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Introduccion en espanol

El capitulo 1 comienza con tres secciones que resumen algunos conceptos y resultados
importantes en relacién a copulas, haciendo énfasis en copulas diagonales y arquimedianas.
Luego se incluye una secciéon para introducir la Fcuacion Funcional de Schroder y la
relacién que guarda con cépulas arquimedianas de acuerdo a un resultado de Frank (1996).
El capitulo termina discutiendo algunas ideas y conceptos sobre concordancia, dependencia

y copulas.

El capitulo 2, inspirado en el hecho de que bajo la condicion de Frank toda la informacién
sobre una copula arquimediana esta contenida en su seccion diagonal, se exploran algunas
propiedades de la seccion diagonal de la copula empirica: cotas, incrementos, identificacién
y conteo de todas las distintas trayectorias que puede seguir la diagonal empirica, y final-
mente, la distribucién exacta de la diagonal empirica bajo la hipodtesis de independencia,
para los casos bidimensional y tridimensional. Este ultimo resultado abrié la puerta hacia
una propuesta de prueba no paramétrica de independencia, bajo el supuesto de que la
cHpula subyacente pertenece a la familia arquimediana, ya que la cépula que representa la
independencia es del tipo arquimediano y satisface la condicion de Frank, y por lo tanto

es la tnica cépula arquimediana que tiene seccién diagonal 6(u) = u?.

Después de los resultados del capitulo 2, una pregunta natural es si fuera de la familia ar-
quimediana existen copulas absolutamente continuas con la misma diagonal que la copula
que representa la independencia, pero diferentes de ella fuera de la diagonal. La respuesta
es en el sentido positivo, y en el capitulo 3 se construye una amplia familia de copulas
absolutamente continuas con seccién diagonal dada, que pueden diferir the otra cépula
absolutamente continua casi en todas partes respecto a la medida de Lebesgue. Es impor-
tante estar consciente de esto, en caso de que se desee utilizar una prueba no paramétrica

de independencia basada en la seccién diagonal, pero fuera de la familia arquimediana.

En el capitulo 4 se da soluciéon a un problema propuesto por Alsina, Frank y Schweizer

(2003), mismo que reaparece en Alsina, Frank y Schweizer (2006):

1l



iv INTRODUCCION EN ESPANOL

Es posible disefiar una prueba de independencia estadistica basada en los supuestos

de que la cdpula subyacente es arquimediana y que su seccién diagonal es §(u) =
27
u- !

Se propone una prueba no paramétrica de independencia por medio de un estadistico bi-
variado basado en la diagonal empirica y en su distribucion exacta obtenida en el capitulo
2, lo cual permite obtener la distribucion exacta de cualquier estadistico de prueba basado
en la diagonal empirica. Se llevé a cabo un estudio de simulacién para comparar la po-
tencia de la prueba propuesta versus algunas bien conocidas puebas no paramétricas de la
literatura estadistica: Spearman, Blum-Kiefer-Rosenblatt, Kallenberg-Ledwina, bajo tres
clases de copulas, dos del tipo arquimediano y una tercera no arquimediana. Incluso se
hace una comparacion de la prueba propuesta versus la prueba localmente més potente

basada en rangos.

Finalmente, en las conclusiones se hacen algunas observaciones y se discuten algunos pro-

blemas abiertos.



Introduction

Chapter 1 begins with three sections which summarize some important concepts and re-
sults regarding copulas, making emphasis on diagonal and Archimedean copulas. Then we
include one section to introduce Schréoder’s Functional Equation and its relationship with
Archimedean copulas via a result by Frank (1996). We end this chapter discussing some

ideas and concepts around concordance, dependence, and copulas.

In Chapter 2, inspired in the fact that under Frank’s condition all the information about
an Archimedean copula is contained in its diagonal section, we explore some properties
of the diagonal section of the empirical copula: bounds, one-step increments, labeling
and counting all the different paths an empirical diagonal may follow, and finally, the
exact distribution of the empirical diagonal under the hypothesis of independence, for
the two-dimensional and three-dimensional cases. This last result opened the door to-
ward a proposal of a nonparametric test for independence, under the assumption that the
underlying copula belongs to the Archimedean family, since the copula that represents
independence is of the Archimedean type and satisfies Frank’s condition, and so it is the

unique Archimedean copula with diagonal section §(u) = u?.

After the results of Chapter 2, a natural question was if outside the Archimedean family
there exist absolutely continuous copulas with the same diagonal section as the indepen-
dence copula, but different from it outside the diagonal? The answer is in the positive
sense, and in Chapter 3 we build a broad family of absolutely continuous copulas with
a fixed diagonal, which can differ from another absolutely continuous copula almost ev-
erywhere with respect to Lebesgue measure. It is important to be aware of this, in case
a nonparametric test for independence based on the diagonal section is used outside the

Archimedean family.

In Chapter 4 we solve an open problem proposed by Alsina, Frank and Schweizer (2003),
which again appeared in Alsina, Frank and Schweizer (2006):



vi INTRODUCTION

Can one design a test of statistical independence based on the assumptions that

the copula in question is Archimedean and that its diagonal section is 6(u) = u??

We propose a nonparametric test for independence via a bivariate statistic based on the em-
pirical diagonal and its exact distribution obtained in Chapter 2, which allows to obtain the
exact distribution of any test statistic based on the empirical diagonal. A simulation study
is performed to compare the power of the proposed test against some well-known nonpara-
metric tests in the statistical literature: Spearman, Blum-Kiefer-Rosenblatt, Kallenberg-
Ledwina, for three classes of copulas, two of the Archimedean type and a third one non
Archimedean. We also made a comparison of the proposed test’s power against the locally

most powerful rank test.

Finally, in the conclusions chapter we make some remarks and discuss some open problems.



Chapter 1

Preliminaries

1.1 Copulas: basic facts.

Let f and g be univariate probability density functions, that is f,g > 0 and fR flx)de =
1, fR g(y)dy = 1, and let F' and G be their corresponding probability distribution func-
tions, respectively, that is F(z) = [ _f(t)dt and G(y) = [*_g(t)dt. If we define the

parametric family of bivariate functions hy : R? — R such that

ho(x,y) = f(2)g(y)[1+0(1 - 2F(2))(1 - 2G(y)) ] , (1.1)

it is straightforward to verify that {hy : —1 <0 <1} is a family of bivariate probability

density functions with marginal densities always equal to f and g, that is hy > 0 and

//Rff)(w)dxdyzh /Rhe(:v,y)dyzf(:c), /Rhe(x,y)d:c:g(y).

This is a typical example to show that knowledge of the marginal distributions of a random
vector is not enough to assess the joint density function, even though marginal distributions
are obtainable from the joint density. (1.1) is known as the Farlie-Gumbel-Morgenstern
family of distributions and was discussed by Morgenstern (1956), Gumbel (1958, 1960), and
Farlie (1960); however, according to Nelsen (2006a) it seems that the earliest publication
of (1.1) is due to Eyraud (1938). According to Kotz and Seeger (1991):

In the last decade [1980s] it has become increasingly important to consider de-
pendence as more than an antithesis to independence, the latter being the basic
concept of mathematical probability theory. As a result, several methods have been
developed to impose dependence among random variables with given marginal dis-

tributions. The majority of bivariate methods are based on a well-known result due

1



2 CHAPTER 1. PRELIMINARIES

to Hoeffding (1940) and Fréchet (1951) which says that given any two random vari-
ables, X and Y, with respective c.d.f.s. [cumulative distribution functions] F(z)
and Fy(y), the class W(Fy, Fy) = {H(x,y) | H is a bivariate c.d.f. with marginals
Fi(x) and Fy(y)} contains an upper bound, H*, and a lower bound H., . These are
bounds with respect to the partial ordering <, [a transitive and antisymmetric rela-
tion] denoting stochastic dominance, that is if H, H' € W(F}, F») then H < H' iff
[if and only if] H(x,y) < H'(x,y) VY(z,y) . Moreover, the so-called Fréchet bounds

have general expressions in terms of F} and F5, namely
H.(z,y) = max{Fi(z) + Fa(y) — 1,0}, (1.2)

H*(2,y) = min{ Fy(z), F5(y)} - (1.3)

[...] Several parametrized subsets of W(F}, Fy) which are linearly ordered with
respect to < [thatis for all H, H € V(F}, F3) either H < H', H' < H ,or H = H'|
have appeared in the literature [...] there are the Farlie-Gumbel-Morgenstern,
among others [...] were constructed according to the viewpoint that the way to
impose dependence is to increase (or decrease) everywhere the independent c.d.f.
Fi(z)Fy(y) without altering the marginals, thus creating a new c.d.f. closer in
value to H* (or H,) [...]

Fréchet (1951, 1957) and Féron (1956) made important contributions to the question of
determining the relationship between a multidimensional probability distribution function
and its lower dimensional margins. An effective answer to this question emerged as a result
of the collaboration between Abe Sklar and Berthold Schweizer. According to Schweizer
(1991) their collaboration began in the context of probabilistic metric spaces in 1957.
By 1958 they had made some progress and submitted a note describing their results to
M. Fréchet, and an exchange of letters began with him. In one of them, Fréchet raised
this question about determining the relationship between a multidimensional probability

distribution function and its lower dimensional margins.

Abe Sklar answered this question for one-dimensional margins. For example, let (X,Y") be
a random vector with joint distribution function H(z,y), then the marginal distribution
functions of X and Y are F(z) := H(z,00) and G(y) := H(oo,y), respectively. Sklar
(1959) proved that there exists a function C, which he called copula , which links the joint

distribution function to its marginals:

H(z,y) = C(F(z),G(y)) . (1.4)
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Before giving a formal definition of a copula, we may get some motivation using well-known

properties for bivariate probability distribution functions:
H(oo,00) =1, H(z,00)=F(z), H(oo,y)=G(y), H(x,—oc0)=0=H(—00,y),
and for every real numbers 1, x2, y1, y2 where x1 < x5 and y; < 3o we have
H (22, y2) — H(wa,91) — H(x1,y2) + H(z1,51) = P{(X,Y) € [21,22] X [y1, 2]} > 0.
Using the above properties in combination with (1.4) we observe that
C(F(x),1) = F(z), C(L,G(y) =Gly), C(F(x),0)=0=C(0,G(y)),

C(F(x2), G(y2)) = C(F(x2), G(11)) = C(F(a1), G(ya)) + C(F (1), G(11)) 2 0,

for every real numbers xy, zo, y1,y2 where 7 < x9 and y; < yo. If we define u := F(x)
and v := G(y) , we arrive to the following definition, which may be found in Schweizer and
Sklar (2005) or Nelsen (2006a):

1.1. Definition. A bivariate copula is a function C : [0,1]% — [0,1] with the following

properties:

1. For every u, v in [0,1]
C(u,0) =0=C(0,v) (1.5)

and
Cu,1)=u, C(l,v) =wv; (1.6)

2. For every uq,us,v1,vs in [0, 1] such that u; < us and v; < vy

C(ug,v9) — Clug,v1) — C(ug,v2) + C(ug,v1) > 0. (1.7)

Even though we gave a probabilistic motivation for the above definition of copula, it is
important to notice that, strictly speaking, Definition 1.1 does not involve probabilis-
tic concepts at all, it is just about a real valued function with domain the unit square
which satisfies boundary conditions (1.5) and (1.6), and condition (1.7) which is called
2-increasing. The same comment applies to the formal version of Sklar’s Theorem, as we

will see later.

It follows that C' is nondecreasing in each variable (let v; = 0 or u; = 0 in 1.7) and
uniformly continuous (since Definition 1.1 implies that C' satisfies the Lipschitz condition

|C(ug, v2) —C(ug,v1)| < |ug—uq|+|va—wv1]), for details of these and the following properties
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and definitions in this section see Nelsen (1995, 2006a) or Schweizer and Sklar (2005). An
immediate consequence of these two properties is that the horizontal, vertical and diagonal
sections of a copula C' are all nondecreasing and uniformly continuous on [0, 1] where the
horizontal section, vertical section and diagonal section are functions from [0,1] to [0, 1]
given by t — C(t,a), t — C(a,t), and dc(t) = C(t,t), respectively, with a fixed in [0, 1].

1.2. Theorem. Let C be a copula. Then for every (u,v) in [0,1]?
max(u +v — 1,0) < C(u,v) < min(u,v) . (1.8)

It is straightforward to verify that the bounds in (1.8) are themselves copulas and are
commonly denoted by M (u,v) := min(u,v) and W(u,v) := max(u + v — 1,0). Thus for
every copula C and every (u,v) in [0,1]? we have

W(u,v) < C(u,v) < M(u,v). (1.9)

The above inequality is the copula version of the Fréchet-Hoeffding bounds inequalities
(1.2) and (1.3), which we shall encounter later in terms of distribution functions, after
stating formally Sklar’s theorem. We refer to M as the Fréchet-Hoeffding upper bound and
W as the Fréchet-Hoeffding lower bound. A third important copula that we will frequently
deal with is the product copula T1(u,v) := uv.

1.3. Definition. A distribution function is a function F with domain the extended real
line (that is in R := R U {—o00,00}) such that

1. F is nondecreasing,
2. F(—o0)=0and F(c0)=1.

1.4. Definition. A bivariate joint distribution function is a function H with domain the
extended real plane (that is in R’:=R x R) such that

1. H is 2-increasing, that is for all @1, 22, y1, y2 in R with 21 < 25 and y; < s

H(xa,12) — H(x2,y1) — H(21,32) + H(21,51) >0,

2. H(z,—00) =0= H(—00,y) and H(co,00) = 1.

Here we state an important quotation from Nelsen (2006a):
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Note that there is nothing “probabilistic” in these definitions of distribution func-
tions. Random variables are not mentioned, nor is left-continuity or right-continuity.
All the [probability] distribution functions of one or two random variables usually
encountered in statistics satisfy either the first or the second of the above defini-
tions. Hence any results we derive for such distribution functions will hold when
we discuss random variables, regardless of any additional restrictions that may be

imposed.

1.5. Definition. The margins of a bivariate joint distribution function H are the functions
F and G given by F(x) := H(z,00) and G(y) := H(c0,vy) .

It is an immediate consequence of the above definitions that the margins of H are them-

selves distribution functions.

1.6. Theorem. Sklar (1959) Let H be a bivariate joint distribution function with mar-
gins F and G. Then there exists a copula C such that for all x,y in R

H(z,y) = C(F(z),G(y)) . (1.10)

If F' and G are continuous, then C' is unique; otherwise, C is uniquely determined on
Ran F x Ran G . Conwversely, if C' is a copula and F and G are distribution functions, then
the function H defined by (1.10) is a bivariate joint distribution function with margins F
and G .

Notation: Ran F' := {z : z = F(x) for some z}. For details of the proof see either Sklar
(1959, 1996a), Schweizer and Sklar (2005) or Nelsen (2006a). For a different proof, see
Carley and Taylor (2002).

1.7. Definition. Let F' be a distribution function. Then a quasi-inverse of F' is any
function F(=Y with domain [0, 1] such that

1. If t is in Ran F, then F(-Y(¢) is any number  in R such that F(z) = t, that is for
all ¢ in Ran F
F(FTY@) =t;

2. If t is not in Ran F, then

FEU(t) = inf{z| F(z) >t} =sup{z | F(z) < t}.

If F is strictly increasing, then it has but a single quasi-inverse. Moreover, F(-1 = F~1

where F~! is the usual inverse.
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1.8. Corollary. Let H be a bivariate joint distribution with continuous margins F and
G, and let C be the unique copula such that (1.10) holds. Then for any (u,v) in [0,1]?

C(u,v) = H(F(’l)(u),G(’l)(v)) : (1.11)

For the particular case of random variables, if X and Y are continuous random variables
with marginal probability distribution functions F' and G, respectively, and with joint
probability distribution function H, Sklar’s theorem implies that there exists a unique
copula, which we may denote Cxy, such that H(z,y) = Cxy (F(.CE), G(y)) . Moreover, if
C' is any copula and F; and G; are (marginal) probability distribution functions, then
C(Fi(z),G1(y)) is indeed a joint probability distribution function. It is important to
observe what was mentioned by Mikusinski et al (1991):

The copula C' contains valuable information about the type of dependence that
exists between random variables having C' as their copula [...] One might think
of a copula as a canonical representative of all distributions H that correspond to

random variables X and Y which have a specific sort of relationship to each other.

Given a specific joint probability distribution function H of two continuous random vari-
ables with (marginal) probability distributions F' and G, we may “extract” the associated
copula C'xy using Corollary 1.8, and then build a new joint probability distribution H,
with the same copula but different (marginal) probability distribution functions F; and Gy,
that is Hy(z,y) = Cxy (Fi(z),G1(y)) . So, for example, the exercise of building a bivari-
ate distribution with standard normal margins that is not the standard bivariate normal
becomes trivial. Also, we may extract the associated copula from the bivariate normal
distribution (called Gaussian copula) and use it to build a new bivariate distribution with

non-normal margins.
Here we have to be careful, for example we have a warning remark from Marshall (1996):

The marginals ' and GG can be inserted into any copula, so they carry no direct
information about the coupling; at the same time, any pair of marginals can be
inserted into C, so C carries no direct information about the marginals. This
being the case, it may seem reasonable to expect that the connections between
the marginals of H are determined by C' alone, and any question about these
connections can be answered with knowledge of C' alone.

Of course, things are not that simple. Some problems stem from the fact that

copulas are not unique when at least one marginal is discontinuous. In fact, the
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marginals can sometimes play a significant role as the copula in determining the
way in which they are coupled in H; in the extreme case, degenerate marginals
by themselves determine the joint distribution and any copula can be used. But
interaction between the copula and the marginals is often critical; copulas can look
quite different in different parts of their domain, and the relevant part is determined
by the range of the marginals.

[...] Much of the literature regarding copulas has been based upon the assumption
that the marginals of H are continuous because this is a necessary and sufficient

condition for the copula of H to be unique.

But even in the context of continuous random variables, it is tempting to consider Sklar’s
theorem as an infinite source for building multivariate distributions of all kinds by just
choosing continuous margins and plugging them into any desired copula. Somehow, Mar-
shall and Olkin (1967) make emphasis on the importance of doing some additional work

when building a multivariate distribution:
[...] The family of solutions
H(z,y) = F(z)Gy{1 — o[l = F(2)][1 - G(y)]}, lof <1, (1.12)

due to Morgenstern (1956) has been studied by Gumbel (1960) when F' and G are

exponential. Gumbel also studied the bivariate distribution
H(z,y) =1—¢e"—e¥ fe ¥ (<§<1, (1.13)

which has exponential marginals. However, we know of no model or other basis for

determining how these distributions might arise in practice.

By the way, for continuous margins F' and G and applying Sklar’s theorem to (1.12) we

immediately identify the underlying (parametric) family of copulas
Colu,v) =w[1—01—-u)(1-v)], 6] <1, (1.14)
known as the Farlie-Gumbel-Morgenstern family of copulas.

It would be nice to have a huge catalog of copulas which specifies the sort of dependence
or probabilistic interpretation each copula captures. An immediate consequence of Sklar’s
theorem for a random vector (X,Y’) of continuous random variables is that the product

copula IT(u,v) = uw is the copula of (X, Y) if and only if X and Y are independent. Fréchet
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(1951) proved that M (u,v) = min(u,v) is the copula for (X,Y’) if and only if X and Y
are almost surely increasing functions of each other, and W(u,v) = max(u +v — 1,0) is
the copula for (X,Y) if and only if X and Y are almost surely decreasing functions of each
other. Random variables with copula M are often called comonotonic, and those with
copula W are often called countermonotonic. Mikusinski et al (1991) give probabilistic
interpretations of other types of copulas, such as Shuffles of Min, Hairpins, and convex

sums of copulas.

If U and V' are continuous uniform random variables on (0, 1) then by Sklar’s theorem we
have that their joint probability distribution function H restricted to [0,1]2 equals the
associated copula Cyy. A copula is itself a bivariate distribution with uniform margins on
[0,1]. So, as stated by Nelsen (2006a):

[...] each copula C induces a probability measure on [0,1]? [...] Hence, at a
intuitive level, the C-measure of a subset of [0,1]? is the probability that two
continuous uniform (0,1) random variables U and V' with joint distribution C

assume values in that subset.

1.9. Definition. For any copula C let C(u,v) = Ac(u,v) + Sc(u,v), where

u v 2
Ac(u, 0) ::/O/OazatC(s,t)dtds, (1.15)

Se(u,v) := C(u,v) — Ac(u,v). (1.16)

If C = Ag on [0,1]% — that is, if considered as a joint distribution function, C' has a
joint density (usually referred as the copula density) given by 9%C(u,v)/0udv — then C
is absolutely continuous, whereas if C' = Sg on [0,1]2 — that is, if 92C(u,v)/0udv =
0 almost everywhere in [0,1]% — then C is singular. Otherwise, C has an absolutely
continuous component Ac and a singular component Sc (in this case neither A¢ or Se
is a copula because neither has uniform (0, 1) margins). The C-measure of the absolutely
continuous component is A¢(1, 1), and the C-measure of the singular component is S¢(1, 1).
The support of a copula is the complement of the union of all open subsets of [0,1]? with

C-measure equal to zero.

Most of the previous definitions and results are extended to the multivariate case, for
details see Schweizer and Sklar (2005) and Nelsen (2006a), so we will just point out those

which do not, as well as some issues that do not arise in the bivariate case.
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The extensions of the bivariate copulas M ,II, and W to n dimensions are given by:

M(”)(ul,...,un) = min(u, ..., Uy,); (1.17)
™ (g, u) = gty - Uy ;

W(")(ul,...,un) ‘= max(u; +ug + -+ +u, —n+1,0).

M®™ and II™™ are multivariate copulas (or n-copulas) for all n > 2, but W fails to
be an n-copula for any n > 2. However, we still have the n-dimensional version of the
Fréchet-Hoeffding bounds (1.9): If C' is any n-copula, then for every u = (uq,...,u,) in
[0,1]"

W® () < C(u) < M™(u). (1.18)

Although the Fréchet-Hoeffding lower bound W is never a copula for n > 2, the above

inequality cannot be improved, see Nelsen (2006a):

1.10. Theorem. For anyn > 3 and any fized u = (uy,...,u,) in [0,1]", there exists an
n-copula Cy, which depends on u, such that Cyy(u) = W™ (u).

For n = 2 we may just talk about univariate margins, which by definition (1.1) are the
identity function, that is C'(u,1) = v and C(1,v) = v. For n > 3 and n-copulas, the
concept of m-margins is introduced, for 2 < m < n, defining an m-variate function by
setting n — m of the arguments of C' equal to 1. An n-copula thus has (;:) m-margins. It
is straightforward to show that each m-margin of C' is an m-copula. In the other direction,
however, (::L) given m-copulas are not necessarily the m-margins of an n-copula; if they are,
then the m-copulas are said to be compatible. Whether certain given m-copulas may or
may not be m-margins of higher dimension copulas has become known as the compatibility
problem. Sklar (1996a) gives some examples of incompatibility. There is work done on
necessary and sufficient conditions for compatibility in 3-copulas: Dall’Aglio (1959, 1960,
1972), Quesada-Molina and Rodriguez-Lallena (1994), Joe (1997). For some cases in higher

dimensions see Joe (1996, 1997) .
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1.2 Diagonal copulas.
We begin this section with some definitions and lemmas from Schweizer and Sklar (2005):

1.11. Definition. A binary operation on a nonempty set S is a function 7: S x § — §'.

A binary system is a pair (S,7T).

1.12. Definition. Let (S,7T) be a binary system. For any a in S, the vertical section of
T at a is the function 7, : S — S defined by

Na(x) :=T(a,z); (1.19)
and the horizontal section of T at a is the function h, : S — S defined by

ho(z) :=T(x,a). (1.20)
The diagonal section of the binary operation T is the function é1 : S — S defined by

dr(x) :=T(z,z). (1.21)

Bivariate copulas are a particular type of binary operations on [0,1]. If C' is a bivariate
copula then from the previous section we know that for the binary system ([0, 1], C') and for
any a in [0, 1] the sections 7, , h,, and ¢ are all nondecreasing and uniformly continuous

functions on [0,1].

1.13. Definition. Let T be a binary operation on S. An element a of S is a left null element
of T'if T(a,x) = ne(x) = a for all z in S; a right null element of T if T'(z,a) = ha(x) = a
for all x in S; and a null element of T if it is both a left and right null element of T.
Correspondingly, an element a of S is a left identity of T if T'(a,x) = n,(x) = x for all
x in S; a right identity of T if T(x,a) = hy(z) = x for all z in S; and an identity of T
if it is both a left and a right identity of T. An element a of S is idempotent under T if
T(a,a) = dr(a) = a, that is if a is a fixed point of d 7.

Thus (left or right) null elements and (left or right) identities are idempotent elements.

1.14. Lemma. If a is a left null element and b a right null element of T, then a = b. If
a 1s a left identity and b a right identity of T, then a = .

The above lemma implies that a binary operation can have at most one null element and
one identity. Idempotent elements that are neither null elements nor identities can be of
course much more numerous. In the case of copulas, 0 is the (unique) null element and 1

the (unique) identity.
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1.15. Definition. The dual of a bivariate copula C' is the function C : [0,1]% — [0,1]
defined by

C(u,v) :=u+v—C(u,v). (1.22)

1.16. Lemma. The dual of a bivariate copula is a binary operation on [0, 1], with identity
0 and null element 1, which is continuous and nondecreasing in each variable, but not 2-
increasing (see (1.7)). If Cy and Cy are the dual of copulas Cy and Cs, respectively, then
Cy < Cy if and only if Cy < Cy. Hence every dual of a copula satisfies

M(u,v) < Cu,v) < W(u,v). (1.23)

The above lemma implies that the dual of a bivariate copula is not a copula. As pointed
out by Nelsen (2006a) if C' is the copula of a pair of continuous random variables X and
Y, with marginal probability distributions F' and G, respectively, and joint probability
distribution H, the dual of C' expresses a probability of an event involving X and Y :

PX <zorY <y|=F(z)+G(y) — H(z,y) = C(F(z),G(y)) . (1.24)
The random variables max(X,Y") and min(X,Y") are the order statistics for X and Y, and
it is immediate to verify that their distribution functions are given by, respectively,
Pmax(X,Y) <t] = C(F(t),G(t)) and Pmin(X,Y) <t =C(F(t),G(1), (1.25)
and in the particular case when F' = G we get
Plmax(X,Y) <] = 0c(F (1)), (1.26)
Plmin(X,Y) < t] = 2F(t) — 6c(F (1)) . (1.27)
If we denote the diagonal section of the dual of a copula C' by
doc(t) == C(t,t) = 2t — 6a(t), (1.28)
then (1.27) may be rewritten as
Pmin(X,Y) < ¢] = dc(F(t)) . (1.29)
In a few words, ¢ (F(t)) and e (F(t)) are the distribution functions of the order statistics

max(X,Y) and min(X,Y’), respectively, when X and Y are continuous random variables

with a common marginal distribution F' and copula C.
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It immediately follows from the basic definitions and results given in the previous section

that if ¢ is the diagonal section of a copula then

5(0)=0 and §(1)=1 (that is 0 and 1 are fixed points of ¢); (1.30)
0 § 5(t2) — 5(t1) S 2(t2 — tl) s for all tl,tg in [O, 1] with tl S tz; (131)
max (2t —1,0) < §(¢) <t, for all ¢ in [0,1]. (1.32)

As proposed by Fredricks and Nelsen (1997b), any function from [0, 1] to [0, 1] satisfying
the above three properties will be called simply a diagonal, while the function dc(t) =
C(t,t) will be referred to as the diagonal section of C.

1.17. Lemma. (Fredricks and Nelsen, 1997b) Let § be any diagonal and ¢ its dual.
Then

i) & is a nondecreasing, absolutely continuous function mapping [0,1] onto [0,1], and

t < 6(t) <min(2t,1), forall t in[0,1];

ii) if 0 is differentiable at to in the interior of [0,1], then

0<6(t)) <2 and 0 <0'(t) < 2.

If § is any diagonal, does there exist a copula C' whose diagonal section is § 7 This
question has already been answered affirmatively by Fredricks and Nelsen (1997a, 1997b,
2002). They made the following remark: For any copula C' and any (u,v) in [0,1]?,
the 2-increasing property (1.7) implies that C'(v,v) — C(u,v) — C(v,u) + C(u,u) > 0;
so that if C is symmetric (that is if C(u,v) = C(v,u) for all (u,v) in [0,1]?), then
2C(u,v) < o¢(u) + dc(v), or C(u,v) < (1/2)[dc(u) + dc(v)] . Thus, if C' is any symmetric
copula, then C'(u,v) < min(u, v, (1/2)[dc(u) + dc(v)]) . The following theorem proved that
this last upper bound (with dc replaced by any diagonal ¢) is itself, like the Fréchet-
Hoeffding upper bound, a copula:

1.18. Theorem. (Fredricks and Nelsen, 1997b) Let § be any diagonal, and set

M) , (1.33)

Ks(u,v) := min(u,v, 5

Then Ks is a copula whose diagonal section is 6 (that is dx = 9 ). Moreover, if C' is any

symmetric copula with diagonal section §, then C < K5 on [0,1]2.
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Copulas of the form (1.33) were called diagonal copulas by Fredricks and Nelsen (1997a,
1997b). Although copula Kj is completely determined by its diagonal J, it is important
to mention than not every copula characterized by its diagonal is necessarily of the form
(1.33), as proved, for example, by Fredricks and Nelsen (2002):

1.19. Proposition. (Fredricks and Nelsen, 2002) Let § be any diagonal and define
Bs on [0,1]2 by

u— inf [t—=0(t)], u<w,
Bs(u,v) := ustsy
v— inf [t—0(1)], v<u.
v<t<u
Then By is a symmetric copula with diagonal section d. Moreover, if C is any copula with

diagonal section 6, then Bs < C on [0,1]2.

In all cases, the results obtained by Fredricks and Nelsen (1997a, 1997b, 2002) lead to
symmetric singular copulas. If § is any diagonal, does there exist an absolutely
continuous copula C' whose diagonal section is § 7 We get a partial answer in the case
of Archimedean copulas (see next section). Archimedean copulas are always symmetric,
but it is also possible to build absolutely continuous copulas, not necessarily symmetric,
with a given diagonal (see chapter 3), as proved by Erdely and Gonzalez-Barrios (2006a),
Nelsen, Quesada-Molina et al (2006), and Nelsen (2006b).

1.3 Archimedean copulas.

We will review the construction of this particular type of copulas through some results
from the point of view of functional equations, particularly in terms of certain solution of

the associativity equation.

According to Aczél (1966) or Castillo and Ruiz (1993), a functional equation may be
considered as an equation which involves independent variables, known functions, unknown
functions, and constants. The fact that it is excluded the possibility of infinitely many
variables or functions as well as the possibility of known and unknown operators and
functionals excludes the consideration of differential and integral equations, and other
equations which involve infinitesimal operators. The main interest in this field of study is

the substitution of known or unknown functions by other known or unknown functions.

Among many kinds of problems regarding functional equations, there is the problem of

representing multivariate functions by superpositions of functions of a smaller number of
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variables. Questions like, for example, given a bivariate function 7', when is it possible to

find univariate functions f and g such that

T(z,y) = g(f(z) + f(y))? (1.34)
By assuming certain properties on 7' it had been possible to have different representation

theorems of the form (1.34). We are specifically interested in a theorem by Ling (1965),

but before we proceed, we need to review some basic concepts involved with such result.

Let S be a nonempty set. T : .S x S — S is an associative function if
T(T(w, Y), z) = T(a:,T(y, z)) , for all z,y,z in S'. (1.35)

According to Definition 1.11 we may consider 17" as a binary operation on S. When T is
associative, the binary system (S, 7) is what is known as a semigroup. Some authors prefer
to use symbols such as * to denote binary operators like T', so that when referring to a

semigroup (.S, ) it is meant that
(xxy)xz=xx(y*2), for all z,y,zin S. (1.36)

The T-powers (or simply the powers under x ) of x € S are the elements of S given
recursively by

gti=x and 2"l i=a"sx2=T(2" 1) (1.37)
for all positive integers n. Since both addition and multiplication are commutative opera-
tions on the integers, by induction we have

" =" k" = 2" k2™ =T (2™, 2") = T (2", 2™) (1.38)

and

™ = (™) = (™)™ (1.39)
for all positive integers m,n and x in S. If T is associative and has an identity element
b then (1.37) can be extended to the nonnegative integers by defining ° := b for all =
except left and right null elements of 7. So for the diagonal section we have dp(z) = x?
and simple induction yields

§n(z) =

(1.40)

for all integers n > 0 and all z in S.
If f:[a,b] — [0,00] is a continuous and strictly decreasing function, the pseudo-inverse
of f is defined by
b, if  isin [0, f(b)],
g(x) =< fYz), if zisin [f(D), f(a)], (1.41)
f

a, if z isin [f(a),00].
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It is immediate to verify that the pseudo-inverse ¢ is continuous and nonincreasing.

1.20. Theorem. (Ling, 1965) Let S be a closed interval [a,b] and T : S x S — S be

an associative function satisfying the following conditions:
(1) T is continuous,
(2) T is nondecreasing in each variable,
(3) The endpoint b is a left identity, that is T'(b,x) = x for all x in S,
(4) For all x in the interior of S, the diagonal section ér(x) =T(x,z) < x.

Then there exists a continuous and strictly decreasing function f : S — [0,00] such that

T is representable in the form
T(x,y) =g(f(x) + f(y)), (1.42)
where g is the pseudo-inverse of f.

The function f in (1.42) is called additive generator of T. Another important remark is that
if T satisfies the hypotheses of Ling’s theorem, then by (1.42) we have that T is symmetric:

T(zx,y) =T(y,x), forall z,y in S. (1.43)
Equivalently, (S, ) is said to be a commutative semigroup, that is

TkY=1y*1T, for all x,y in S. (1.44)

1.21. Definition. Let T be an associative binary operation on the interval [a, b] satisfying
1. T is nondecreasing in each variable, that is
T(z1,11) < T(z9,90) (1.45)
for all z1,x9,y1, 99 in [a,b] such that x; < z5 and y; < yo.
2. The endpoint b is an identity of T, that is
T(x,b) =T(b,x) ==z for all x in [a,b]. (1.46)
Then T is said to be Archimedean if for any x,y in the interior of |a, b] there is a positive

integer m such that ™ < y. The binary system ([a,b],T) is then called an Archimedean

Semigroup.
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A typical example of an Archimedean semigroup would be ([0,1], -) with - the usual
multiplication operator on the real line. The following lemma is from Schweizer and Sklar
(2005):

1.22. Lemma. Let ([a,b],T) be a semigroup, with T a continuous function. Then T is

Archimedean if and only if dr(x) < x for all x in the interior of [a,b].

An immediate consequence of this lemma is that if ([a,b],T) is an Archimedean semigroup
with T" a continuous function then 7" admits Ling’s representation (1.42). Moreover, the

converse of Ling’s theorem is also true:

1.23. Lemma. (Ling, 1965) Let [a,b] be a closed interval, f : [a,b] — [0,00] be a
continuous and strictly decreasing function, and g : [0,00] — [a,b] the pseudo-inverse of
f. Then the bivariate function T defined by

T(z,y) = g(f(x) + f(y))

is continuous and ([a,b],T) is a (commutative) Archimedean semigroup.

It is important to mention that the representation (1.42) is still possible under weaker
assumptions than those of Ling’s theorem, mainly without asking 7" to be continuous
but with other conditions instead, see Krause (1981) or Schweizer and Sklar (2005). The

following two results were taken from Schweizer and Sklar (2005):

1.24. Corollary. If ([a,b],T) is an Archimedean semigroup with T a continuous func-
tion, then there is a ¢ in [a,b] such that the diagonal section §r(x) = a for x in [a,c],

while 0 1is strictly increasing on [c¢,b].

1.25. Corollary. If ([a,b],T) is an Archimedean semigroup with T a continuous func-
tion, and T is strictly increasing in each variable on ]a,b]?, then f(a) = oo, whence
g=f"tand

T(z,y) = 7 (f(z) + f()) (1.47)

for all x,y in [a,b].

Within the context of Archimedean semigroups and the results reviewed so far in this

section, we may now define a particular type of copulas:
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1.26. Corollary. Let C' be a bivariate copula such that C' is associative and dc(t) < t
for all t in the open interval 10,1[. Then C' admits Ling’s representation (1.42), that is,
there exists a continuous and strictly decreasing function ¢ : [0,1] — [0,00] such that C

15 representable in the form

C(u,v) = o (o(u) + o(v) (1.48)
where =1 is the pseudo-inverse of o .

The above corollary is an immediate consequence of Definition 1.1, the continuity of any
copula, Lemma 1.22 and Ling’s theorem. We should also notice that ([0,1],C) is there-
fore an Archimedean semigroup, C' is symmetric (commutative), and as a consequence of
Lemma 1.24 there is a to in [0,1] such that dc(t) = 0 for ¢ in [0,%y] and ¢ is strictly

increasing on [tg, 1] .

1.27. Definition. An associative copula C such that dc(t) < ¢ for all ¢ in the open interval

10,1 is called Archimedean copula.

In the particular case of an Archimedean copula, the definition of pseudo-inverse of its

(additive) generator ¢ as in (1.41) becomes

pl(t) = P, 0<t<e0), (1.49)

0, e(0) <t < oo.

IN

We also note that in case ¢(0) = oo, then ="/ = ! the usual inverse.

Even though we may use Lemma 1.23 and a continuous and strictly decreasing function
¢ :[0,1] — [0,00] to build a function C' : [0,1]? — [0,1] such that ([0,1],C) is a
commutative Archimedean semigroup, this is not sufficient to guarantee that C' is indeed
a copula, further properties are required on the generator ¢, as proved in Alsina, Frank
and Schweizer (2006) or Nelsen (2006a):

1.28. Theorem. Let ¢ : [0,1] — [0,00] be a convex, continuous, strictly decreasing
function such that (1) = 0. Then the function C: [0,1]% — [0,1] given by

C(u,v) = U (gp(u) + gp(v)) (1.50)

is an Archimedean copula.
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If a function ¢ satisfies the hypothesis of the above theorem, it is called (additive) generator
of the Archimedean copula. In case ¢(0) = oo (and so ¢!™! = ©~1, the usual inverse), it
is said that ¢ is a strict generator, and in this case we have C'(u,v) = ¢~ (p(u) + ¢(v)) .
In case p(0) < oo it is called non-strict generator. It is also straight forward to verify that
if ¢ is a generator of a copula C| then for any constant £ > 0 we have that ky is also a

generator of C.

For example, for any constant k > 0, if p4(t) := —klogt and @o(t) := k(1 —t) for ¢ in
[0,1], it is straightforward to verify that ¢; and 9 satisfy the hypothesis of Theorem 1.28
and so they generate Archimedean copulas. In fact, ¢, is a strict generator and generates
the product copula II(u,v) = wv, while ¢y is a non-strict generator and generates the

Fréchet-Hoeffding lower bound copula W (u, v) = max(u +v — 1,0).

In the case of the Fréchet-Hoeffding upper bound copula M (u,v) = min(u, v), it cannot be
Archimedean since d/(t) = ¢, although it is an associative copula. For methods to build
associative non-Archimedean copulas see Mikusiniski and Taylor (1999) or Schweizer and
Sklar (2005).

Theorem 1.28 is also a powerful tool in building families of parametric Archimedean copulas

by using parametrized generators. For example,

polt) =5 (17 —1), e [~1,00)\ {0}, (151)

generates a parametric family of Archimedean copulas, discussed by Clayton (1978):

] -1/0

Co(u,v) = [ max (v’ +v7%—1,0) (1.52)

A list of different Archimedean families may be found in Nelsen (2006a), Alsina, Frank and
Schweizer (2006) or De Matteis (2001).

The level sets of a copula C' are given by {(u,v) € [0,1]? : C(u,v) = t}. In the particular

case of Archimedean copulas and for ¢ > 0, the level sets are in fact level curves since

U (p(u) + ¢(v)) =t implies
v = p(t) — p(u) = ¢ (1) — pl(w)), (1.53)

where the replacement of =1 by ¢! is justified by the fact that ¢(t) — (u) lies in the
interval [0, p(0)[. For t = 0, {(u,v) € [0,1]% : C(u,v) = 0} is called the zero set of C.

For many Archimedean copulas, their zero set is simply the union of the two line segments
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{0} x [0,1] and [0,1] x {0} (for example, II(u,v) = uw); for others, their zero set has
positive area (for example, W (u,v) = max(u+v—1,0)) and for such zero set the boundary

curve p(u) + ¢(v) = ¢(0) is called the zero curve of C. The following theorem is proved in
Nelsen (2006a):

1.29. Theorem. The level curves of a bivariate Archimedean copula are convex.

One important remark about the diagonal section of Archimedean copulas: most of the
well-known families of Archimedean copulas have convex diagonals, but this is not true
in general, as an example we have copula 4.2.18 in Nelsen’s catalog (2006a) with, for
example, parameter § = 2. Another example, provided by Mesiar (2006), using the non-

strict generator

1-3u, 0<u<?
SO(U)::{ 175 ’ 1; ;i’
=z, asusl,
which yields the non-convex diagonal section
0, 0<u<i,
2 1 1
: 2 1 3
§u7 §§u§17
2u—1, 32 <u<l.

It is important to mention that, recently, Durante, Quesada-Molina, and Sempi (2006) have
introduced and studied a class of bivariate copulas depending on two univariate functions,

which generalizes the Archimedean family.

For the multivariate case, we are led naturally to the problem of analyzing whether the
function C': [0,1]™ — [0, 1] given by

Clur, ... un) = @ (plwr) + plu) + -+ o(u,)), n>3, (1.54)

is a copula, and in such case we would call it multivariate Archimedean copula. For this

purpose we need the following definition from Widder (1946):

1.30. Definition. A function g is completely monotonic on an interval J if it is continuous

and it has derivatives of all orders that alternate in sign, that is if g satisfies

Al
(=1)" 25 9(t) 20 (1.55)

for all ¢ in the interior of J and £k =0,1,2,...
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By a result from Widder (1946), if ¢(¢) is completely monotonic on [0,00| and g(c) = 0
for some finite ¢ > 0, then g must be identically zero on [0,00[. As a consequence, if the
pseudo-inverse ¢!~ of an Archimedean generator ¢ is completely monotonic, it has to be

positive on [0, 00 [ and so ¢ is a strict generator, that is ¢!=1 = ™! the usual inverse.

Kimberling (1974) obtained necessary and sufficient conditions for a strict generator ¢ to
generate multivariate Archimedean copulas. See also Nelsen (2006a) or Alsina, Frank and
Schweizer (2006):

1.31. Theorem. Let ¢ be a strict Archimedean generator. The function C' given by (1.54)

1

is a multivariate copula for alln > 2 if and only if =" is completely monotonic on [0, 00 .

An immediate example is the case of the (strict) generator of the bivariate product copula
given by o1(t) = —logt, so o7 (t) = e!

as expected, it generates the multivariate product copula IT(uq, ..., u,) = ugus - - - U, .

: it is clear that ¢! is completely monotonic and,

Another example is the case of the Clayton family of copulas. In the bivariate case its
generator is given by (1.51) and it is strict only if § > 0, in which case 309_1 is completely

monotonic, generating the multivariate Clayton family of copulas given by

—1/9
Cg(ul,...,un):(u; +---+u;9—n+1> . (1.56)

1.4 Schroder’s functional equation.

If C'is an Archimedean copula with (additive) generator ¢, according to (1.50) the diagonal

section of C', §(u) = C'(u,u), may be directly expressed in terms of such generator:
o(u) = @t (2¢(u)), wel0,1]. (1.57)

The details of the proof of Ling’s representation theorem (Theorem 1.20) show the impor-
tant role of assumption (4), that is d(u) < w for u in the interior of the closed interval
under consideration. So one may ask, as observed by Darsow and Frank (1983), how much
information about an Archimedean C'is contained in its diagonal section. In other words,

given ¢ , what can be said about ¢ ?

First let’s assume that ¢ is a strict generator. Then by (1.49) we have that @1 = =1,

the usual inverse, and (1.57) may be written as

e(0(uw)) =2p(u), uwel0,1]. (1.58)
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The above equation is a particular case of Schrdoder’s functional equation
pod = Np, A # 0,1, a constant, (1.59)

which has been studied in one form or another, according to Kuczma (1968), since the late

nineteenth century:

[(1.59)] appeared for the first time about 1870 [Schroder (1871)] in connection with
the problem of continuous iteration (cf. Chapter IX). A fundamental theorem about
the existence and uniqueness of analytic solutions of [(1.59)] was then proved by G.
Koenigs [(1884)], and therefore equation [(1.59)] is often called also the Koenigs
equation or the Schréder-Koenigs equation [...] The authors have mainly paid
attention to analytic solutions on the complex plane. The Schroder equation for

functions of a real variable has been dealt in the [twentieth] century.

In the abstract of Sungur and Yang (1996) they made the following statement:

It is shown that for the Archimedean class, the diagonal copula uniquely determines

the corresponding copula.

They defined in their article as “diagonal copula” what has been defined in the present
work in (1.21) as diagonal section. The above statement by Sungur and Yang (1996) is

wrong. Frank (1996) announced:

We explore the following question [...] When is an associative copula C' uniquely
determined by its diagonal §(x) = C(z,z)? [...] a sufficient, but not necessary,
uniqueness condition for Archimedean C'is given by [the left derivative] /(1) = 2.
This is an almost immediate consequence of standard results on convex solutions
of Schroder’s equation (with a new, direct proof) via the representation of these
copulas. We present some related conditions and illustrate non-uniqueness by con-

structing families of copulas having identical diagonals.

The above quotation from Frank (1996) is a report of meeting in the Thirty-third Inter-
national Symposium on Functional Equations, May 21 - May 27, 1995, held in Caldes de
Malavella, Catalonia, Spain. According to Schweizer (2006) the relevant paper has not been
published. Such result is now included in the recently published book by Alsina, Frank
and Schweizer (2006), pp. 151-155, including an example with the construction of different
Archimedean copulas that have the same diagonal, which contradicts the statement by

Sungur and Yang (1996). The problem of finding conditions under which an Archimedean
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copula is or is not uniquely determined by its diagonal section has been also studied in the
context of triangular norms, see for example Klement, Mesiar and Pap (2000) and Klement
and Mesiar (2005).

From a remark from It6 (1996) we have that if ¢, is a solution of ¢(d(u)) = A6(u) and
if g1 is a solution of g(d(u)) = g(u) then it is straightforward to verify that the product
@191 is also a solution of (1.59). A trivial solution for ¢(d(u)) = g(u) is g1 = k, being k
any constant, and in such case we have that if ¢; is a solution of (1.59) then k ¢, is also
a solution. The following result is a particular case of Theorem 6.6 in Kuczma (1968) (or
Theorem 2.3.12 in Kuczma et al (1990)):

1.32. Theorem. Let the function v : [0,1] — [0,1] be such that 0 < vy(u) < w for all
we0,1[, and v'(0) = 5. If s(u) is a solution of the functional equation

s(v(u) = = s(w) (1.60)
such that the function s(u)/u is monotonic in ]0,1[ , then

s(u) = k lim 2"y™(u), (1.61)

n— o0

where v™ is the n-th iteration of ~y, that is the composition of v with itself n times, and k

any constant.

The following result is part of what was announced by Frank (1996), and now included in
Alsina, Frank and Schweizer (2006) only defining the functions needed for the proof. For

completeness we present the proof of the following:

1.33. Theorem. (Frank, 1996) If C is an Archimedean copula whose diagonal § satisfies
d'(1=) = 2 then it is uniquely determined by its diagonal.

Proof: We first consider the case of a strict generator ¢, then from (1.41), (1.49), and
(1.57), we have that 0 is continuous and strictly increasing in [0, 1], and so it has an inverse
d~!. By defining a function vy on [0,1] via y(u) :=1— 6 *(1 — u) for win [0,1] we have
that 7 is continuous and strictly increasing, 7(0) = 0, and 0 < y(u) < u for all v €]0,1].
Now define s(u) := ¢(1 — u) and substituting the definitions of vy and s in (1.58) we get
that this functional equation is equivalent to (1.60) and so we may apply Theorem 1.32
by requiring s(u)/u to be monotonic and q}lino [Y(u)/u] = 3 This last condition is fulfilled

if 7 is right-differentiable in zero and 7/(0+) = 3 which is equivalent to §'(1—) = 2.
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Since we are dealing with an Archimedean copula the generator ¢ is convex and so it
is s(u) = ¢(1 — u), then by Proposition 6.3.2 in Dudley (2002) we have that s(u)/u is
monotonic. Applying Theorem 1.32 we obtain the following formula for ¢ in terms of
diagonal ¢ :

e(u) =k lim 2"[1 -6 "(u)], (1.62)

where 6 " is the composition of § ~! with itself n times, and k is any positive constant, since
we require that ¢ > 0. So far we have considered the case where ¢ is a strict generator. In
the case of a non-strict generator, that is p(0) < oo, if we define « := ¢ ~1(p(0)/2), then
from (1.49) and (1.57) we get
12 if a<u<l1
Su)y=14 7 (MM%? a<u<l, (163)
0, if 0<u<a,
that is, § = 0 in [0, ] and 4 is strictly increasing in [a,1]. We notice that o < 1 by
(1.32). Then
20(u), if a<u<l,
p(0(u)) = . (1.64)
0(0), if 0<u<a.
We have that for 0 < u < a, ¢(d(u)) = ¢(0) since 6(u) = 0 in such interval, so it just
remains to solve ¢(d(u)) = 2p(u) for @« < u < 1, and we proceed as in the case of a

strict generator, by taking w = (u — «)/(1 — «) which takes values in [0, 1], and solving
p(0(w)) = 2p(w). O

From now on we will refer to the condition §'(1—) = 2 as Frank’s condition. An important
example of an Archimedean copula that satisfies Frank’s condition is the case of the product
copula II(u,v) = wv, which characterizes a couple of independent continuous random
variables, via Sklar’s Theorem, and so it is uniquely determined by its diagonal section
d(u) = u®. This fact is crucial for the work done in this thesis. Frank’s condition
is satisfied by 13 out of 22 copulas in the catalog of Archimedean copulas provided by
Nelsen (2006a). From Alsina, Frank and Schweizer (2006) we have the following remark:

[Frank’s condition] is not nearly as stringent as it might seem at first sight. Thus,
since oy '(1—) = op(1—) = 2, [where W is Frechet-Hoeffding's lower bound
copula (1.9)] we have ¢ '(1—) = 2 whenever W < C' < II.

As a consequence of the above remark, for all the parametric families of Archimedean
copulas {Cjp : 6 € O} for which there exists a subset ©y C © such that Cy < II for all 6
in O, the subfamily {Cy : 0 € Oy} satisfies Frank’s condition. This will be the case of
negative quadrant dependence (see Definition 1.35 and (1.80) in section 1.5).
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In Alsina et al (2006), Section 3.8, a counterexample is given, in order to show that if ¢ is a
generator for an Archimedean copula C such that ¢’(1—) = 0, or equivalently 6¢'(1—) < 2,
where d¢ is the diagonal of the copula C', then the diagonal does not characterize uniquely
the generator ¢. Alsina et al (2006) provide a parametric family of generators {yg : 0 <
B <1/(1+ 8n)} such that their diagonal section dg = dc but Cps, # Cp, for By # B5. The
details will be done to show that the given upper bound for 3 is not sharp, by providing a

sharp one.

Let 0 < # <1 and define for 0 < x < 1

1 2
05(z) = In(z)? + 2" Bsin ( né? ) if 2"r < ln(x)? < 22, (1.65)

for n € Z. First we observe that (1.65) is equivalent to

ps(r) = In(z)* + 2" Fsin (hl;i)Q) if  exp(—v2"21) <o <exp(—v2rtim), (1.66)

for n € Z. Since

lim exp(—v2"?7) =0 and lim exp(—Vv2"*+?71) = 1.

n—oo n——0o0

Then ¢g(z) is defined and it is continuous on (0, 1), to see that this holds, observe that

2" <lIn(x)? < 2""'7  if and only if 27 <

ln(f)Q < 4r. (1.67)

Therefore, sin <ln§i)2> has a whole period for each n € Z, in fact, for each n € Z

pplexp(—V2rtir)—) = 2"tlr 4 2"3sin(27)
= 2"y
= 20=D)+25 4 on-lg sin(4m)

= pglexp(—Vv2r—D+2r)4).

Now we observe that g is differentiable and its derivative is given by

_ 2 In(x)

o) " (1 + [3 cos (MD if 2"tr <In(z)? < 2", (1.68)

2n

for 0 < x < 1, equivalently,

oy(z) = 212(:’3) (1 + B cos (ln(f)2>) if 27 < lné?Q < 4r, (1.69)
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for 0 <z < 1. We also have continuity of @j(x), since for each n € Z,

, W
olexp(—V2 ) ) = expf_jm)uwcos(zw))
—2+/2n+1yr

B exp(—\/m) 1+5)

— 924/ 92(n—=1)+2
- = (1 + Beos(4r))
exp(—V20=1)+27)

= @ylexp(—=v2rtim)+).

Now, we know that ys(r) is convex if and only if ¢js(7) is increasing, see for example
Pecaric et al (1992), Theorem 1.4. We want to find the values of g, if any, such that pg(z)
is convex on (0, 1).

Let u? = lnéﬁ)g, for 0 < x < 1, then u = ln(;n,

—

hence x = exp(v/2"u). Also, for n € Z,

"Hr <lIn(z)? < 227 if and only if 27 < u? < 47 if and only if — V47w < u < —V/27.
(1.70)
Therefore, (1.68) is equivalent to
2¢/ 2"y

————— (1+ Bcos(u?)) for —Vdr <u < —V2r and every n € Z. (1.71)
exp(v/2"u)

p(uin) =

Hence, to show that (1.68) is increasing for some 0 < [ < 1 is equivalent to show that
(1.71) is increasing for some 0 < § < 1. First we observe that for large positive values of
n, pz(u;n) behaves like % which decreases to —oo as n — oo, for every —v4dn <
1 < —v/27. On the other hand as n becomes smaller, or more negative, the denominator
exp(v/2™u) in equation (1.71) approaches 1 and v/2"u approaches zero. It can be shown
that ¢js(u);n is increasing for “large” values of n, but for small values of n and some 3's it
is not increasing anymore. In Table 1 we present the values of 3, the first value of n € Z for
which @js(u;n), given in equation (1.71), is not increasing, and the corresponding interval
in which ¢g ceases to be convex. Observe that from Table 1.1, the maximum value of n,
for which ¢g is not convex, decreases with 5 and the corresponding interval in which ¢z
ceases to be convex moves to the right with endpoints approaching 1.

Now we obtain the second derivative yj(u;n). We know that if j(u;n) > 0 for each
n € Z, then ¢g(u) is a convex function.

2¢/2n — 27ty 44/27 3 sin(u?)

©ylusn) = W(1+6608(u2))—m (1.72)
= ﬂ cos(u?) — 2u? sin(u?))) — ﬂ cos(u?
= o (B eos(u) = 207 5in(u)) = s (1 eos(u?)
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for —v4m < u < —/2mw. We observe that the last expression on the right hand of (1.72)
approaches 0 very quickly when n — —oo. We also observe that exp(v/2"u) approaches 1
uniformly for every —v/4m < u < —+/27 as n — —oo. Therefore, ¢js(u;n) behaves like

2V/2n (14 3 (cos(u?) — 2u’sin(u?))) for 2m <u’ < 4m, (1.73)
as n tends to —co. Hence, letting v = u?, the sign of ¢}(u : n) is given by the sign of
g(v) = K(1+ f(cos(v) — 2vusin(v))) for 27 <wv <4m, (1.74)

where K = 2v/2". Therefore, we only need to find the maximal value of 3 for which g(v) >0
for any 2m < v < 4w. This is equivalent to find the minimum of k(v) = cos(v) — 2vsin(v)
for 2r < v < 4w. By analyzing the functions k£ and (1.74), we observe that if § < 0.062548
then g(v) > 0. Hence, the function ¢g(z) is convex for § < 0.062548, which agrees with
the results in Table 1.1.

In Alsina et al (2006), page 155, it is mentioned that pgz(z) is convex if 0 < B < - =

1+87
0.038266, which of course is true. However, this bound for [ is not sharp as shown above,

since convexity of g also holds for 4 < 0.062548, in fact this a sharp bound for convexity
of ©Ya-

1.5 Dependence and copulas.

As a brief introduction to this section we quote part of the preface from Drouet and Kotz
(2001):

The concept of dependence permeates our Earth and its inhabitants in a most
profound manner. Examples of interdependent meteorological phenomena in nature,
interdependence in medical, social, and political aspects of our existence, not to
mention economic structures, are too numerous to be cited individually. Moreover,
the dependence is obviously not deterministic but of a stochastic nature.

It is therefore somewhat surprising that the concepts and measures of dependence
did not receive sufficient attention in the statistical literature, at least until as
late as 1966 when the pioneering paper by E.L. Lehmann [see Lehmann (1966)]
has appeared. The concept of correlation (and its modifications) introduced by
F. Galton in 1885 dominated statistics during some 70 years of the 20-th century,
practically serving as the only measure of dependence, often resulting in somewhat
misleading conclusions. The last 20-th century have witnessed a rapid resurgence

in investigations of dependence properties from statistical and probabilistic points
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Table 1.1: Values of n and intervals for which ¢g(z) ceases to be convex

I} maximal value of n for non convexity | corresponding interval
0.9 7 3.8 x 10718, 4.8 x 10713)
0.8 5 [1.9x 1072,6.9 x 1077)
0.7 4 (6.9 x 1077,4.4 x 1079)
0.6 4 (6.9 x 1077,4.4 x 107°)
0.5 3 [4.4 x 107°,0.00083)
0.4 1 [0.0066, 0.0288)
0.3 1 [0.0066, 0.0288)
0.2 -1 [0.08,0.17)
0.1 -5 [0.53,0.64)
0.09 -6 [0.64,0.73)
0.08 -7 [0.73,0.80)
0.07 -10 [0.89,0.92)
0.069 -10 [0.89,0.92)
0.068 -11 [0.92,0.94)
0.067 -11 [0.92,0.94)
0.066 -12 [0.94,0.96)
0.065 -13 [0.96,0.97)
0.064 -14 [0.97,0.98)
0.063 -18 [0.993,0.995)
0.0626 -24 [0.9991,0.9994)
0.06255 -35 [0.99998, 0.99999)
0.062549 -39 [0.999995,0.999996)
0.062548 —00 does not exist

of view but the first —and to the best of our knowledge— the only text (of some
400 pages) devoted to dependence concepts (by Harry Joe) appeared as late as
1997 [see Joe (1997)]. Moreover, it seems to us that no Department of Statistics
(or/and Mathematics) in the U.S.A. and Europe offer courses dealing specifically

with dependence concepts and measures.

27
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We recall that the correlation between two random variables X and Y is defined by
Cov(X,Y)

r(X,Y) = ————=—
V(X)V(Y)

I

provided the existence of second moments. Before we continue a critique against the use
of correlation as a dependence measure, we review the following property for copulas, see
Nelsen (2006a):

1.34. Theorem. Let X andY be continuous random variables with copula Cxy. If a and 3
are strictly increasing functions on Ran X and RanY, respectively, then Co(x)pv) = Cxy-

Thus Cxy is invariant under strictly increasing transformations of X and Y.

This result is also valid for the general multivariate case, see Schweizer and Sklar (2005).
The above theorem in connection with the concept of correlation deserved the following
comment by Embrechts et al (2003a):

Copulas provide a natural way to study and measure dependence between random
variables. As a direct consequence of [Theorem 1.34], copula properties are invariant
under strictly increasing transformations of the underlying random variables. Linear
correlation (or Pearson’s correlation) is most frequently used in practice as a measure
of dependence. However, since linear correlation is not a copula-based measure
of dependence, it can often be quite misleading and should not be taken as the
canonical dependence measure [...] The popularity of linear correlation stems
from the ease with which it can be calculated and it is a natural scalar measure
of dependence in elliptical distributions (with well-known members such as the
multivariate normal and the multivariate t-distribution). However most random
variables are not jointly elliptically distributed, and using linear correlation as a
measure of dependence in such situations might prove very misleading. Even for
elliptically jointly distributed random variables there are situations where using linear
correlation [...] does not make sense. We might choose to model some scenario
using heavy-tailed distributions such as to-distributions. In such cases the linear

correlation coefficient is not even defined because of infinite second moments.

Moreover, we find in Embrechts et al (1999) a list of pitfalls within the use of linear

correlation:

Correlation is a minefield for the unwary. One does not have to search far in the
literature of financial risk management to find misunderstanding and confusion.

This is worrying since correlation is a central technical idea in finance [...] :
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1. Correlation is simply a scalar measure of dependency; it cannot tell us every-

thing we would like to know about the dependence structure of risks.

2. Possible values of correlation depend on the marginal distribution of the risks.

All values between —1 and 1 are not necessarily attainable.

3. Perfectly positively dependent risks do not necessarily have a correlation of 1;
perfectly negatively dependent risks do not necessarily have a correlation of
—1.

4. A correlation of zero does not indicate independence of risks.

5. Correlation is not invariant under transformations of the risks. For example,

log X and logY generally do not have the same correlation as X and Y.

6. Correlation is only defined when the variances of the risks are finite. It is not
an appropriate dependence measure for very heavy-tailed risks where variances

appear infinite.

After these “complaints” against the use (and abuse) of correlation and its limitations in
modeling under more general dependence relations, we proceed to show how copulas are a

useful tool for this purpose.

In his pioneering work, Lehmann (1966) gives three different definitions of what he called
positive dependence. We will just state one of them, and then we will discuss it under the
framework of copulas. For random variables X and Y, the following definition compares
the probability of any quadrant X < x, Y < y under the joint distribution H of (X,Y)

with the corresponding probability in the case of independence:

1.35. Definition. Quadrant dependence. We say that the pair (X,Y) or its [joint]
distribution H is positively quadrant dependent if

P(X <z,Y <y) > PX <z)PY <y), for all z,y. (1.75)

The dependence is strict if inequality holds for at least some pair (x,y). The family of all
[joint] distributions H satisfying (1.75) will be denoted by §;. Similarly, (X,Y) or H is
negatively quadrant dependent if (1.75) holds with the inequality sign reversed, and the
totality of negatively quadrant dependent distributions will be denoted by &;. To simplify
the notation we shall write (X,Y) € § to mean that the distribution of (X,Y") belongs to
5.

1.36. Lemma. (Lehmann, 1966):
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(1) (X,X) €1 forall X
(1)) (X, Y)eF < (X,-Y)e &

(i) (X,Y) € & implies (T(X), S(Y)) € §1 for all non-decreasing functions r and s. The
concept of positive quadrant dependence is thus invariant under non-decreasing trans-

formations (and similarly under non-increasing transformations) of both variables.

(iv) The set of inequalities (1.75) is equivalent to that obtained by replacing one or both
of the inequalities X < x or'Y <y by the corresponding X < x orY <y.

(v) The set of inequalities (1.75) is equivalent to each of the following, where again the

equality signs inside the probabilities are optional:

P(X <,V >y) < P(X <2)P(Y >y) (1.76)
P(X >2,Y <y) < P(X >2)P(Y <y) (L.77)
P(X >2,Y >y) > P(X > 2)P(Y > y). (1.78)

Intuitively, X and Y are positively quadrant dependent if the probability that they are
simultaneously small (or simultaneously large) is at least as large as it would be if they were
independent. Examples of this kind of dependence are the case when Y = s(X) for any
random variable X and any non-decreasing function s, or Y = X + V for any independent

random variables X and V.

If X and Y have joint distribution function H, with continuous margins F' and G, respec-

tively, and copula C, then (1.75) is equivalent to
H(z,y) > F(x)G(y), for all (z,y) in R?, (1.79)
and by virtue of Sklar’s theorem:
C(u,v) > wv =1(u,v), for all (u,v) in [0,1]2. (1.80)

So in order to investigate quadrant dependence between two continuous random variables

it suffices to analyze the underlying copula and compare it to the product copula.

For example, if the underlying copula is a member of the Farlie-Gumbel-Morgenstern family
introduced in (1.14), then it is straightforward to verify that there is positive quadrant
dependence whenever 6§ > 0, and negative quadrant dependence whenever § < 0. We
notice that for this family of copulas we have that Cy = II. Amblard and Girard (2002)
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proposed a semiparametric family of copulas, which includes as a particular case the Farlie-

Gumbel-Morgenstern family, and it is given by:
Co(u,v) = wv + 0Y(u)(v), 6e€[-1,1], (1.81)
where 1 must satisfy ¢(0) = ¢(1) = 0 and the Lipschitz condition
|v(u) — )| < |u—wvl, for all (u,v) in [0,1]2. (1.82)

With ¢ (z) = z(1—x) we have the particular case of the Farlie-Gumbel-Morgenstern family.
Since the Amblard-Girard family of copulas is characterized by 1 it is not a surprise that
its authors proved that, for example, positive quadrant dependence may be determined by
analyzing certain property of ¢ : Let # > 0, X and Y continuous random variables with
underlying Amblard-Girard copula, then X and Y are positively quadrant dependent if
and only if either for all u € [0,1] ¢(u) > 0, or for all w € [0,1] ¥(u) < 0. We should
notice that for this broad family of copulas, ¥ plays a role similar to the generator of an
Archimedean copula. It is important to mention that there exists a more general class of
copulas, which may or may not be symmetric, that contains the Amblard-Girard family as
a particular case, as proved by Rodriguez-Lallena and Ubeda-Flores (2004), by determining

the cases in which the function C' given by
Clu,v) = uwv + f(u)g(v) (1.83)

is a copula, for f and g real functions defined on [0, 1] and for all u,v in [0,1].

In the case of Archimedean copulas, we note that if ¢(0) < oo (that is, if ¢ is a non-strict
generator) then the support of the Archimedean copula C' it generates (recall Definition
1.9) is the set {(u,v) € [0,1]% : p(u) + ¢(v) < p(0)}; so it follows that copulas with such
generator cannot have the positive quadrant dependence since for some u,v > 0 we have
C(u,v) = 0.If X and Y are continuous random variables with an underlying Archimedean
copula with strict generator ¢, then they are positive quadrant dependent if the following

functional inequality holds:
o(u) + () < p(uv), for all (u,v) in ]0,1]% (1.84)
Lehmann (1966) also proved that, provided that the covariance of X and Y exists, then

Cov(X,Y) > 0 characterizes positive quadrant dependence, but we may need to talk about

this type of dependence in presence of random variables whose moments do not exist, and
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this is a pitfall in relying on covariance, as quoted from Embrechts et al (1999) at the

beginning of this section.

In addition to Lehmann (1966) we may find more on definitions of different types of depen-
dence in Harris (1970), Esary and Proschan (1972), Shaked (1977), Block and Ting (1981),
and Block et al (1982). The work of Kimeldorf and Sampson (1987, 1989) introduced a
unified framework for studying and relating various concepts of positive dependence, be-
ginning with a formal definition of what it should be understood by positive dependence.
For an extensive list of types of dependence see Joe (1997), and for some equivalences of

different types of dependence in terms of copulas see Nelsen (1991, 2006a).

Even though dependence relations between random variables is one of the most widely
studied topics in probability theory and statistics, when reviewing the literature in this
subject it is surprising to notice the lack of a formal definition for what exactly it should
be understood by a measure of dependence. It is also common to find expressions such as
measure of association within a context in which it is not clear if it is a synonym of measure
of dependence, or if this last one is a particular type of a measure of association. Moreover,
sometimes when talking about dependence, concepts such as concordance measure are
brought into the discussion, without making clear if this last one is a particular type of
dependence measure, or maybe a particular type of an association measure. It seems like
for a long time there has been a “fuzzy boundary” among expressions such as association,

concordance, correlation and dependence.

Blomqvist (1950) proposed what he called a measure of dependence between two random

variables, but when defining it explicitly he uses the expression
As a measure of correlation we define [...]

Within the context of his work the reader could hardly have a clear idea of what the
author understood by measure of dependence, nor if measure of correlation is a synonym

or a particular case of a measure of dependence.

Another example: Kruskal (1958) outlines the historical development of ordinal measures
of association. Among them, the author includes well-known measures such as Kendall’s
tau and Spearman’s rho, which are concordance measures, as we shall see later in this
section. So, whatever it should be understood by measure of association, this suggests
that concordance measures are a particular case of them. But in the introduction of his

work the author started with a question:
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What is meant by the degree of association or dependence between two random

variables with a joint distribution?

Should we infer that the author considers degree of association and degree of dependence
as synonyms? Even by reading the entire work, one cannot answer this question because
after the above quoted question the author only uses the expression measure of association,

with no further mention to measure of dependence or degree of dependence.

As far as it was possible to investigate, a formal definition of measure of association was
not found, just quite general and vague ideas of what is meant with this terminology. As
stated by Kruskal (1958):

There are infinitely many possible measures of association, and it sometimes seems
that almost as many have been proposed at one time or another. On the other
hand, it has been argued that, except in special cases, it is fatuous to attempt to

represent the degree of association of a bivariate population by a single number.

Since the first edition of Nelsen (2006a), which dates from 1999, we may understand mea-
sures of association as a general expression which includes, among others, the following

specific two types of measures:
e Measures of Concordance

— Kendall’s 7 (1938)

— Spearman’s p (1904)

Gini’s v (1914)

Blomqvist’s 5 (1950)
e Measures of Dependence

— Schweizer-Wolft’s o (1981)
— Hoeffding’s & (1940)
— Fernandez-Gonzélez Barrios’s 6 (2004)

We may find a different classification approach in Drouet and Kotz (2001), but we will just

briefly make some comments on Nelsen’s classification.
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1.5.1 Measures of Concordance.

Informally, as stated by Nelsen (2006a):

[...] a pair of random variables are concordant if “large” values of one tend to be
associated with “large” values of the other and “small” values of one with “small”

values of the other.

1.37. Definition. Two observations (z;,v;) and (x;,y;) from a random vector (X,Y) of
continuous random variables are concordant if x; < x; and y; < y; or x; > x; and y; > y;.

Similarly, they are discordant if x; < x; and y; > y; or x; > x; and y; < yj.

Equivalently, (z;,y;) and (x;,y;) are concordant if (x; — z;)(y; — y;) > 0 and discordant if
(x; — ) (y; —y;) < 0. For further insight into this concept see Kruskal (1958) or Lehmann
(1975).

1.38. Definition. (Nelsen 2002, 2006a) Let (X3,Y7) and (X5, Y2) be random vectors of
continuous random variables with (possibly) different joint distributions H; and Hs, but

with common margins F' and G. The concordance function () between H; and H, is defined
by

Q(Hy, Hy) :=P[ (X1 — X2)(Y1 = Y2) > 0] =P[(X; = Xo)(Y1 = Y2) <0].  (1.8)

Equivalently, @) is the difference between the probabilities of concordance and discordance
of (Xl, }/1) and (XQ,YQ)

1.39. Theorem. If in addition to Definition 1.38 the random wvectors are independent,

with underlying copulas Cy and Cy, respectively, then

Q(Cy, Cy) = Q(Hy, Hy) — 4/ o, v) dCy (1, 0) — 1 = Q(Cy, C1) (1.86)

[0,1]2

In a few words, concordance between two independent random vectors of continuous ran-
dom variables may be calculated just in terms of their underlying copulas. This is crucial

in defining the following three measures:

1.40. Definition. Let X and Y be continuous random variables whose copula is C'. We

define the following measures based on the concordance function:

a) Kendall’s tau: 1¢ := Q(C,C),
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b) Spearman’s tho: pc := 3Q(C,1I),
¢) Gini’s gamma: o = Q(C, M)+ Q(C, W),

where II, M and W are the product copula, and Fréchet-Hoeffding upper and lower bound

copulas, respectively.

Of course, the above definitions are not the original ones, they were defined in terms of the

random variables involved. For example, Kendall’s tau was originally defined as
Txy = P[ (X1 — Xo)(Y1 — Y2) > 0] = P[(X; — X,)(Y1 — Y2) < 0], (1.87)

where (X1,Y7) and (X5, Y3) are independent random vectors with common joint distribu-
tion. But it has been proved, see Nelsen (2002, 2006a) and Li et al (2002), that the above
three measures, in the case of continuous random variables, may be expressed just in terms
of the underlying copula, which is not a surprise since by Sklar’s theorem the dependence

structure is uniquely determined by the copula.

Moreover, in defining measures of association between continuous random variables, as
suggested by Drouet and Kotz (2001), we may consider the possibility of stating as a
desirable property that such measures should be marginally free, that is, defined just in
terms of the underlying copula. This would lead us to reject linear correlation as a measure

of association, as we shall see later in this section.

Going back to Definition 1.40, we may interpret those measures as follows: Kendall’s 7
measures how concordant (or discordant) would be independent observations of a random
vector of continuous random variables with copula C'; Spearman’s p measures how concor-
dant (or discordant) would be independent observations of a random vector of continuous
random variables with copula C' compared to the product copula, or just briefly, in terms
of concordance how close or far is C' from the copula II which represents independence;
Gini’s 7 measures, in terms of concordance, how close or far is the underlying copula C'
from the Fréchet-Hoeefding bounds, that is, how close or far are the involved continuous

random variables from being comonotonic or countermonotonic (see section 1.1).

In view of Theorem 1.39 and other results by Nelsen (2002, 2006a) and Li et al (2002) we

may arrive to the following equivalent expressions for the discussed concordance measures:

To=1- // —C’ (u v)aa C(u,v)dudv, (1.88)
0

1]2 u

pc = 12// C(u,v)dudv — 3, (1.89)
[0,1]2
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70:4{/010(u,1—u)du—/Ol[u—C(u,u)}du . (1.90)

Blomqvist (1950) proposed what he called a (sample) “measure of dependence” or (sam-
ple) “measure of correlation,” which happens to be a measure based on the concept of
concordance since for a random vector (X, Y’) the population version of the sample version

he defined would be:
BXY = P[(X — mx)(Y — my) > O} — P[(X — mx)(Y — my) < O} s (191)
where mx and my are the medians of X and Y, respectively. In words of Blomqvist (1950):

Let (z1,41) - (s, yn) be a sample from a two-dimensional population with cdf
[cumulative distribution function] F'(z,y), and consider the two sample medians &
and . The cdf F(x,y) is assumed to have continuous marginal cdf's Fj(z) and
F5(y) in order that the probability of obtaining two equal z-values or two equal
y-values in the sample will be zero. Let the x, y-plane be divided into four regions
by the lines x = & and y = g. It is the clear that some information about the
correlation between x and y can be obtained from the number of sample points,
say np, belonging to the first or third quadrants compared with the number, say
ns, belonging to the second or fourth quadrants [...] As a measure of correlation
we define
ny — No 2n

"= = -1 -1<¢ <1).
9 n1+n2 n1+n2 ( =9= )

It is straightforward to verify, see Nelsen (2002, 2006a), that in the case of a pair of contin-

uous random variables X and Y with underlying copula C' we may calculate Blomqvist’s
measure just in terms of the copula:

11

=4C| =, =] — 1. 1.92

fe=10(33) (1.92)

So far, the four concordance measures analyzed in this subsection have in common that

they use the concept of concordance, each one in a different way, having therefore their

own interpretation. Nelsen (2002, 2006a) adopted from Scarsini (1984) the following set of

“desirable” properties for a measure of concordance:

1.41. Definition. Let X and Y be any continuous random variables with underlying
copula C. A numeric measure of association between these two random variables, which
will be denoted by kxy or k¢, is a measure of concordance if it satisfies the following

properties:
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1. k is defined for every pair of continuous random variables;

2. -1 <kxy <1l,6xx =1,6x-x = —1;

3. RXyYy = Ry,x;

4. If X and Y are independent, then kxy = kg = 0;

5. Koxy = Kx-y = —KX)Y;

6. If C; and Cy are copulas such that C(u,v) < Cy(u,v) for all (u,v) in [0,1]2, then

Koy < Koy s

7. If {(X,,Y,)} is a sequence of continuous random variables with underlying copulas

C,, and if {C},} converges pointwise to C, then lim,,_.. ko, = Kc-
As a consequence of the above definition we have the following two theorems:

1.42. Theorem. Let k be a measure of concordance for continuous random variables X
and Y :

1. If Y is almost surely an increasing function of X, then kxy = ky = 1;
2. If Y s almost surely a decreasing function of X, then kxy = kw = —1;

3. If a and (B are almost surely strictly monotone functions on Ran X and RanY, re-

spectively, then Ko(x)py) = KX,y

1.43. Theorem. If X and Y are continuous random variables with underlying copula C,
then Kendall’s ¢, Spearman’s pc, Ginni’s vo, and Blomquist’s B¢, satisfy the properties
in Definition 1.41, and therefore the properties in Theorem 1.42.

An important remark on Definition 1.41: A concordance measure equal to zero does not
imply independence, so if kKxy = 0 we will just refer to the random variables X and Y as
non-concordant. For example, let X a continuous random variable uniformly distributed
on [—1,1] and define Y := |X|; by using (1.11) it is straightforward to verify that the
four measures of concordance mentioned in Theorem 1.43 are equal to zero, in spite of the

obvious dependence between X and Y.

Even though concordance measures do not characterize independence, some of them had
been used to build nonparametric tests of independence with null hypothesis Hy : kK = 0
against the alternative H; : k # 0, see for example Lehmann (1975), Hollander and Wolfe
(1999), Gibbons and Chakraborti (2003). We will discuss such tests in chapter 4.
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We discussed in this subsection bivariate measures of concordance. For a discussion on the
general case of multivariate measures of concordance see Joe (1990, 1997), Nelsen (19964,
2002, 2006a), Taylor (2006), Dolati and Ubeda-Flores (2006).

1.5.2 Measures of Dependence.

In the same year in which Abe Sklar introduced the concept of copula, Rényi (1959)
proposed a set of axioms for a measure of dependence for pairs of random variables, that
is, a list of properties that certain quantities which are used to measure the strength of
dependence between two random variables should satisfy. In 1959 Rényi himself showed
that, among various well-known measures of dependence, the only one which satisfied all
of his axioms was the maximal correlation coefficient for a pair of random variables X and
Y defined by

S(X,Y) :==supr(f(X),q(Y)), (1.93)

Y
where r denotes Pearson’s correlation coefficient, and the supremum is taken over all Borel
functions f and ¢ for which such correlation is defined. As mentioned by Schweizer and
Wolff (1981), such measure has major drawbacks: it equals to 1 too often and is generally
not effectively computable. In addition, they gave several examples which indicate that, at
least for nonparametric measures, Rényi’s conditions are too strong, and so they proposed

a modified version of them:

1.44. Definition. Let X and Y be any continuous random variables with underlying
copula C. A numeric measure of association between these two random variables, which
will be denoted by pxy or pc, is a measure of dependence if it satisfies the following

properties:

—_

. is defined for every pair of continuous random variables;
2.0 < pxy < 1

3. uxy = Hy,x;

4. X and Y are independent if and only if pxy = pr = 0;

5. pxy =1 if and only if each of X and Y is almost surely a strictly monotone function
of the other;

6. If @ and (8 are strictly monotone almost surely on Ran X and RanY, respectively,

then pa(x)8v) = Hxy;
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7. If {(X,,Y,)} is a sequence of continuous random variables with underlying copulas

C,, and if {C},} converges pointwise to C, then lim,_ ic, = pic.

It is important to emphasize the fourth property since it implies that measures of depen-
dence do characterize independence, and so concordance measures may not be considered

dependence measures.

Definition 1.44 is exactly as it appears in Nelsen (2006a), in the original work by Schweizer
and Wolff (1981) they also include the following property:

8. If the joint distribution of X and Y is bivariate normal, with correlation coefficient

r, then pxy is a strictly increasing function of |r|.

In contrast with concordance measures where specific ways of involving the concept of
concordance define each measure, Schweizer and Sklar (2005) suggested to measure how
close/far is the underlying copula of continuous random variables from the only copula

that represents independence:

[...] the fact that the surface for II (the copula of independence) lies midway
between the surfaces for W and M (the copulas of extreme monotone dependence)
it is natural to use any measure of distance between surfaces as a measure of

dependence for pairs of random variables.

It is important to make clear in which sense Il lies “midway” between W and M. A
straightforward verification shows that if ¢} and Cy are copulas then any convex linear
combination of them is also a copula, that is Cp = (1 —0)C + 0C5 with 0 in [0,1], so the
surface of the copula %(W + M) lies midway between W and M under the usual metric
for the real line, and it is certainly not equal to II. Schweizer and Sklar (2005) made clear
that they refer to the fact that

M(u,v) — (u,v) = M(u,1 —v) — W(u,1 —v) (1.94)

for all (u,v) in [0,1], whence the graph of W is a “twisted” reflection of the graph of M
in the graph of II. So, as mentioned by Schweizer and Wolff (1981):

[...] any suitable normalized measure of distance between the surfaces z = C'(u, v)
and z = uwv, e.g., any L,-distance, should yield a symmetric, nonparametric measure

of dependence.
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From Nelsen (2006a) we have that for any p in [1,00[ the L,-distance between C' and II
is given by

Oc(p) = (k‘p/ |C'(u,v) — uv\pdudv)l/p, (1.95)

[0,1]2
where k), is a constant chosen so that (1.95) is U¢(p) = 1 whenever C equals M or W (and
so properties 2 and 5 in Definition 1.44 are satisfied).

1.45. Theorem. For each p in [1,00][ the L,-distance Oc(p) is a measure of dependence,

where
I'(2p+3)

kp=—————"
2[T(p+1)]

(1.96)
Particular cases are: Uc(1) which is known as the o of Schweizer and Wolff (1981), and
[U¢(2)]? which is known as the dependence index @ of Hoeffding (1940). In the particular
case of the measure of dependence studied by Schweizer and Wolff (1981) given by

oo —12/ | C(u,v) — uv | dudv , (1.97)

0,1]2
we may interpret it as a measure of “average absolute distance” between the joint distri-

bution of a pair of continuous random variables (represented by their copula C') and the
independence joint distribution (represented by II(u,v) = uv).

Schweizer and Wolff (1981) also studied the properties of the Lo-distance between C' and
IT given by

dxy =0c:=4 sup |C(u,v)—wv], (1.98)
(u,v) €[0,1]2

and they proved that this measure satisfies all except property 5 in Definition 1.44. We
will discuss more about this measure later in this subsection under the work by Gonzalez-
Barrios (2003b) and Ferndndez and Gonzalez-Barrios (2004).

Embrechts et al (2003a) proposed “desired properties of a dependence measure,” which we

will denote &, for a pair of random variables:
EO. ¢ assigns a real number to any pair of random variables X and Y ;
EL {(X,Y) =¢(Y, X) (symmetry);
E2. —1 <{(X,Y) <1 (normalization);

E3. £(X,Y) =1if and only if X and Y are comonotonic;
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£(X,Y)=—1if and only if X and Y are countermonotonic;

E4. For T': R — R strictly monotonic on the range of X :

¢(X,Y) T increasing,
—&(X,Y) T decreasing.

§(T(X),Y) =

E5. {(X,Y) =0 if and only if X and Y are independent;

but they also proved that there is no dependence measure satisfying E4 and E5: Let (X,Y)
be uniformly distributed on the unit circle S* in R?, so that (X,Y) = (cos ©,sin ©) with
© uniformly distributed on |0, 27 [. Since (—X,Y’) has the same distribution as (X,Y") we
have

5(_X7 Y) = f(X, Y) = f(X, —Y),

which implies £(X,Y) = 0 although X and Y are dependent. With the same argumentation

it can be shown that the measure is zero for any spherical distribution in R?2.

If E5 is required, Embrechts et al (2003a) suggested to consider measures which only assign

non-negative values, and in such case they proposed the amended properties:
E2b. 0 <¢(X,Y) < 1;
E3b. £(X,Y) =1if and only if X and Y are comonotonic or countermonotonic;

E4b. For T': R — R strictly monotonic: £(T(X),Y) =T(X,Y).

We notice that EO, E1, E2b, E3b, E4b, and E5 are equivalent and/or weaker properties
than some of those included in Definition 1.44. In opinion of Embrechts et al (2003a):

If we restrict ourselves to the case of continuous random variables there are de-
pendence measures that fulfill all of E1, E2b, E3b, E4b and E5, although they are
in general measures of theoretical rather than practical interest [...] The disad-
vantage of all of these measures is that they are constrained to give non-negative
values and as such cannot differentiate between positive and negative dependence
and that it is often not clear how to estimate them.

Drouet and Kotz (2001) proposed “desirable properties of a measure of dependence”:

(D1) Standardization: The values of an index are between 0 and 1.
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(D2) Independence: If X and Y are independent, the index should be zero.

(D3) Functional dependence: If one variable is a function of the other, the index

must be equal to 1.
(D4) Increasing property: The index should increase as the dependence increases.

(D5) Invariance: The index should be invariant with respect to a linear transfor-
mation of the variables. A stronger condition would be that the index is
marginally free, i.e. the measure of the dependence is the same as the corre-

sponding measure on the copula.

(D6) Symmetry: If the variables are exchangeable, then the index should be sym-

metric.

(D7) Relationship with measures for ordinal variables: If the index is defined for
both ordinal and continuous variables, there should be a close relationship

between the two measures.

(D8) Interpretability. This is a very delicate and intangible property. Roughly speak-
ing, it means that the numerical value of this index can be translated into a

qualitative meaningful measure.

A few comments on some of the above proposed properties, in the case of continuous
random variables: (D2) is not an if-and-only-if condition, so this would be compatible with
the definition of a concordance measure rather than those we have discussed for dependence
measures which do imply independence whenever they are equal to zero; (D3) may be too
strong, not only because we would have to discard L,-distances, also because with no
restrictions on the functional relationship it is possible to build dependence relationships
between two continuous random variables for which it would be difficult to reach the
maximum value 1, as we will see later in this subsection; it is not clear what should it
be understood by “increasing dependence” in (D4); the invariance property as stated in
(D5) may be considered as extremely weak since it is a common and desirable required
property that the dependence measure remains unchanged at least under strictly increasing
transformations of the variables (not only linear) due to the fact that the underlying copula

is the same (see Theorem 1.34).

Wolff (1980) worked on n-dimensional extensions of the bivariate dependence measures
(1.97) and (1.98), and for such purpose he proposed higher dimensional analogues of mod-
ified Rényi’s axioms, designed as requisites for a symmetric nonparametric measure of

dependence:
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1.46. Definition. Let (Xi,...,X,) be a random vector of continuously distributed ran-

dom variables. A number R is a multivariate dependence measure if it satisfies the following:
W1. R is defined for any (X1,...,X,).

W2, R(Xy,...,X,) = R(p(Xy,...,X,)) for all permutations p of (Xi,...,X,).

W3. 0 < R(Xy,...,X,) <1

W4, R(Xy,...,X,)=0if and only if X,..., X,, are independent.

W5. R(Xy,...,X,)=1if and only if each of X,..., X,, is an increasing function almost

surely of the others.
W6. If fi,..., f, are all strictly increasing, then R(Xy,...,X,) = R(f1(X1),..., [u(Xy)).

WT7. Let the joint distribution of (Xj, ..., X,,) be multivariate normal and let r;; be the
correlation coefficient of X; and Xj. If the r;; are either all nonnegative or all non-

positive, then R is a strictly increasing function of each of the |r;;|.
WS8. If the sequence {(Xim, ..., Xnm)} converges in law to (Xi,...,X,), then

Em R(Xim, .- Xom) = R(X1, ..., X,).

m—00

Let f:[0,1]™ — [0,1] be any integrable function, and let Z denote the operator
I(f)::/ ---/f(ul,...,un)dul---dun. (1.99)
[0,1]"

Recalling definitions in (1.17), we have that

1 1

1
n+1"

(1.100)

Wolff (1980) noticed that Z(M?) — TI?) = Z(II®® — W) (which is a consequence of
(1.94)), but that this symmetry breaks down in higher dimensions. Moreover, by defining

a, = I(M™ 11y, by = Z(I™ — W), (1.101)
we have that lim, (b, /a,) = 0, that is, as n increases, the graphs of z = W™ (uy, ..., u,)
and z = M®™(uy,...,u,) are much closer to one another than the graphs of

z=M™(uy, ... u,) and z = 0™ (uy, ..., u,).
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Let n > 2 and let (X7,...,X,) have continuous marginal distributions and copula C. By
defining the multivariate versions of (1.97) and (1.98):

oni=a, ' Z(|C =T ), (1.102)
b0, =t 1S(|C =™ |), (1.103)
where the operator S is
S(f)= s |, uw)], (1.104)
(u1,eeyun) €[0,1]7
and
b SO MW i ) = =1 (1.105)
e nn/(n=1))’ '

Wolff (1980) proved the following:

1.47. Theorem. For any n > 2, the quantity o, satisfies all the conditions in Definition
1.46, and the quantity 6,, all except Wb.

Gonzélez-Barrios (2003b) and Ferndndez and Gonzélez-Barrios (2004) proposed what they

called a multidimensional dependency measure:

, (1.106)

x, is the joint distribution function of the X;’s and Fl, is the distribution

.....

function of X;. They proved the following:

1.48. Theorem. For any random variables X1, ..., X, :
FG1. 6x,,.x, = 0x ... X, for every permutation w of {1,2,...,n}.
FG2. 6x,.. x, =0 1if and only if X4,...,X,, are independent.

FG3. For every z; e R andi € {1,2,...,n}

1
n—1\" i 1\ ? 1
_( - ) SFX1 ..... Xn(xl,,xn)—HFXZ(xl)§<E) (1_E)<1

1=1

Hence 0 < dx, .. x, < 1. Besides the bounds above can be attained.

,,,,,

-----
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An important remark on the above theorem is the fact that the random variables are not
required to be continuous. In case they are, if their underlying copula is C' then by virtue
of Sklar’s theorem we have that (1.106) becomes

oo = sup | Cluy, ... up,) — Hul‘ (1.107)

(u1,ee5un) €0,1]7 i=1

So far, what we find in the literature is that there is no consensus on what a definition of a
measure of concordance or a measure of dependence should be. Some authors have proposed
what they think are useful measures, analyzed their properties, and then proposed such
properties as a set of “desirable properties” for any concordance or dependence measure.
It is beyond the purpose of this thesis to provide final definitions in these matters, but we

will make some additional remarks:

A1. In the case of continuous random variables, for all the measures of concordance and
dependence analyzed in this section it had been always possible to calculate them in terms
of the underlying copula, which should not be a surprise since Sklar’s theorem suggests that
the dependence structure is uniquely determined by such copula, therefore (as suggested by
Drouet and Kotz in D5) we may consider to require dependence or concordance measures

to be computable just in terms of the corresponding copula.

A2. Drouet and Kotz (2001) proposed, among others, the following “desirable property”

for a measure of dependence:
(D4) Increasing property: The index should increase as the dependence increases.

Although it was not clarified by the authors in which sense dependence is considered to be
“increased”, for the multivariate case we may consider including in this category property
FG4 in Theorem 1.48.

A3. We began section 1.4 with quotations from Drouet and Kotz (2001) and Embrechts
(1999, 2003a) which strongly question the general usefulness of the linear correlation coef-

ficient. Among the complaint