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Abstract In this paper we study the problem of independence of two continuous
random variables using the fact that there exists a unique copula that characterizes
independence, and that such copula is of Archimedean type. We use properties of
the empirical diagonal to build nonparametric independence tests for small samples,
under the assumption that the underlying copula belongs to the Archimedean family,
giving solution to an open problem proposed by Alsina et al. (2003, Aequationes
Math 66:128–140).

1 Introduction

A bivariate copulais a functionC : [0,1]2 → [0,1] with the following proper-
ties: For everyu,v in [0,1], C(u,0) = 0 = C(0,v), C(u,1) = u andC(1,v) = v,
and for everyu1,u2,v1,v2 in [0,1] such thatu1 ≤ u2 and v1 ≤ v2, C(u2,v2)−
C(u2,v1) −C(u1,v2) + C(u1,v1) ≥ 0. Also, W(u,v) ≤ C(u,v) ≤ M(u,v), where
W(u,v) := max(u+ v−1,0) andM(u,v) := min(u,v) , whereW andM are them-
selves copulas, known as theFréchet-Hoeffding lower and upper bounds,respec-
tively. The diagonal sectionof a bivariate copula,δC(u) := C(u,u) , is a nonde-
creasing and uniformly continuous function on[0,1] where: i) δC(0) = 0 and
δC(1) = 1; ii) 0 ≤ δC(u2)−δC(u1)≤ 2(u2−u1) for all u1,u2 in [0,1] with u1 ≤ u2 ;
iii) max(2u−1,0) ≤ δC(u) ≤ u. A copulaC is said to beArchimedean, see [17],
if C(u,v) = ϕ [−1][ϕ(u) + ϕ(v) ], whereϕ , called thegeneratorof the copula, is
a continuous, convex, strictly decreasing function from[0,1] to [0,∞ ] such that
ϕ(1) = 0, and ϕ [−1] is the pseudo-inverseof ϕ given by: ϕ [−1](t) := ϕ−1(t) if
0 ≤ t ≤ ϕ(0), andϕ [−1](t) := 0 if ϕ(0) ≤ t ≤ ∞ . Its diagonal section is given by
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δC(u) = ϕ [−1][2ϕ(u) ] . One may ask, as observed in [6], givenδ , what can be said
aboutϕ ? The following result is part of what was proved in [9] and [3]:

Theorem 1. If C is an Archimedean copula whose diagonalδ satisfiesδ ′(1−) = 2
then C is uniquely determined by its diagonal.

From now on we will refer to the conditionδ ′(1−) = 2 asFrank’s condition.An
important example of an Archimedean copula that satisfies Frank’s condition is the
case of the product copulaΠ(u,v) = uv, which characterizes a couple of indepen-
dent continuous random variables, via Sklar’s Theorem [20], and so it is uniquely
determined by its diagonal sectionδΠ (u) = u2. Frank’s condition is satisfied by 13
out of 22 copulas in the catalog of Archimedean copulas provided by [17].

2 The empirical diagonal and some properties

In the case of Archimedean bivariate copulas, the diagonal section contains all the
information we need to build the copula, provided that Frank’s conditionδ ′(1−)= 2
is satisfied, and in such case this leads us to concentrate in studying and estimating
the diagonal. The main benefit of this fact is a reduction in the dimension of the
estimation, from 2 to 1 in the case of bivariate copulas.

Let S:= {(x1,y1), . . . ,(xn,yn)} denote a sample of sizen from a continuous ran-
dom vector(X,Y) . Theempirical copulais the functionCn given by (see [17])

Cn

(
i
n
,

j
n

)
=

1
n

n

∑
k=1

1{xk ≤ x(i) , yk ≤ y( j) } ,

wherex(i) andy( j) denote the order statistics of the sample, fori and j in {1, . . . ,n} ,

and Cn(
i
n,0) = 0 = Cn(0, j

n) . The domain of the empirical copula is the grid
{0,1/n, . . .(n−1)/n,1}2 and its range is the set{0,1/n, . . . ,(n−1)/n,1}.

Remark 1.The domain of the empirical copula is just a rescaling of the set{0,1, . . . ,
n}. Hence the empirical copula can be thought as equivalent to adiscrete copula as
noticed in [15] and [16]. Moreover, an empirical copula is anexample of an irre-
ducible discrete copula as defined in [13]. An empirical copula is not a copula, but a
(two-dimensional)subcopula, for details of subcopulas see [17]. We should notice
also the following relationship between the empirical copula and the empirical joint
distribution functionHn : Cn(

i
n, j

n) = Hn(x(i),y( j)).

Definition 1. The empirical diagonalis the functionδn( j/n) := Cn( j/n, j/n) for
j = 0,1, . . . ,n, andδn(0) := 0.

It is clear from above thatδn is a nondecreasing function ofj . Moreover,
by Fréchet-Hoeffding bounds for subcopulas we have that max(2 j/n− 1 ,0) ≤
δn( j/n) ≤ j/n, and it is also straightforward to prove that the differenceδn(( j +
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1)/n)− δn( j/n) equals one of the values{0,1/n,2/n}. These properties also fol-
low from properties of the diagonal section in discrete copulas and quasi-copulas,
see [1] or [14].

We will call anadmissible diagonal pathany path{δn( j/n) : j = 0,1, . . . ,n} sat-
isfying the Fréchet-Hoeffding bounds, that is any path between the paths
{max(2 j/n−1,0) : j = 0,1, . . . ,n} and{ j/n : j = 0,1, . . . ,n}, with jumps of size
0,1/n, or 2/n between consecutive steps. The proof of the following theorem is in
[7]:

Theorem 2.Let S= {(X1,Y1), . . . ,(Xn,Yn)} be a random sample from the random
vector of continuous random variables(X,Y) . If X and Y are independent and if
T = (t0 = 0,t1, . . . ,tn−1,tn = 1) is an admissible diagonal path, then

Pr
[
T = (t0 = 0,t1, . . . ,tn−1,tn = 1)

]
=

1
n!

n

∏
j =1

f ( j) ,

where, for j= 1, . . . ,n : f ( j) = 1 if n(t j − t j−1) = 0; f ( j) = 2( j − nt j−1)− 1 if
n(t j − t j−1) = 1; and f( j) = ( j −1−nt j−1)

2 if n(t j − t j−1) = 2.

3 A nonparametric test for independence under the
Archimedean family of bivariate copulas

In this section we give solution to an open problem proposed in [2] and [3]:

Can one design a test of statistical independence based on the assumptions that the copula
in question is Archimedean and that its diagonal section isδ (u) = u2 ?

As a corollary of Sklar’s Theorem, see [20, 19, 17], we know that if X andY are
continuous random variables, thenX andY are independent if and only if their cor-
responding copula isC(u,v) = uv. It is customary to use the notationΠ(u,v) := uv.
and to call it theproductor independence copula. Recall that the product copula
is Archimedean and it is characterized by the diagonal section δΠ (u) = u2 . If we
are interested in analyzing independence of two continuousrandom variables, the
previous results suggest to measure some kind of closeness between the empirical
diagonal and the diagonal section of the product copula. Moreover, a nonparametric
test of independence can be carried out, as suggested by [2, 21], using the diag-
onal section. Let(X,Y) be a random vector of continuous random variables with
Archimedean copulaC, then the following hypothesis are equivalent:

H0 : X andY are independent ⇔ H∗
0 : C = Π ⇔ H∗∗

0 : δC(u) = u2. (1)

Using the results of the previous sections, we wish to propose a statistical test
based on the empirical diagonal because underH0 we know the exact distribution
of the empirical diagonal (Theorem 2) and so we could theoretically obtain theexact
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distribution of any test statistic based on it. A first idea would be to work with a
Cramér-von Mises type test statistic based on the empirical diagonal:

CvMn :=
1

n−1

n−1

∑
j =1

(
δn

( j
n

)
− j 2

n2

)2

, (2)

rejectingH0 wheneverCvMn ≥ kα for α a given test size. The performance of a
test based on (2) will be analyzed later in a short simulationstudy. Under some
Archimedean families, a test based on (2) can be improved under certain alterna-
tives by the following idea: It is straightforward to verifythat underH0 the expec-
tation E [δn( j/n) ] = δΠ ( j/n) = j 2/n2 so we define forj = 1, . . . ,n−1 the quo-
tient ξ ( j/n) := |δn( j/n)− j 2/n2|/( j/n−max(2 j/n−1,0)) as a way of measur-
ing pointwise closeness to independence, noticing that thedenominator just stan-
dardizes dividing by the distance between the Fréchet-Hoeffding bounds at point
j/n, in the spirit of a correction as in [4]. It is straightforwardto verify that
0≤ ξ ( j/n) ≤ max( j/n, 1− j/n)≤ 1−1/n. We propose as a test statistic

Sn :=
1

n−1

n−1

∑
j =1

ξ
( j

n

)
, (3)

rejectingH0 wheneverSn ≥ k1(α) , for α a given test size. Before we proceed, let
us denote byδM(u) = u andδW(u) = max(2u−1,0) the upper and lower Fréchet-
Hoeffding diagonal bounds, respectively. Foru in [0,1] the average distance be-
tweenδΠ (u) andδM(u) is 1/6 while the average distance betweenδΠ (u) andδW(u)
is 1/12, this means that the diagonal that represents independence is, on average,
twice closer to the lower than to the upper Fréchet-Hoeffding diagonal bound, thus
independence is far from being in the middle of such bounds, and so we should
consider the possibility of taking this into account in defining a test statistic. We
defineh( j/n) := ( j/n− j 2/n2)/( j 2/n2−max(2 j/n−1,0)) as a factor to be mul-
tiplied by ξ ( j/n) for those observations for whichδn( j/n) < j 2/n2, in order to
compensate somehow the non-equal closeness of the independence diagonal to the
Fréchet-Hoeffding bounds. In other words, let us defineν( j/n) := h( j/n)ξ ( j/n) if
δn( j/n) < j 2/n2, andν( j/n) := ξ ( j/n) if δn( j/n) ≥ j 2/n2.

We have thath( j/n) is symmetric with respect to 1/2 and that 1≤ h( j/n) ≤
h(1/n) = h(1−1/n) = n−1. We now propose the following test statistic

An :=
1

n−1

n−1

∑
j =1

ν
( j

n

)
, (4)

rejectingH0 whenAn ≥ k2(α) , for α a given test size. The test statistics (3) and (4)
alone lead to biased tests of independence, but an appropriate combination of both
leads to an approximately unbiased independence test, by using the decision rule

rejectH0 wheneverSn ≥ k1 or An ≥ k2 , (5)
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where Prob
(
{Sn ≥ k1}∪{An ≥ k2}|H0

)
≤ α, for k1 andk2 chosen appropriately,

according to a given test sizeα. From their definitions it is immediate to verify that
0 < Sn ≤ An ≤ 3/4− 1/4n. Even though the election of(k1,k2) is not unique, in
order to obtain an approximately unbiased test, a good choice for the alternative
hypotheses we will consider is(k1,k2) such thatα1 = Pr(Sn ≥ k1 |H0) ≈ Pr(An ≥
k2 |H0) = α2 . We cannot prove this in general for all possible alternatives since
the power of the test forθ 6= θ0 depends on the distribution under the alternative
hypothesis, but it seems to work adequately in the followingsimulations for the
given alternatives.

Since the main goal of the present work is to give solution to the open prob-
lem proposed by [2], building the required independence test, we include a short
simulation study just to show that the proposed tests work, without pretending that
they are extremely powerful, and we made some comparisons against a few well-
known independence tests, without pretending that they constitute an exhaustive list
of independence tests:

• Spearman’s test, see [11].
• The modified Hoeffding test as introduced in [5].
• A test in [12].

The simulated power comparisons presented here were obtained with sample
sizes n = 15,50, α = 0.05. Every Monte Carlo experiment reported here has
been simulated 10,000 times, using some one-parameter Archimedean and Non-
Archimedean copulas as alternatives. In both cases we will consider families of
copulas{Cθ } with one-dimensional parameterθ such that there exists a uniqueθ0

such thatCθ0 = Π or limθ→θ0 Cθ = Π . The null hypothesis (1) becomesH0 : θ = θ0

versus the alternativeH1 : θ 6= θ0.
We will denote by CvM and EGB the tests proposed by the authorsin (2) and

(5), respectively. Under some families of copulas, there isa clear outperformance
of EGB over CvM, for example, with the Raftery family as alternative; but under
some other families it is almost the opposite, for example, with the Frank family as
alternative, see Fig. 1. The proposed tests EGB and CvM will be compared against
the already mentioned tests: R (Spearman), B ([5]), and V ([12]).

Archimedean alternatives. We compared the test powers forH0 : θ = 0 against
H1 : θ 6= 0 under the following alternative families of Archimedean copulas, for
details see [17]: Clayton, Frank, Nelsen’s catalog number 4.2.7, Ali-Mikhail-Haq,
and Gumbel-Barnett. In all cases these copulas satisfyCθ = Π if and only if θ = 0,
or limθ →0Cθ = Π , and satisfy Frank’s conditionδ ′(1−) = 2. For example, for the
Clayton family see Fig. 2.

Non-Archimedean alternatives. An obvious question is what happens with the
proposed EGB and CvM tests outside the Archimedean world. Asproved in [10]
it is possible to build copulas different from the product (or independence) copula
Π(u,v) = uv with the same diagonal asΠ , but they are singular, and such copulas
rarely appear in real problems. What really might be an issuefor the proposed EGB
and CvM tests is the fact that there are absolutely continuous non-Archimedean cop-
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Fig. 1 Left: EGB vs CvM under Raftery. Right: EGB vs CvM under Frank.
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Fig. 2 All tests under Clayton.

ulas which have the same diagonal asΠ , as proved in [8], or as a consequence of the
results in [18], so outside the Archimedean world the proposed EGB and CvM tests
may face dependence structures that they will not be able to detect. Anyway, we per-
formed similar simulation studies under some well-known non-Archimedean fami-
lies of copulas, with surprising results. We compared the test powers forH0 : θ = θ0

againstH1 : θ 6= θ0 under the following alternative non-Archimedean familiesof
copulas: Raftery, Cuadras-Augé, Farlie-Gumbel-Morgenstern, and Plackett (for de-
tails of these families see [17]). In all cases these copulassatisfyCθ = Π if and only
if θ = θ0 , or limθ →0Cθ = Π , with θ0 = 0 for the first three families, andθ0 = 1
for the last one.

Summary of results. We made a summary of the power comparisons in the format
suggested by [12]: For each test statistic, we have calculated the difference between
the power of the test and the maximal power of the tests under consideration at the
given alternative. For each graph this difference is maximized over the alternatives
in the graph. This number can be seen as a summary for the behavior of the test in
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that graph, although of course some information of the graphis lost. In Table 1 we
present percentage differences in maximal power of the five tests under comparison
at various alternatives, so that the lower the difference number in the table, the better
is the relative performance of the test.

Table 1 Relative power performance

n = 15 Alternative Copula EGB CvM R B V
Clayton 31 43 35 78 50
Frank 40 37 34 75 54
Nelsen 4.2.7 36 49 5 77 9
Ali-Mikhail-Haq 43 37 33 76 55
Gumbel-Barnett 24 45 13 78 44
Raftery 19 29 29 5 31
Cuadras-Augé 25 25 37 0 41
Farlie-Gumbel-Morgenstern 48 37 32 77 57
Plackett 42 38 33 73 53

n = 50 Alternative Copula EGB CvM R B V
Clayton 27 32 24 56 44
Frank 42 27 24 50 52
Nelsen 4.2.7 28 49 22 70 15
Ali-Mikhail-Haq 40 28 24 50 53
Gumbel-Barnett 20 33 8 58 42
Raftery 4 31 32 20 34
Cuadras-Augé 12 16 32 8 37
Farlie-Gumbel-Morgenstern 44 26 25 51 53
Plackett 40 26 18 43 49

In practice, when using a nonparametric test for independence we usually do not
know what alternative we are dealing with, so what is valuable about a test is its
ability to maintain an acceptable performance under different alternatives, rather
than being the best under specific ones. In this sense, it seems that in general terms,
the R test would be the best choice among the tests considered, followed by the EGB
and CvM proposed tests.

4 Final Remark

If the underlying copula of a random vector(X,Y) is of the Archimedean type,
independence tests can be carried out by defining appropriate test statistics based on
the empirical diagonal. Such statistics are discrete random variables and theirexact
distribution may be obtained using Theorem 2, so no asymptotic approximations
are required, which may be specially helpful with small samples.
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