knowledge of I = (i1, . . . , in) , where

ij = tj − tj−1 and tj =
∑ j

k= 1 ik .

Alternatively, we may write I = (i1, . . . , in) = 1
n
(b 1, . . . , bn) where the b j ∈ {0, 1, 2, 3} .

Moreover, in = 1 − tn−1 = 1 −
∑n−1

k= 1 ik so knowledge of B := (b 1, . . . , bn−1) completely

specifies any path. Different values of B can be labeled as vectors of base-4 numbers.

For example, with n = 7 the Fréchet-Hoeffding lower bound path {max(3j
n
− 2, 0) : j =

0, 1, . . . , n} is specified by the vector (0, 0, 0, 0, 1, 3), while the Fréchet-Hoeffding upper

bound path { j
n

: j = 0, 1, . . . , n} is specified by the vector (1, 1, 1, 1, 1, 1).

But not every base-4 representation will generate a valid path. For example, for n = 7 we

have that (0, 3, 0, 0, 2, 0) is a base-4 number between (0, 0, 0, 0, 1, 3) and (1, 1, 1, 1, 1, 1), but

it represents a path that is out of Fréchet-Hoeffding bounds. In general, we just have to

check which of the base-4 representations satisfy

max

(
3j

n
− 2, 0

)
≤ tj ≤

j

n
, j = 1, . . . , n− 1 , (2.25)

which is equivalent to satisfy

max(3j − 2n, 0) ≤
j∑

k= 1

b k ≤ j , j = 1, . . . , n− 1 . (2.26)

We will call an admissible diagonal path any vector of base-4 numbers satisfying the Fréchet-

Hoeffding conditions (2.22), or equivalently, conditions (2.26). In the the following result

we find the exact number of admissible paths for any n ≥ 3.

2.9. Proposition. Let Pn denote the number of admissible paths for the trivariate empir-

ical diagonal δn of n points in [ 0, 1 ] 3 and n ≥ 3. Then

Pn =

[[ 2n/3 ]]∑
r0 = 0

∑
r2 + 2r3 = r0

(
n
r0

)(
n− r0
r3

)(
n− r0− r3

r2

)
r0 + 1

=

[[ 2n/3 ]]∑
r0 = 0

[[ r0/2 ]]∑
r3 = 0

(
n
r0

)(
n− r0
r3

)(
n− r0− r3
r0−2r3

)
r0 + 1

,

where [[ x ]] denotes the greatest integer less than or equal to x.

Proof: Let (x1, y1, z1), . . . , (xn, yn, zn) ∈ [ 0, 1 ] 3 be n points and let δn be their empirical

diagonal. Let r0, r1, r2 and r3 denote the number of zeros, ones, twos, and threes, respec-

tively, in the empirical diagonal nδn. Then r0 + r1 + r2 + r3 = n and r1 + 2r2 + 3r3 = n,

so r2 + 2r3 = r0 . Hence, any nonnegative integers r1, r0, r3 satisfying

r1 + 2r0 − r3 = n , (2.27)
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r0 ≥ 2r3 , (2.28)

could provide an admissible path for the empirical diagonal whenever the Fréchet-Hoeffding

bounds are satisfied. Observe that r0 ≤ [[ 2n/3 ]] , by (2.26), and that (2.28) is a consequence

of the fact that 0 ≤ r2 = r0 − 2r3.

If δn = 1
n
(b 1, b 2, . . . , bn) is an admissible path, then b 1 ∈ {0, 1}, b 2 ∈ {0, 1, 2}, and

b i ∈ {0, 1, 2, 3} for 3 ≤ i ≤ n. We observe that the restrictions
∑n

i=1 b i = n and
∑j

i=1 b i ≤ j

must be fulfilled. Since r0 = r2 + 2r3 now the basic rule to find admissible paths is “one

zero before each two, two zeros before each three”. That is if some b i = 2, then there exists

1 ≤ j < i such that b j = 0, and if some b i = 3, then there exist 1 ≤ j < k < i such that

b j = 0 = b k. Therefore, given the number of zeros and threes among the b i
′s, we only

have to see where can they be located in the vector (b 1, . . . , bn), following the basic rule,

with r2 = r0 − 2r3. Observe that the ones can be located any place.

First assume that r0 = 0, then (2.28) implies r3 = 0, and r2 = r0 − 2r3 = 0, so the

only possibility is r1 = n, that is, the admissible path (1, 1, . . . , 1), which is Fréchet-

Hoeffding upper bound path. Then, by an analogous argument as in Proposition 2.4, for

any r0 positive integer such that r0 ≤ [[ 2n/3 ]] , and any nonnegative integer r3 such that

r2 + 2r3 = r0, the number of admissible paths with r0 zeros and r3 threes is given by(
n
r0

)(
n− r0
r3

)(
n− r0− r3

r2

)
r0 + 1

=
1

r0 + 1

(
n

r0, r1, r2, r3

)
, (2.29)

where the right side of this last equation is justified by analogous arguments as in the

Remark of Proposition 2.4. The result now follows summing over all possible values of r0

and r3 , subject to the constraint r2 + 2r3 = r0, which is equivalent to sum(
n
r0

)(
n− r0
r3

)(
n− r0− r3
r0−2r3

)
r0 + 1

, (2.30)

over all possible values of r0 ≤ [[ 2n/3 ]] , and r3 ≤ [[ r0/2 ]] , by (2.28).

Remark. A thorough justification for (2.29) may be given in terms of Riordan Group

enumeration techniques, as in Cameron (2002).

Now we will calculate the probability of any given (admissible) path, under the hypothesis

of independence.

2.10. Theorem. Let S = {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} be a random sample from the

random vector of continuous random variables (X, Y, Z) . If X, Y and Z are independent

and if T = (t0 = 0, t1, . . . , tn−1, tn = 1) is an admissible diagonal path, then

P
[
T = (t0 = 0, t1, . . . , tn−1, tn = 1)

]
=

1

(n!)2

n∏
j= 1

f(j) ,
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where f(j) is obtained in terms of the following formula, for j = 1, . . . , n :

f(j) =


1 if n(tj − tj−1) = 0 ,

3(j − ntj−1)(j − 1− ntj−1) + 1 if n(tj − tj−1) = 1 ,

3(j − 1− ntj−1)4 if n(tj − tj−1) = 2 ,

(j − 1− ntj−1)3(j − 2− ntj−1)3 if n(tj − tj−1) = 3 .

Proof: From the continuity assumption we know that, with probability one, there are no

ties among the Xi
′s , the Yi

′s or the Zi
′s. By independence of X , Y and Z, the probability

of the random sample {(X1, Y1, Z1), . . . , (Xn, Yn, Zn))} equals that of

{(X(1), Yσ(1), Zτ(1)), . . . , (X(n), Yσ(n), Zτ(n))} where (σ(1), τ(1)), . . . , (σ(n), τ(n)) is any bi-

variate permutation of In := {1, . . . , n} , and every permutation has probability (n!)−2.

By rescaling we can assume that X(i) = i, Yσ(i) = σ(i), and Zτ(i) = τ(i), for i ∈ In , that is

to consider the one-to-one rank-mapping (Xi, Yj, Zk) 7→ (rank(Xi), σ(i), τ(i)). Hence the

rank-mapped sample S becomes a subset of the (three-dimensional) grid {1, 2, . . . , n}3 :=

I 3
n . In fact, for every i ∈ In there exists a unique (j, k) = (σ(i), τ(i)) ∈ I 2

n such that

(i, j, k) = (i, σ(i), τ(i)) ∈ S. That is, for any horizontal or vertical segment in the three

bivariate grids {i}×I 2
n , In×{j}×In , and I 2

n ×{k} , there is exactly one point that belongs

to the sample S.

In order to calculate P
[
T = (0, t1, . . . , tn−1, 1)

]
we just need to count the number of

orderings of {Y1, . . . , Yn} and {Z1, . . . , Zn} that would lead to the admissible path (t0 =

0, t1, . . . , tn−1, tn = 1) . We will show that this probability is given by (n!)−2
∏n

j= 1 f(j) .

Let B = (b 1, b 2, . . . , bn) be the vector of base-4 numbers which is equivalent to the ad-

missible diagonal path T = (t0 = 0, t1, . . . , tn−1, tn = 1) , that is b i = n(ti − ti−1) for

i = 1, 2, . . . , n.

If b k = 0 = n(tk − tk−1) then there is only one possibility: no sample point of S is rank-

mapped to {1, . . . , k}3 \ {1, . . . , k − 1}3.

Define

K := min{i ∈ {1, . . . , n} | b i > 0}.

Since B represents an admissible diagonal path, we have that all the b i
′s are equal to 0, 1, 2

or 3, except for b 1 which equals 0 or 1 , and b 2 which equals 0, 1 or 2, and
∑n

i=1 b i = n.

Then K ≤ [[ 2n/3 ]] by (2.25).

If K = 1 it means that b 1 = 1, and then (1, 1, 1) ∈ S, and there is only one possibility for

σ(1) and τ(1), that is (σ(1), τ(1)) = (1, 1).
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Define D1 := {(1, 1, 1)} and for r = 2, 3, . . . let Dr := {1, 2, . . . , r}3 \
r−1⋃
w= 1

Dw . Then

card(Dr) = r3 − (r − 1)3 = 3 r(r − 1) + 1 , where card( · ) stands for cardinality of a

set. Geometrically, Dr may be interpreted as a grid on three faces of a cube of volume r3,

with one vertex, 3(r − 1) points on the three edges (excluding the vertex), which we will

call edge points, and therefore

r3 − (r − 1)3 − 3(r − 1)− 1

3
= (r − 1)2

points on each face (without edges), which we will call face points. So in Dr we have

3(r − 1)2 face points, 3(r − 1) edge points, and exactly 1 vertex. All points (i, j, k) ∈ Dr
must have at least one entry equal to r. If a point in Dr has only one entry equal to r then

it is a face point; if it has 2 entries equal to r and the other one different from r then it is

an edge point; and if it has its 3 entries equal to r it is obviously the vertex of Dr.

If K = 2 it means that b 1 = 0 = nt1, that is (1, 1, 1) /∈ S, and b 2 ∈ {1, 2}. In case b 2 = 1,

there is only one point (Xi, Yj, Zk) ∈ S which is rank-mapped to one of the elements of

D2 , that is, there are card(D2) = 23 − 13 = 7 possibilities for such point. In case b 2 = 2,

there are exactly two points (Xi, Yj, Zk) ∈ S which are rank-mapped to 2 different elements

of D2 , and the number of possibilities depends on whether one of the points belongs to

one of the 3(2 − 1) + 1 = 4 points that lie on the 3 edges of D2 . First of all, we have to

discard the vertex (2, 2, 2) since this point belongs to the three edges of D2 , and this would

eliminate the possibility of using any other point in the three faces of D2 , and we need to

allocate two points. If one of the points is an edge point, then it automatically eliminates

the possibility of choosing the other point from 2 faces and the 3 edges of D2 , that is, the

other point has to be a face point, so at least one of the two points has to be a face point.

So first we count the number of ways in which we can choose the face point, which is 3 :

(1, 1, 2), (1, 2, 1), (2, 1, 1); then, its selection eliminates 2 2 points on the face where it is

located (the vertex included) plus (2 − 1) = 1 face points on each of the other two faces,

and so there is left 7− 2 2 − 2(1) = 1 possibility for the other point, for a total of 3(1) = 3

different ways of choosing the two points.

Now assume that K ≥ 3 , and therefore bK ∈ {1, 2, 3}. This implies that b 1 = · · · =

bK−1 = 0 , which is equivalent to t1 = · · · = tK−1 = 0 , that is, there are no points in

the sample S which are rank-mapped to the set
⋃K−1
w= 1Dw = {1, . . . , K − 1}3. From the

definition of the trivariate empirical copula it is clear that

nti = nCn

(
i

n
,
i

n
,
i

n

)
= card(S ∩ {1, . . . , i}3) ,
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that is, nti is the number of (rank-mapped) sample points in S that belong to {1, . . . , i}3.

If bK = 1, or equivalently ntK = 1, and since ntK−1 = 0 implies that there are not any points

in S rank-mapped to {1, . . . , K−1}3, we have that there is exactly one point of S which is

rank-mapped to DK , and there are card(DK) = K3 − (K − 1)3 = 3K(K − 1) + 1 different

possibilities to choose this point. It is important to mention that the corresponding rank-

mapped point, say (i∗, j∗, k∗), automatically cancels the possibility that any other point of

the sample S is rank-mapped to a point (i, j, k) ∈ {1, . . . , n}3 such that i = i∗ or j = j∗ or

k = k∗.

If bK = 2 then there are exactly 2 sample points of S which are rank-mapped to 2 different

elements of DK , and the number of possibilities depends on whether one of the points

belongs to one of the 3(K − 1) + 1 points that lie on the 3 edges of DK . First of all, we

have to discard the vertex (K,K,K) since this point belongs to the three edges of DK , and

this would eliminate the possibility of using any other point in the three faces of DK , and

we need to allocate two points. If one of the points is an edge point then it automatically

eliminates the possibility of choosing the other point from 2 faces and the 3 edges of DK ,
that is, the other point has to be a face point, so at least one of the two points has to

be a face point. So first we count the number of ways in which we can choose the face

point, which is
(

3
1

)
(K − 1)2 ; then, its selection eliminates K 2 points on the face where it

is located, and so it eliminates 2K − 1 points of the K 2 points on each of the other two

faces, that is, K 2 − (2K − 1) = (K − 1)2 points are left on each of the other two faces; we

may choose one out of the two faces left and so we have
(

2
1

)
(K − 1)2 different possibilities

for the second point, and so we have a total of(
3
1

)
(K − 1)2

(
2
1

)
(K − 1)2

2!
= 3(K − 1)4

different ways of choosing the two points (we divided by 2! since the order of the two points

chosen is not important).

If bK = 3 then there are exactly 3 sample points of S which are rank-mapped to 3 different

elements of DK , which necessarily have to be face points (one on each of the three faces

of DK) since the presence of one edge point would just leave one (or zero in the case of

the vertex) faces for choosing the other two points, which is impossible since it is only

possible to have one point per face. Then, we have
(

3
1

)
(K − 1)2 different ways of choosing

the first point, which just leaves available (K − 1)2 −(K − 1) = (K − 1)(K − 2) points

on each of the other two faces, so we may choose the second point in
(

2
1

)
(K − 1)(K − 2)

different ways, which in turn will eliminate (K − 2) points of the remaining face, leaving(
1
1

)
[(K − 1)(K − 2) −(K − 2)] =

(
1
1

)
(K − 2)2 ways of choosing the third point, for a total
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of (
3
1

)
(K − 1)2

(
2
1

)
(K − 1)(K − 2)

(
1
1

)
(K − 2)2

3!
= [(K − 1)(K − 2)] 3

different ways for choosing the 3 points (we divided by 3! since the order of the three points

chosen is not important).

For b J
′s with J > K we have that b J ∈ {0, 1, 2, 3} and we proceed in an analogous

way, but eliminating the points (i, j, k) ∈ DJ for which there exists (i∗, j∗, k∗) ∈
⋃J−1
w=1Dw

= {1, . . . , J − 1}3 such that i = i∗ or j = j∗ or k = k∗. For the calculations we proceed

in an analogous ways as for j = K by just eliminating for each of the three dimensions

ntJ−1 points since ntJ−1 is the number of (rank-mapped) sample points in S that belong to

{1, . . . , J − 1}3, and so we arrive to the same formulas by just replacing K with J − ntJ−1

and the result follows.

In this chapter, for m = 2 and m = 3, we have proved that it is possible to:

• label the different paths an m-variate empirical diagonal may follow by using base-

(m+ 1) number representation,

• count the number of admissible diagonal paths, given a sample size n (Propositions

2.4 and 2.9),

• obtain the exact distribution of the empirical diagonal under the hypothesis of a

vector of continuous independent random variables (Theorems 2.5 and 2.10),

with the possibility of obtaining analogous results for higher dimensions, with an increasing

difficulty in the combinatorics involved.

Within the Archimedean family of copulas, since copula Π characterizes independence and

satisfies Frank’s condition δΠ
′(1−) = m (and so it is the only Archimedean copula with

diagonal section δ(u) = um), we may use some appropriate transformation of the empirical

diagonal to build a test statistic for a nonparametric test for independence, and since we

know the exact distribution of the empirical diagonal under the hypothesis of a bivariate

(or trivariate) vector of continuous independent random variables, then we will be able to

obtain the exact distribution of such test statistic. This will be done in chapter 4.

Before we proceed with the above idea, a natural question would be if these results would

be useful outside the Archimedean world. To be more precise, we restate the question as

follows: Does there exist a bivariate copula C such that δC(u) = δΠ(u) = u2 but C 6= Π ?
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The answer is yes, as shown by Fredricks and Nelsen (1997a, 1997b, 2002), see Theorem

1.18 and Proposition 1.19 in this thesis. They built singular and symmetric copulas that

have the same diagonal section as, for example, the independence copula, but that are

not the independence copula. In practice, we would not worry too much about singular

copulas, since in such case we would be able to detect them immediately from a scatter

plot. What we would worry about is if it is possible to have absolutely continuous non-

Archimedean copulas such that δC(u) = δΠ(u) = u2 but C 6= Π . The answer is in the

positive sense, as proved by Erdely and González-Barrios (2006a) who have shown how to

build a broad family of absolutely continuous copulas, not necessarily symmetric, which

have the same diagonal section as the independence copula (see next chapter 3), and there

are also results by Nelsen, Quesada-Molina et al (2006), and Nelsen (2006b). So it may

happen that, outside the Archimedean world, a nonparametric test for independence based

on the empirical diagonal may have a low power under alternative hypotheses such as those

constructed by Fredricks and Nelsen (1997a, 1997b, 2002), Erdely and González-Barrios

(2006a), Nelsen, Quesada-Molina et al (2006), and Nelsen (2006b).
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Chapter 3

Absolutely continuous copulas with

given restrictions

The results of the present chapter have already been published by Erdely and González-

Barrios (2006a). We construct a broad family of copulas using a fixed absolutely continuous

copula D(u, v). The main idea is to construct families of copulas with given restrictions,

such as values of the copula on diagonal sections, or horizontal and vertical sections, even

including restrictions on closed subsets, in a few words, to construct copulas with a given

agreement region with D(u, v) .

Let us consider the function

f(x, y) = sin(x) sin(y) for x, y ∈ [ 0, 2π ].

Then it is clear that if 0 ≤ a < b ≤ 2π, we have that

∫ b

a

∫ 2π

0

f(x, y)dxdy = 0 and

∫ 2π

0

∫ b

a

f(x, y)dxdy = 0,

that is, integrals of f along vertical or horizontal segments are always zero. We also observe

that f(x, y) = 0 on the border of [ 0, 2π ]2. We will use appropriate rescalings of the function

f(x, y) in order to construct families of absolutely continuous copulas with given diagonals.

In fact we will prove the following:

3.1. Theorem. Let D(u, v) be an absolutely continuous copula with density ∂2

∂u∂v
D(u, v) =

d(u, v) which will be assumed to be continuous and positive on [ 0, 1 ]2. Let δ(u) = D(u, u)

be the diagonal section of D(u, v). Then there exists a family of absolutely continuous

copulas C, not necessarily symmetric even when D is symmetric, such that for every C ∈ C

71
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if δC(u) = C(u, u), then δC(u) = δ(u), and for almost every (u, v) ∈ (0, 1)2 [λ], where λ is

the Lebesgue measure on [ 0, 1 ]2, C(u, v) 6= D(u, v).

Proof: Let D(u, v) be an absolutely continuous copula with density d(u, v) = ∂2

∂u∂v
D(u, v)

which is continuous and positive on [ 0, 1 ]2. Since d(u, v) is continuous and positive on

[ 0, 1 ]2, which is compact, then there exists M > 0, such that d(u, v) ≥ M for every

(u, v) ∈ [ 0, 1 ]2.

Let ∆u := {(u, v) ∈ [ 0, 1 ]2 |u ≤ v} and ∆l := {(u, v) ∈ [ 0, 1 ]2 |u ≥ v}, be the upper and

lower triangles above and below the diagonal of [ 0, 1 ]2. Let 0 ≤ u1 < u2 ≤ v1 < v2 ≤ 1,

then the rectangle [u1, u2 ]× [ v1, v2 ] ⊂ ∆u. Similarly, if 0 ≤ v1 < v2 ≤ u1 < u2 ≤ 1, then

the rectangle [u1, u2 ]× [ v1, v2 ] ⊂ ∆l.

Now we rescale the function f given just before this Theorem to the rectangle J = [u1, u2 ]×
[ v1, v2 ]. That is, we consider

fJ(u, v) = sin

(
2π(u− u1)

u2 − u1

)
sin

(
2π(v − v1)

v2 − v1

)
1J(u, v) , (3.1)

where 1A denotes the indicator function of the set A. If u1 ≤ u ≤ u2 and v1 ≤ v ≤ v2, then∫ v

v1

∫ u

u1

fJ(s, t)dsdt =

∫ v

v1

∫ u

u1

sin

(
2π(s− u1)

u2 − u1

)
sin

(
2π(t− v1)

v2 − v1

)
dsdt

=
(u2 − u1)(v2 − v1)

4π2

∫ 2π(u−u1)
u2−u1

0

∫ 2π(v−v1)
v2−v1

0

sin(w) sin(z)dwdz

=
(u2 − u1)(v2 − v1)

4π2

(
1− cos

(
2π(u− u1)

u2 − u1

))(
1− cos

(
2π(v − v1)

v2 − v1

))
.

Of course this integral is always nonnegative, and if u = u2 or v = v2, then
∫ v
v1

∫ u
u1
fJ(s, t)dsdt

= 0. On the other hand, as can be easily verified, if u = (u2 + u1)/2 and v = (v2 + v1)/2,

then
∫ v
v1

∫ u
u1
fJ(s, t)dsdt = (u2 − u1)(v2 − v1)/π2, which is the maximum value for this

integral.

Let I1,1 = [ 0, 1/2 ] × [ 1/2, 1 ] and I1,2 = [ 1/2, 1 ] × [ 0, 1/2 ], then I1,1 ⊂ ∆u and I1,2 ⊂ ∆l.

For k ≥ 2 and j = 1, 2, . . . , 2k, define

Ik,j :=


[
j−1
2k
, j

2k

]
×
[
j

2k
, j+1

2k

]
if j = 1, 3, . . . , 2k − 1

[
j−1
2k
, j

2k

]
×
[
j−2
2k
, j−1

2k

]
if j = 2, 4, . . . , 2k.

Then for every k ≥ 2 and j = 1, 2, . . . , 2k, Ik,j ⊂ ∆u if j is odd and Ik,j ⊂ ∆l if j is even,

see Figure 1, for the cases k = 1 and k = 2. If we denote the interior of a set A by int(A),

then it is also clear that for any k and every j1, j2 ∈ {1, 2, . . . , 2k}, with j1 6= j2, we have
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Figure 3.1: Graph of the I ′k,js for k = 1, 2

-
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that int(Ik,j1) ∩ int(Ik,j2) = ∅. We also have that for any k < l and any j1 ∈ {1, 2, . . . , 2k}
and j2 ∈ {1, 2, . . . , 2l}, int(Ik,j1) ∩ int(Il,j2) = ∅. We finally observe that

∆u =
∞⋃
k= 1

⋃
j= 1,3,...,2k−1

Ik,j and ∆l =
∞⋃
k= 1

⋃
j= 2,4,...,2k

Ik,j .

Now, for every k ≥ 1 and every (u, v) ∈ [ 0, 1 ]2 we define using (3.1)

f(k;αk,1,...,αk,2k )(u, v) =
2k∑
j=1

αk,jfIk,j(u, v) where |αk,j| ≤M for every j = 1, 2, . . . , 2k.

It is important to observe that for any 0 ≤ a < b ≤ 1 and any selection of αk,1, . . . , αk,2k ,∫ 1

0

∫ b

a

f(k;αk,1,...,αk,2k )(u, v)dudv =

∫ b

a

∫ 1

0

f(k;αk,1,...,αk,2k )(u, v)dudv = 0 . (3.2)

This property follows from the definition of f(k,αk,1,...,αk,2k ) and the definition of the subsets

Ik,j, see Figure 3.1. Now for n ≥ 1 define

fn(u, v) = d(u, v) +
n∑
k=1

f(k;αk,1,...,αk,2k )(u, v),
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then fn depends on α1,1, α1,2, α2,1, · · · , α2,4, · · · , αn,1, · · ·αn,2n , that is 2 + 22 + · · · + 2n =

2n+1 − 2 parameters. From the selection of the αk,j, for k = 1, . . . , n and j = 1, . . . , 2k, we

have that every fn(u, v) is a nonnegative continuous function, since d(u, v) is continuous

as well as every f(k,αk,1,...,αk,2k ). From equation (3.2) we also obtain that∫ 1

0

∫ 1

0

fn(u, v)dudv =

∫ 1

0

∫ 1

0

d(u, v) = 1.

Hence, for every n ≥ 1 and selection of parameters |αk,j| ≤ M , for k = 1, . . . , n and

j = 1, . . . 2k, fn(u, v) is a continuous density. In fact, it is the density of an absolutely

continuous copula whose formula is given by

Cn(u, v) = D(u, v)+

n∑
k=1

2k∑
j=1

αk,j
22k+2π2

{
1− cos

(
2k+1π(u− ((j − 1)/2k))

)} {
1− cos

(
2k+1π(u− (j∗/2k))

)}
1Ik,j(u, v),

where j∗ = j if j is odd and j∗ = j − 2 if j is even. Here we observe that Cn(u, v) is close

to D(u, v) except for perturbations on every Ik,j. In fact, it is easy to see that

sup
(u,v)∈ [ 0,1 ]2

|Cn(u, v)−D(u, v)| ≤ M

4π2
,

for every selection of the parameters αk,j. Of course, if every αk,j 6= 0, then Cn(u, v) 6=
D(u, v) for almost every (u, v) ∈ Ik,j, except only if u = (2j−1)/2k+1, or if v = (2j+1)/2k+1

with j odd, or v = (2j − 3)/2k+1 with j even.

If we define C(u, v) = limn→∞Cn(u, v), we obtain that C(u, v) is a copula depending on an

infinite number of parameters, if all of them are non zero, then C(u, v) 6= D(u, v) almost

surely for the Lebesgue measure on [0, 1]2. We finally observe that if αk,j 6= αk,j+1 for any

k ≥ 1 and any j = 1, 3, . . . 2k − 1, then Cn(u, v) is a non symmetric copula for any n ≥ k.

In fact, we can construct, using the methodology above, an almost everywhere asymmetric

copula with respect to Lebesgue measure.

3.2. Example. Let D(u, v) = uv for (u, v) ∈ [ 0, 1 ]2. Then D is an absolutely continuous

copula with density d(u, v) = 1 for every (u, v) ∈ [ 0, 1 ]2. Let J = [ 0, 1/2 ]× [ 1/2, 1 ], if we

define

C(u, v) =

{
uv + 1

16π2 {cos (4πu)− 1} {cos (4π(v − 1/2))− 1} if (u, v) ∈ J
uv if (u, v) ∈ [ 0, 1 ]2\J.

Then C(u, v) is an asymmetric copula which coincides with D(u, v) on the diagonal.
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We do have easy extensions of Theorem 3.1, such as

3.3. Corollary. Let D(u, v) be an absolutely continuous copula with density ∂2

∂u∂v
D(u, v) =

d(u, v) which we will be assumed to be continuous and positive on [ 0, 1 ]2. Let n,m ≥ 1 and

let 0 = u0 < u1 < u2 < · · · < un−1 < un = 1 and 0 = v0 < v1 < v2 < · · · < vm−1 < vm = 1

any points. Consider the vertical sections Vk = {(u, v) ∈ [ 0, 1 ]2 |u = uk}, for k = 0, . . . , n

and the horizontal sections Hj = {(u, v) ∈ [0, 1]2 | v = vj} for j = 0, . . . ,m. Then there

exists an infinite family of copulas C, such that for every C ∈ C, C is absolutely continuous

and C(u, v) = D(u, v) for every (u, v) ∈ Vk, k = 0, 1, . . . , n and every (u, v) ∈ Hj, j =

0, 1, . . . ,m.

The proof of this Corollary follows the same steps as Theorem 3.1, by defining the density

of C on every Ik,j = [uk, uk+1 ]× [ vj, vj+1 ], for every k = 0, 1, . . . n and j = 0, 1, . . . ,m.

The function f(u, v) = sin(u) sin(v) on [0, 2π]2 can be substituted by any function of the

form f(u, v) = g(u)g(v) on [a, b]2, as long as a < b, g is continuous with g(a) = g(b) = 0,

and
∫ b
a
g(x)dx = 0.

In the above Corollary the term “infinite family of copulas” is due to the different ways

of defining the density of C on every Ik,j = [uk, uk+1 ] × [ vj, vj+1 ] and the use of all the

functions of the form f(u, v) = g(u)g(v) mentioned above.

Another way of proving Theorem 3.1, is to rescale the function

f(u, v) = sin(2πv) sin(2πu/v)1{(u,v)∈[0,1]2 |u≤v}(u, v),

and its symmetric version.

We can also find families of copulas that agree on closed sets with a given absolutely

continuous copula. For example, copulas that agree with the absolute continuous copula

D(u, v) on [ 1/4, 3/4 ]× [ 1/4, 3/4 ], or even on circles such as {(u, v) ∈ [ 0, 1 ]2 | (u− 1/2)2 +

(v − 1/2)2 ≤ 1/4}, simply by noticing that the usual topology on [ 0, 1 ]2 with the usual

metric d
(

(x, y) , (u, v)
)

:=
(
(x − u)2 + (y − v)2

)1/2
is the same as the topology metrized

by ρ
(

(x, y) , (u, v)
)

:= max{ |x − u|, |y − v| } where the open balls are (open) rectangles.

In fact, from the remark above we have the following

3.4. Corollary. Let D(u, v) be an absolutely continuous copula with density ∂2

∂u∂v
D(u, v) =

d(u, v) which we will be assumed to be continuous and positive on [ 0, 1 ]2. Let C(u, v)

another copula such that C(u, v) = D(u, v) on a largest closed subset A ⊂ [0, 1]2. Then

C(u, v) = D(u, v) for every (u, v) ∈ [ 0, 1 ]2 if and only if A = [ 0, 1 ]2.
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Proof: Assume that C(u, v) = D(u, v) on a closed subset A ⊂ [ 0, 1 ]2, but A 6= [ 0, 1 ]2.

Then Ac, the complement of A is an open nonempty set. Hence, we can find 0 < u1 <

u2 < 1 and 0 < v1 < v2 < 1, such that J = [u1, u2 ]× [ v1, v2 ] ⊂ Ac. By defining f on this

rectangle as in Theorem 3.1, we obtain a copula which coincides with D(u, v) on A but it

is different from D on J .

From Corollary 3.4 the only way to determine uniquely an absolutely continuous copula is

by giving its values on a dense subset of [ 0, 1 ]2.

The hypothesis of a copula having a positive density on [ 0, 1 ]2, can be also weakened,

obtaining similar results. For example the density can be zero on the border of [ 0, 1 ]2, or

even the density can be zero on a closed region, and still the construction will work outside

this region.

It is important to notice that in all previous results, we can construct asymmetric copulas

that follow the given restrictions.

In the present chapter we focused on bivariate copulas but it is possible to extend these

results for dimensions higher than two without dealing with the compatibility problem,

because the starting point for building, say, an n-dimensional asymmetric and absolutely

continuous copula C(u1, . . . , un) would be a given n-dimensional absolutely continuous

copula D(u1, . . . , un) (see Theorem 3.1) and so the proposed methodology does not deal

with the compatibility with (n−m) -dimensional marginal copulas, where 2 ≤ m < n . For

example, with the analogous ideas used in Example 3.2, define

C(u, v, w) =

{
uvw + 1

64π3

[
cos(4πu)−1

][
cos(4π(v − 1

2
))−1

][
cos(4πw)−1

]
if (u, v, w) ∈ J ,

uvw if (u, v, w) ∈ [0, 1]3 \ J ,

where J = [ 0, 1
2

]× [ 1
2
, 1 ]× [ 0, 1

2
] . Then C(u, v, w) is an asymmetric copula which coincides

with the independence copula Π(u, v, w) = uvw on the diagonal.

We can also find families of n-dimensional copulas that agree on closed sets with a given n-

dimensional absolutely continuous copula, even on n-dimensional spheres simply by notic-

ing that the usual topology on [ 0, 1 ]n with the usual metric d( x , u
)

:=
(
(x1−u1)2 + · · ·+

(xn−un)2
)1/2

is the same as the topology metrized by ρ( x , u
)

:= max{ |x1−u1|, . . . , |xn−
un| } where the open balls are (open) n-cubes.

The results of this chapter were published by Erdely and González-Barrios (2006a) in

April of 2006. During the 10th International Congress on Insurance: Mathematics and

Economics held in Leuven, Belgium, in July of 2006, Quesada-Molina et al (2006) presented
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another way of constructing absolutely continuous non-Archimedean copulas via quasi-

copulas, which is part of a paper in preparation by Nelsen, Quesada-Molina et al (2006).

In August 2006, Nelsen (2006b) kindly sent to the author of this thesis this nice example of

a family of absolutely continuous non-Archimedean copulas, non-symmetric when θ 6= 0,

with the same diagonal as Π(u, v) = uv :

Cθ(u, v) = uv + θuv(1− u)(1− v)(u− v) , θ ∈ [−1, 1 ] . (3.3)
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Chapter 4

A new nonparametric test for

independence

Alsina, Frank and Schweizer (2003) published a collection of open problems connected with

the functional equation of associativity (1.35), and for the present thesis, we got interested

in Problem 16, which again appeared as an open problem in Alsina, Frank and Schweizer

(2006) :

Can one design a test of statistical independence based on the assumptions that

the copula in question is Archimedean and that its diagonal section is δ(u) = u2 ?

The results in this chapter are in Erdely and González-Barrios (2006b) and pretend to give

an answer to the above open problem.

4.1 Proposed test statistic.

An immediate consequence of Sklar’s theorem (Theorem 1.6) for a random vector (X, Y )

of continuous random variables is that the product copula Π(u, v) = uv is the copula

of (X, Y ) if and only if X and Y are independent. The product copula is Archimedean

and satisfies Frank’s condition δΠ
′(1−) = 2 so it is characterized by the diagonal section

δΠ(u) = u2 . If we are interested in analyzing independence of two random variables, these

results suggest to measure some kind of closeness between the empirical diagonal and the

diagonal section of the product copula. Moreover, a nonparametric test of independence

may be carried out. Let (X, Y ) be a random vector of continuous random variables with

Archimedean copula C , then the following hypothesis are equivalent:

H0 : X and Y are independent ⇔ H∗0 : C = Π ⇔ H∗∗0 : δC(u) = u2 . (4.1)

79
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Using the results of chapter 2, we will propose a statistical test based on the empirical

diagonal because under H0 we know the exact distribution of the empirical diagonal (The-

orem 2.5) and so we could theoretically obtain the exact distribution of any test statistic

based on it.

It is straightforward to verify that under H0 the expectation E [ ∆( j
n
) ] = δΠ( j

n
) = j2

n2 so

we define

ξ
( j
n

)
:=

|∆( j
n
)− j2

n2 |
j
n
−max(2j

n
− 1, 0)

, j = 1, . . . , n− 1 , (4.2)

as a way of measuring pointwise closeness to independence, noticing that the denominator

just standardizes dividing by the distance between the Fréchet-Hoeffding bounds at point
j
n
. It is straightforward to verify that 0 ≤ ξ( j

n
) ≤ max{ j

n
, 1− j

n
} ≤ 1− 1

n
. We propose as

a test statistic

Sn :=
1

n− 1

n−1∑
j= 1

ξ
( j
n

)
, (4.3)

rejecting H0 whenever Sn ≥ k1(α) , for α a given test size. Before we proceed, from

inequalities (1.32) let us denote by δM(u) = u and δW (u) = max(2u− 1, 0) the upper and

lower Fréchet-Hoeffding diagonal bounds, respectively. For u in [ 0, 1 ] , the average distance

between δΠ(u) and δM(u) is 1
6
, while the average distance between δΠ(u) and δW (u) is 1

12
,

this means that the diagonal that represents independence is, in average, twice closer to the

lower than to the upper Fréchet-Hoeffding diagonal bound, thus independence is far from

being in the middle of such bounds, and so we should consider the possibility of taking this

into account in defining a test statistic. We define

h
( j
n

)
:=

j
n
− j2

n2

j2

n2 −max(2j
n
− 1, 0)

=

{
n−j
j

if j ≤ n
2
,

j
n−j if j > n

2
,

(4.4)

as a factor to be multiplied by ξ( j
n
) for those observations for which ∆( j

n
) < j2

n2 in order to

compensate somehow the non-equal closeness of the independence diagonal to the Fréchet-

Hoeffding bounds. In other words, let us define

ν
( j
n

)
:=

 h
(
j
n

)
ξ
(
j
n
) if ∆

(
j
n

)
< j2

n2 ,

ξ
(
j
n
) if ∆

(
j
n

)
≥ j2

n2 ,
(4.5)

It is straightforward to verify that h( j
n
) is symmetric respect to 1

2
and that 1 ≤ h( j

n
) ≤

h( 1
n
) = h(1− 1

n
) = n− 1 . We now propose the following test statistic
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An :=
1

n− 1

n−1∑
j= 1

ν
( j
n

)
, (4.6)

rejecting H0 whenever An ≥ k2(α) , for α a given test size. As we will see in the fol-

lowing section, the test statistics (4.3) and (4.6) alone sometimes lead to biased tests of

independence, but an appropriate combination of both leads to an approximately unbiased

independence test, under an Archimedean copula, by rejecting H0 whenever Sn ≥ k1 or

An ≥ k2 with k1 and k2 chosen appropriately such that

P
(
{Sn ≥ k1} ∪ {An ≥ k2} |H0

)
≤ α . (4.7)

It is important to make some remarks regarding Sn and An . From their definitions it is

immediate to verify that Sn ≤ An , and that these two statistics are bounded: 0 < Sn ≤
An ≤ 3

4
− 1

4n
. Moreover, An and Sn are discrete random variables whose exact distribution

under H0 may be obtained due to the fact that these statistics are defined in terms of

the empirical diagonal whose exact distribution under H0 has been obtained in chapter

2. For this reason, we have to use less or equal instead of equality in (4.7), but with the

understanding that we choose k1 and k2 as small as possible such that P
(
{Sn ≥ k1}∪{An ≥

k2} |H0

)
gets as close as possible to α , that is P

(
{Sn ≥ k1} ∪ {An ≥ k2} |H0

)
≈ α .

If we analyze a test with the following rejection rule:

reject H0 whenever Sn ≥ k1 or An ≥ k2 (4.8)

for appropriately chosen k1 and k2 accordingly to a desired test size α , see (4.7), we may

choose, say, k1 such that P (Sn ≥ k1 |H0) = 0 and in this particular case we will have that

P ({Sn ≥ k1} ∪ {An ≥ k2} |H0) = P (An ≥ k2 |H0) ≤ α , and we get a test based only in

An , and the same for Sn . In any other case we get a test based on both statistics.

By elementary probability we rewrite (4.7) as

α ≥ P (Sn ≥ k1 |H0) + P (An ≥ k2 |H0)− P (Sn ≥ k1 , An ≥ k2 |H0) (4.9)

≥ α1 + α2 − α12 .

So we may first find k1 such that P (Sn ≥ k1 |H0) ≤ α1 ≤ α and then we search for

k2 such that α1 + α2 − α12 ≈ α without exceeding α . The election of (k1, k2) is not

unique but we can compute all the different possibilities since we are able to obtain the

exact distribution under H0 of the discrete random vector (Sn, An) using Theorem 2.5.
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For example, setting α = 0.05, with sample size n = 15 we get 54 different possibilities

displayed in Figure 4.1: the first graph plots the different pairs of values (k1, k2) such

that P ({S15 ≥ k1} ∪ {A15 ≥ k2} |H0) ≈ 0.05 without exceeding 0.05 . The second graph

plots the exact value of P ({S15 ≥ k1} ∪ {A15 ≥ k2} |H0) for each pair (k1, k2), from these

values we obtain that 0.04968 ≤ P ({S15 ≥ k1} ∪ {A15 ≥ k2} |H0) ≤ 0.05 . The third graph

plots the marginal probabilities P (Sn ≥ k1 |H0) and P (An ≥ k2 |H0) for each (k1, k2), and

we identify the particular case (k1, k2) = (0.27210884, 0.61717687) where P (Sn ≥ k1 |H0)

and P (An ≥ k2 |H0) are very much alike, with probabilities 0.02500343 and 0.02527600 ,

respectively.

Even though the election of (k1, k2) is not unique, we will see in the following section

that, in order to obtain an approximately unbiased test, a good choice for the alternatives

we analyze is (k1, k2) such that α1 = P (Sn ≥ k1 |H0) ≈ P (An ≥ k2 |H0) = α2 . We

cannot prove this in general for all possible alternatives since the power of the test for

θ 6= θ0 depends on the distribution under the alternative hypothesis, but it seems to work

adequately in all the following simulations.

4.2 Simulation study.

To check the performance of the independence test based on Sn and/or An , we performed

a simulation study, and we made a comparison to some well-known independence tests

based on the following statistics:

• Spearman’s Rank correlation coefficient, see Lehmann (1975) :

R =
12

n(n2 − 1)

n∑
j= 1

rank(Xj)rank(Yj)−
3(n+ 1)

n− 1
, (4.10)

rejecting H0 for large values of |R| .

• the modified Hoeffding test as introduced by Blum, Kiefer, and Rosenblatt (1961):

B =

∫ ∫ [
Hn(x, y)− Fn(x)Gn(y)

]2
dHn(x, y) , (4.11)

whereHn(x, y) =
1

n

n∑
k= 1

1{Xk ≤x , Yk ≤ y } , Fn(x) =
1

n

n∑
k= 1

1{Xk ≤x } , Gn(y) =
1

n

n∑
k= 1

1{Yk ≤ y } ,

rejecting H0 for large values of B .
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Figure 4.1:
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• Kallenberg and Ledwina (1999) test statistic:

V =

{
V (1, 1) if max{V (1, 2), V (2, 1), V (2, 2)} < log n ,

V (1, 1) + max{V (1, 2), V (2, 1), V (2, 2)} otherwise,
(4.12)

with V (r, s) =

{
1√
n

n∑
i= 1

br

(
Ri − 1

2

n

)
bs

(
Si − 1

2

n

)}2

, where {bj} denote the orthonor-

mal Legendre polynomials on [ 0, 1 ] , Ri and Si are the ranks of Xi and Yi , and we

reject H0 for large values of V .

The simulated power comparisons presented here were obtained with n = 50 and α = 0.05.

Every Monte Carlo experiment reported here has been simulated 10,000 times, using some

one-parameter Archimedean copulas as alternatives, divided into two groups. Let Cθ be

an Archimedean copula with (one-dimensional) parameter θ :

Group 1: There exists a unique θ0 such that Cθ0 = Π or limθ→ θ0 Cθ = Π .

Group 2: Cθ 6= Π for all θ .

Let Ψ(θ) denote the power of the test. For Group 1, hypothesis (4.1) becomes H0 : θ = θ0

versus the alternativeH1 : θ 6= θ0 and so an unbiased test should satisfy inf
θ 6= θ0

Ψ(θ) ≥ Ψ(θ0) = α .

For Group 2 we expect Ψ(θ) to be as close as possible to 1 for all θ . We will denote by

EGB the test proposed by Erdely and González-Barrios (2006b) in (4.8), by A the test

based on the statistic An (4.6), and by S the test based on the statistic Sn (4.3). For each

copula we present two graphs: one comparing the power of EGB, A and S; a second one

comparing the power of EGB versus R, B and V, as defined in (4.10), (4.11), and (4.12).

Group 1. We compare the test powers for H0 : θ = 0 against H1 : θ 6= 0 with the

following alternative Archimedean copulas, for details see Nelsen (2006a): Clayton, Frank,

and Nelsen’s catalog number 4.2.7. In all cases these copulas satisfy Cθ = Π if and only if

θ = 0 , or limθ→ 0Cθ = Π , and satisfy Frank’s condition δ ′(1−) = 2 .



4.2. SIMULATION STUDY. 85

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CLAYTON

−−−−− EGB        * * * A        + + + S
theta

po
w

er

*********
*
*
*

*

*

*

*

*

*
*
*
***********************

****
***

***
**

**
**

**

++++++++
+
+

+

+

+

+

+

+
+
++++

+
+
+
+
+

+

+

+

+
+
+
+
+
++

++
+++

++++++++++++++++++++

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CLAYTON

o o o R       −−−−− EGB       + + + V       * * * B
theta

po
w

er

●●●●●●●●●
●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●++++++++++

+

+

+

+

+

+

+
++++++

++
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+++

+++
+++++++++

++++++*********
*

*

*

*

*

*

*
*
*****

*
*
*
*
*

*

*
*
*
*
*
*
*
**

**
***

*******************

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FRANK

−−−−− EGB        * * * A        + + + S
theta

p
o

w
e

r

* * * * * * *
*

*
*

*
*

*

*

*

*
*

*
*

* * * * * * * * * * * * * * * * * * * * * *

++++++
+

+
+

+

+

+

+
+

+
+

+
+++++

+
+

+
+

+

+

+

+

+
+

+
++++++++

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FRANK

o o o R       −−−−− EGB       + + + V       * * * B
theta

p
o

w
e

r

●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●++++++
+

+
+

+

+

+

+

+

+
+

+
+++++++

+
+

+

+

+

+

+

+

+
+

+
+

+++++* * * * * *
*

*
*

*

*

*

*

*

*

*
*

* * * * *
*

*
*

*

*

*

*

*

*
*

* * * * * * * * *



86 CHAPTER 4. A NEW NONPARAMETRIC TEST FOR INDEPENDENCE

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nelsen 4.2.7

−−−−− EGB        * * * A        + + + S
theta

po
w

er

********************************
**

**
*
**

*
*
*
*
*
*
*
*
*
*
*
*

+++++++++++++++++++++++
++

++
+
++

+
+
++

+
+
+
+
+
++++++++++++

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nelsen 4.2.7

o o o R       −−−−− EGB       + + + V       * * * B
theta

po
w

er

●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●

++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+++++

******************************
*
*
*
*
*
*

*

*
*

*
*
*
*
*
*******

We notice that in most cases, A and S are biased. Test A has a good performance if θ ≤ 0

but a poor performance if θ ≥ 0 , while the test based on S alone has a good performance if

θ ≥ 0 and a not so good performance whenever θ ≤ 0 . Test EGB is an attempt to combine

the good part of tests A and S. Comparing tests EGB, R, V and B we notice that none of

them is uniformly better than the others. At the end of this section we have a summary

table of comparisons. In the case of the Clayton copula, EGB and R seem to have a better

relative performance than V and B. Under Frank copula, R performs roughly better than

the others. In the case of copula Nelsen 4.2.7 we notice the crossings of powers, so that,

for example, EGB is good for values of θ close to 1 or less than 0.5, but not so good for

other values.

Group 2. We compare the test powers for H0 : Cθ = Π where Cθ 6= Π for all θ so in

this case we expect the test powers to be as close a possible to 1 for all θ . The analyzed

Archimedean copulas were the following, for details see Nelsen(2006a): Nelsen’s catalog

numbers 4.2.2 and 4.2.8. Copula 4.2.8 satisfies Frank’s condition, but copula 4.2.2 does

not, and for this case and under the EGB test what we obtained should be considered as

a rough estimation of the power, since there may be other Archimedean copulas with the

same diagonal.
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In the case of copula Nelsen 4.2.2 tests V and B seem to be uniformly better than EGB and

R, but test R might be quite misleading for certain values of θ . The dependence structure

of copula Nelsen 4.2.8 is very well detected by all tests.

So far, we are taking advantage of the fact that whenever the underlying copula is of

the Archimedean type and satisfies Frank’s condition, all the information is contained in
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the diagonal section, and we ended with an independence test under this assumption.

Of course an obvious question is what happens with the proposed EGB test outside the

Archimedean world. As proved by Fredricks and Nelsen (1997a, 1997b, 2002) it is possible

to build copulas different from the product (or independence) copula Π(u, v) = uv but with

the same diagonal as Π , but they are singular, so in practice, even though the proposed

EGB test would not detect them, because of its singular nature it would be quite easy to

detect them by simple inspection of a scatter plot, besides the fact that singular copulas

rarely appear in real problems. What is really an issue for the proposed EGB test is the

fact that there are absolutely continuous non-Archimedean copulas which have the same

diagonal as Π , as proved by Erdely and González-Barrios (2006a), see chapter 3, and also

proved by Nelsen, Quesada-Molina et al (2006), and Nelsen (2006b), see (3.3), so outside

the Archimedean world the proposed EGB test may face dependence structures that it

will not be able to detect. Anyway, we performed similar simulation studies for some

well-known non-Archimedean families of copulas, with surprising results:

Group 3. We compare the test powers for H0 : θ = 0 against H1 : θ 6= 0 with the follow-

ing alternative non-Archimedean copulas: Cuadras-Augé, Farlie-Gumbel-Morgenstern, and

Plackett. In all cases these copulas satisfy Cθ = Π if and only if θ = θ0 , or limθ→ θ0 Cθ = Π ,

with θ0 = 0 in the first two cases, and θ0 = 1 in the last case. For details see Nelsen (2006a).
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What we notice in the case of these three non-Archimedean copulas is that, even though

they are not characterized by their diagonal section, if they are taken as alternative hy-

potheses the proposed EGB still has an interesting performance. This suggests that even

outside the Archimedean families, the diagonal section has valuable information (yet not

all) about some non-Archimedean families of copulas.
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Table 4.1:

Group number Alternative Copula EGB R V B

1 Clayton 27 24 44 56

1 Frank 42 24 52 50

1 Nelsen 4.2.7 28 22 15 70

2 Nelsen 4.2.2 28 87 0 3

2 Nelsen 4.2.8 0 0 0 0

3 Cuadras-Augé 12 32 37 8

3 Farlie-Gumbel-Morgenstern 44 25 53 51

3 Plackett 40 18 49 43

We made a summary of the above graphs in the format suggested by Kallenberg and

Ledwina (1999): “for each test statistic, we have calculated the difference between the

power of the test and the maximal power of the tests under consideration at the given

alternative. For each graph this difference is maximized over the alternatives in the graph.

This number can be seen as a summary for the behavior of the test in that graph, although

of course some information of the graph is lost.” In Table 4.1 we present percentage

differences in maximal power of the four tests under comparison and the power of the

given test at various alternatives, so the lower the difference the better is the relative

performance of the test.

In the above comparison table we may notice, for example, that the R test is the best

choice under certain copulas, but the worst, by far, under copula Nelsen 4.2.2. Analogous

comment applies for the B test comparing its performance under copulas Nelsen 4.2.2 and

Nelsen 4.2.7. In practice, when using a nonparametric test for independence we usually do

not know what alternative we are dealing with, so what is valuable about a nonparametric

test is its ability to maintain a good performance under different alternatives, rather than

being the best one under specific ones. Even though the proposed EGB test does not

appear to be the best one under a particular copula in the above comparison, it never

breaks down as bad the R test in case of copula Nelsen 4.2.2 or as bad as the B test in

case of copula Nelsen 4.2.7, we may say that the EGB test has some kind of “stability,” at

least under the above set of copulas.
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4.3 Comparison against the locally most powerful rank

test.

The results of the previous two sections were presented at the 10th International Congress

on Insurance: Mathematics and Economics held in Leuven, Belgium, in July of 2006, and

in that occasion Dr. Christian Genest suggested to make a comparison of the proposed

test against the locally most powerful test, as in, for example, Genest (2005), using a result

from Garralda-Guillén (1997):

Proposition (Garralda-Guillén). Let (R1, S1), . . . , (Rn, Sn) denote the ranks

associated with a random sample (X1, Y1), . . . , (Xn, Yn) from a distribution whose

underlying copula belongs to a class (Cθ) satisfying the following conditions:

(i) the parameter space Θ is a closed interval and there exists θ0 ∈ Θ such that

Cθ0 = Π is the copula corresponding to independence;

(ii) the family (Cθ) is ordered by positive quadrant dependence, that is, the im-

plication θ < θ ′ ⇒ Cθ(u, v) ≤ Cθ ′(u, v) is valid for all u, v ∈ (0, 1) ;

(iii) for every θ ∈ Θ , Cθ is absolutely continuous and its associated density

cθ(u, v) is absolutely continuous as a function of θ for every u, v ∈ (0, 1) ;

(iv)
�
cθ (u, v) = ∂cθ(u, v)/∂θ is continuous in θ in a neighborhood of θ0 , and

lim
θ→ θ 0

∫
( 0 , 1) 2

| �cθ (u, v)| dvdu =

∫
( 0 , 1) 2

| �cθ 0 (u, v)| dvdu <∞ .

The locally most powerful rank test of level α rejects H0 : θ = θ0 of independence

against H1 : θ > θ0 for large enough values of

T ∗n =
1

n

n∑
i= 1

T (Ri, Si) , (4.13)

where

T (r, s) = E
{
∂

∂θ
log cθ(Br, B

∗
s )
∣∣
θ= θ0

}
(4.14)

with Br and B∗s representing two independent random variables respectively dis-

tributed as Beta(r, n− r + 1) and Beta(s, n− s+ 1) .

We may not apply the above result to copulas Nelsen 4.2.7 and Cuadras-Augé since they

are not absolutely continuous, neither to copulas Nelsen 4.2.2 and Nelsen 4.2.8 since these

two copulas are such that Cθ 6= Π for all θ ∈ Θ . But as shown in Genest (2005) or
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Garralda-Guillén (1997) the above proposition does apply to the following families of cop-

ulas: Clayton, Frank, Farlie-Gumbel-Morgenstern, and Plackett.

It is important to notice that Garralda-Guillén’s Proposition provides the locally most

powerful one-sided test

H0 : θ = θ0 versus H1 : θ > θ0 , (4.15)

in contrast with the two-sided test H0 : θ = θ0 versus H1 : θ 6= θ0 analyzed in the previous

section (Group 1). Since Garralda-Guillén’s Proposition requires the family of copulas used

as alternative to be positively ordered, and since our proposed test EGB uses the bivariate

statistic (Sn, An), see (4.8), where Sn has a better performance alone in comparison with

(Sn, An) when θ ≥ θ0 , the comparison to the locally most powerful rank test has been done

against the following rejection rule:

reject H0 whenever Sn ≥ kα (4.16)

for kα appropriately chosen accordingly to a desired test size α , that is, such that P(Sn ≥
kα |H0) ≤ α , with Sn defined as in (4.3).

As shown in Garralda-Guillén (1997), or Genest (2005), the locally most powerful rank

test for (4.15) is Spearman’s, see (4.10), in case the family of copulas used as alternative is

Frank, Farlie-Gumbel-Morgenstern, or Plackett; and in the case of the Clayton family of

copulas used as alternative in (4.15), the locally most powerful rank test is the one based

on the Savage scores statistic:

Zn :=
1

n

n∑
i= 1

( n∑
j=R i

1

j

)( n∑
k=S i

1

k

)
− 1 . (4.17)

The simulated power comparisons presented here were obtained with n = 50 and α = 0.05.

Every Monte Carlo experiment reported here has been simulated 10,000 times. We use

the notation EGB to denote the proposed test in (4.16), Z for the test based on Savage’s

statistic (4.17), and R for Spearman’s test (4.10):
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In practice, of course, we usually don’t know under which family of alternatives we are, so

the above comparisons are in a certain sense “unfair” since many locally most powerful rank

tests perform not so good under other alternatives, as shown, for example, by Genest et

al (2004); we may just consider them as reference benchmarks. From the previous graphs,

we observe that for the alternatives Clayton, Frank, and Plackett, the performance of our

test is competitive against the locally most powerful rank test.

4.4 A dependence structure hard to detect.

A theorem by Mikusiński et al (1991), see Theorem 1.50 in chapter 1, implies that in

practice, the behavior of any pair of independent continuous random variables can be

approximated so closely by a pair of MCD (mutually completely dependent) continuous

random variables that it would be impossible, experimentally, to distinguish one pair from

the other, and this is done by constructing a copula Cε such that for any given copula C

and for all ε > 0

sup
u,v ∈ [ 0,1 ]

|C(u, v)− Cε(u, v) | < ε .

Therefore, we may simulate observations from a copula Cε , and for ε sufficiently small, we

may defeat any nonparametric test for independence. Such copula Cε is a Shuffle of Min,

see Mikusiński et al (1991, 1992) or subsection 1.5.2 in this thesis, which is a copula of the

singular type. A pragmatic statistician may argue that this interesting theoretical example

is not of practical interest because of the singularity. So we will then proceed to analyze

an example provided by Nelsen (2006b), see (3.3) at the end of chapter 3 :

Cθ(u, v) = uv + θuv(1− u)(1− v)(u− v) , θ ∈ [−1, 1 ] , (4.18)

which happens to be an absolutely continuous non-Archimedean copula, asymmetric when

θ 6= 0 , with the same diagonal as the independence copula, but Cθ 6= Π whenever θ 6= 0.

We should first notice that this parametric family of copulas is not ordered, neither posi-

tively or negatively, and so we may not apply Garralda-Guillén’s proposition (see previous

section) in order to obtain a locally most power rank test for independence. We will just

then compare the power of the proposed test EGB, see (4.8), versus Spearman’s, Blum-

Kiefer-Rosenblatt’s, and Kallenberg-Ledwina’s (see section 4.2).

When θ = 0, from (4.18) we have that C0 = Π, and therefore we will analyze the perfor-

mance of the above mentioned tests for

H0 : θ = 0 versus H1 : θ 6= 0. (4.19)
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Since the diagonal section of (4.18) is the same as Π, δθ(u) = u2 for all θ ∈ [−1, 1 ] , there

is no hope for our proposed test EGB to reject H0 : θ = 0 (independence), even for the

extreme values θ = −1 or θ = 1. In the case of Spearman’s test, by using (1.89) we get that

Spearman’s rho ρθ = 0 for all θ ∈ [−1, 1 ] , and there is no hope for this test, neither. This

is an example to illustrate that concordance measures do not characterize independence. If

instead we use a dependence measure as defined in subsection 1.5.2, such as, for example,

the one proposed by Schweizer and Wolff (1981), see (1.97) :

σθ = 12

∫∫
[ 0,1 ] 2
|Cθ(u, v)− uv | dudv , (4.20)

where 0 ≤ σθ ≤ 1 , for the particular case of (4.18), we find that

σθ =
6

70
| θ | ≤ 6

70
≈ 0.08571429 ,

and since we may think of (4.20) as a standardized average absolute distance between copula

Cθ and Π, we have that even for the extreme values of the parameter θ both copulas are

too close, and so we may have no big expectations on the performance of the tests by

Blum-Kiefer-Rosenblatt and Kallenberg-Ledwina.

The simulated power comparisons presented here were obtained with n = 50 and α = 0.05.

Every Monte Carlo experiment reported here has been simulated 10,000 times, and since

copulas Cθ and Π are too close even for the extreme values of the parameter θ , we just

summarize the power of the tests for θ = −1, 0, 1 :

Table 4.2:

Power

Test θ = −1 θ = 0 θ = 1

proposed EGB 0.0558 0.0506 0.0548

Spearman 0.0518 0.0500 0.0502

Blum-Kiefer-Rosenblatt 0.0667 0.0497 0.0709

Kallenberg-Ledwina 0.1210 0.0519 0.1170

From the above table we have that the four tests’ performance ranges from poorly to

useless, since in the best case, under Kallenberg-Ledwina’s, we get values for the power of

the test under θ = −1 or θ = 1 very far away from 1, when for a good test it would be

required power values as close as possible to 1.
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Conclusions and open problems

In Chapter 1 we made an extensive review of known results about copulas, and we included

a special section for Schröder’s Functional Equation, which is a key result for the result

announced by Frank (1996), where bivariate Archimedean copulas are characterized by

their diagonal whenever Frank’s condition δ ′(1−) = 2 is satisfied. In Alsina, Frank and

Schweizer (2006) a counterexample is given to illustrate that if Frank’s condition is not

satisfied, it is possible to build a parametric family of generators of Archimedean copulas

{ϕβ : 0 < β ≤ 1/(1 + 8π)} such that their diagonal section δβ = δC but Cβ1 6= Cβ2 for

β1 6= β2 . We proved that the upper bound given for β in this example is not sharp, and

we obtained a sharp one, see section 1.4.

In Chapter 2 we obtained the exact distribution of the empirical diagonal under the hy-

pothesis of independence, for two and three dimensions. It is possible to obtain analogous

results for higher dimensions. There is also a computational problem to be tackled, since

for the three-dimensional case we have a problem of order (n!)2, and so for large values

of n it takes too long for a computer to obtain the exact distribution, unless a very ef-

ficient algorithm is developed. Further research may be done on the possibility of using

the empirical diagonal for nonparametric estimation of Archimedean copulas, by finding

an appropriate way of smoothing the empirical diagonal in such a way that the limit (1.62)

exists and equals a function that fulfills the properties of an Archimedean copula generator.

In Chapter 3 we investigated the possibility of building absolutely continuous copulas with

the same diagonal as the independence copula, but different from it outside the diagonal,

and we arrived to a more general result about a broad family of absolutely continuous

copulas using a fixed absolutely continuous copula D(u, v). We proved that it is possible

to construct families of copulas with given restrictions, such as values of the copula on

diagonal sections, or horizontal and vertical sections, even including restrictions on closed

subsets, in a few words, to construct copulas with a given agreement region with D(u, v) .

97
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In Chapter 4 we solved the open problem 16 in Alsina, Frank and Schweizer (2003), design-

ing a test of statistical independence based on the assumptions that the copula in question

is Archimedean and that its diagonal section is δ(u) = u2. Moreover, the proposed test

seems to be competitive when comparing its power against some other nonparametric tests

for independence, under different Archimedean alternatives. An important feature of the

proposed test is the fact that it is based on a statistic whose exact distribution is known,

in contrast with many other tests based on the asymptotic behavior of their test statistics.

The results from Chapter 3 set a warning for the use of the proposed test outside the

Archimedean family. Surprisingly, under some well-known non-Archimedean families of

copulas, the proposed test has an interesting performance. This suggests that even outside

the Archimedean family, the diagonal section has valuable information (yet not all) about

some non-Archimedean families of copulas, and this may deserve further research in order

to determine under which conditions the diagonal is still quite informative, since we pre-

sented an example in section 4.4 where knowledge of the diagonal is useless in testing for

independence. In any case, but specially within the Archimedean family, we may investi-

gate the possibility of obtaining point estimators of the parameter(s) of a copula, based on

the empirical diagonal.

From Alsina, Frank and Schweizer (2003), it remains unsolved open problem 15:

Are there any statistical properties of two random variables which assure that their

copula is Archimedean or, more generally, associative?

Of course that the answer to this question could possibly lead to design a nonparametric

test for Archimedeaness. As we did in the case of the empirical diagonal, we may try

to solve this problem by studying combinatorial properties of the empirical copula that

may distinguish between Archimedean and non-Archimedean copulas, or more generally,

between associative and non-associative copulas.



Bibliography

Aczél, J. (1966) Lectures on functional equations and their applications, Academic Press (New

York).

Alsina, C., Frank, M.J., Schweizer, B. (2003) Problems on associative functions. Aequationes

Math. 66, 128-140.

Alsina, C., Frank, M.J., Schweizer, B. (2006) Associative Functions: Triangular Norms and

Copulas, World Scientific Publishing Co. (Singapore).

Amblard, C. and Girard, S. (2002) Symmetry and Dependence properties within a semipara-

metric family of bivariate copulas. J. Nonparametr. Statist. 14, (6), 715-727.

Bailey, D.F. (1996) Counting arrangements of 1’s and -1’s. Math. Mag. 69, (2), 128-131.

Barcucci, E., Verri, M.C. (1992) Some more properties of Catalan numbers. Discrete Mathe-

matics 102, 229-237.

Block, H. and Ting, M.L. (1981) Some concepts of multivariate dependence. Comm. Statist.-

Theor. Meth. A10, (8), 749-762.

Block, H., Savits, T., Shaked, M. (1982) Some concepts of negative dependence. Ann. Probab.

10, 765-772.

Blomqvist, N. (1950) On a measure of dependence between two random variables. Ann.

Math. Statist. 21, 593-600.

Blum, J.R., Kiefer, J., Rosenblatt, M. (1961) Distribution-free tests of independence based

on the sample distribution function. Ann. Math. Statist. 32, 485-498.

Callan, D. (2006) Some bijections and identities for the Catalan and Fine numbers. Séminaire
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Statist. 25, 23-40.

Fredricks, G.A. and Nelsen, R.B. (1997a) Diagonal copulas. Distributions with Given Marginals
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González-Barrios, J.M. (2003b) Some Notes on a Dependency Measure. Contemporary Math-

ematics 336, 171-179.
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Schröder, E. (1871) Über iterierte Funktionen. Math. Ann. 3, 296-322.

Schweizer, B., Wolff, E.F. (1981) On nonparametric measures of dependence for random

variables. Ann. Statist. 9, (4), 870-885.

Schweizer, B. (1991) Thirty years of Copulas. Advances in Probability Distributions with

Given Marginals; Dall’Aglio, Kotz, and Salinetti editors (Kluwer Academic Publishers,

Dordrecht), 13-50.

Schweizer, B., Sklar, A. (2005) Probabilistic Metric Spaces, Dover (New York). Republication

of the 1983 edition, with supplementary historical notes and references.

Schweizer, B. (2006) Personal communication.

Shaked, M. (1977) A family of concepts of dependence for bivariate distributions. J. Amer.

Statist. Assoc. 72, 642-650.
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