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In this paper we analyze some properties of the discrete copulas in terms of permutations.
We observe the connection between discrete copulas and the empirical copulas, and then we
analyze a statistic that indicates when the discrete copula is symmetric and obtain its main
statistical properties under independence. The results obtained are useful in designing a
nonparametric test for symmetry of copulas.

Keywords: discrete copulas, r-symmetric permutations, independence

AMS Subject Classification: 60C05, 62E15, 62H05

1. INTRODUCTION

In Mayor et al. [8] and Mayor et al. [9] a class of binary aggregation operators on
finite settings is studied, that is, discrete copulas. Let us start by defining a discrete
copula on the finite chain L = {0, 1, . . . , n}.

Definition 1.1. A discrete copula C on L is a binary operation on L, i. e., C :
L× L → L satisfying the following properties:

i) C(i, 0) = C(0, j) = 0 for every i, j ∈ L.

ii) C(i, n) = C(n, i) = i for every i ∈ L.

iii) If 0 ≤ i ≤ i′ ≤ n and 0 ≤ j ≤ j′ ≤ n, then

C(i′, j′)− C(i′, j)− C(i, j′) + C(i, j) ≥ 0,

that is, C is 2-increasing.

Here we observe that if we rescale the chain L to be L′ = {0, 1/n, . . . , n/
n = 1}, then Definition 1.1 agrees with the usual definition of subcopulas with
domain L′ × L′ ⊂ [0, 1]2 when the range is also L′, see for example Nelsen [12].
Therefore, a discrete copula C satisfies all the known properties of subcopulas. Def-
inition 2 of discrete copulas in Kolesárová et al. [6], for the case n = m, coincides
with rescaling the chain L to be L′ = {0, 1/n. . . . , n/n = 1}, this definition is also
used in Aguiló et al. [1] and Mesiar [10].
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The use of discrete copulas can be related to observed data as noticed in Mesiar
[10]. Recall that a binary operator C on the chain L is symmetric or commutative
if and only if C(i, j) = C(j, i) for every i, j ∈ L, and C is associative if and only if
C(C(i, j), k) = C(i, C(j, k)) for every i, j, k ∈ L, see for example Alsina et al. [2],
Klement et al. [4], Klement and Mesiar [5] or Schweizer and Sklar [13].

There exists a bijection between the set of n×n permutation matrices and the set
of all discrete copulas on L, given in Proposition 6 and Corollary 1 of Mayor et al. [8],
that states that C is a discrete copula if and only if there exists A = (aij)i,j∈{1,...,n}
a permutation matrix such that for every r, s ∈ L,

C(r, s) =

{
0, if r = 0 or s = 0
∑

i≤r,j≤s aij otherwise.

From this result is easy to see that a discrete copula is symmetric or commutative
if and only if its associated permutation matrix is symmetric, and that the number
of discrete copulas on the chain L is n!. Also, if we define the n × n ÃLukasiewicz
permutation matrix by A = (aij)i,j∈{1,...,n}, where aij = 1 if i+j = n+1, and aij = 0
otherwise, then a discrete copula C is associative if and only if C is an ordinal sum
of ÃLukasiewicz matrices as proved in Proposition 9 in Mayor et al. [8]. Using the
last result Kolesárová and Mordelová [7] observed using idempotent elements, that
there are 2n−1 associative discrete copulas on L. It also follows that any associative
discrete copula is necessarily symmetric or commutative. In Kolesárová et al. [6] it
is proved that any discrete copula on L′ ×L′ is a convex sum of irreducible discrete
copulas.

In Section 2 of this paper we analyze in detail the connection between empirical
copulas and discrete copulas via permutations, extending results of symmetries to
r-symmetries. We make some observations about the order of the permutations and
Landau’s formula, we propose an associativity measure and find a nice geometric
interpretation of associative samples.

In Section 3 we analyze a random sample measure of symmetry, studying some
of its statistical properties under independence in terms of permutations.

In Section 4 we propose a symmetry test based on the statistic defined in Section 3.
Many authors have tried to fit an Archimedean copula C to a data set. Recall that
C is Archimedean if it is associative and its diagonal section δC(u) = C(u, u) < u
for every u ∈ (0, 1). We also know that C must be symmetric, see Theorems 4.1.5
and 4.1.6 in Nelsen [12]. As far as we know there is no test for associativity of
random data. However, if we test some random data for symmetry and we reject
the hypothesis, then it does not seem appropriate to try to fit an Archimedean copula
to these data, this provides a motivation for proposing a symmetry test. Finally, we
include some final remarks.

2. EMPIRICAL COPULAS, DISCRETE COPULAS AND PERMUTATIONS

In this section we will think of a copula as a bivariate cumulative distribution func-
tion with uniform marginals, using Sklar’s Theorem, see Nelsen [12].
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We will begin this section by recalling the definition of the empirical copula, see
for example Deheuvels [3]. Let us denote by X[i] and Y[j] the order statistics of
a continuous random sample (X1, Y1), . . . , (Xn, Yn) of a copula C, the empirical
copula is defined by

Cn

(
i

n
,
j

n

)
=

num. of pairs (X,Y ) in the sample such that X ≤ X[i] and Y ≤ Y[j]

n
,

and we define Cn(0, j/n) = 0 = Cn(i/n, 0), Cn clearly satisfies the 2-increasing
condition, according to the definition of subcopula, see Nelsen [12]. Without losing
generality we will always assume that X1 < X2 < · · · < Xn, that is the order statistic
X[i] = Xi for every i = 1, 2, . . . , n. We also observe that for any i, j ∈ {1, 2, . . . , n},
Cn(i/n, j/n) = k/n for some k = 0, 1, . . . , n.

In fact, since the empirical copula is invariant under strictly increasing trans-
formations, we can assume that X1 = 1/n, X2 = 2/n, . . . ,Xn = n/n = 1, and
that for every k ∈ {1, 2, . . . , n} there exists j ∈ {1, 2, . . . , n} such that Yk = j/n.
Even more, since the term 1/n is just a normalizing factor, we can assume that
X1 = 1, X2 = 2, . . . , Xn = n and the values of Y are simply a permutation σ of
{1, 2, . . . , n}, that is σ(i) = Yi for i = 1, 2, . . . , n. Therefore, from now on we will
study a totally equivalent form of the empirical copula given by

C ′
n (i, j) = num. of pairs (X,Y ) in the sample such that X ≤ i and Y ≤ Y[j], (1)

where the sample is given by (1, σ(1) = Y1), (2, σ(2) = Y2), . . . , (n, σ(n) = Yn), (σ(1),
σ(2), . . . , σ(n)) is a permutation σ of {1, 2, . . . , n} and C ′

n(i, 0) = 0 = C ′
n(0, j).

Besides, obviously C ′
n(i, n) = i and C ′

n(n, j) = j. This approach will facilitate
the study of several properties of the empirical copula in terms of permutations
of {1, 2, . . . , n}. In fact, with this definition the equivalent version of the empirical
copula C ′

n is simply a discrete copula on the chain L by Definition 1.1. Therefore, the
representation of discrete copulas in terms of permutation matrices applies to C ′

n,
and it also gives a trivial proof of this characterization of discrete copulas. Of course
all the properties stated in the introduction also follow for the empirical copula C ′

n.
Now let us recall some basic notation for permutations. We know that a per-

mutation σ on In = {1, 2, . . . , n} is the range of a bijection σ from In onto itself.
Equivalently, a permutation is rearrangement of the elements of the ordered list In.
In this paper we will denote a permutation σ of In as an ordered n-tuple of the
form (σ(1), σ(2), . . . , σ(n)). For example (4, 2, 1, 3) is the permutation of I4 such
that σ(1) = 4, σ(2) = 2, σ(3) = 1 and σ(4) = 1. It is customary to use cycle nota-
tion in order to represent permutations. A permutation cycle or orbit is a subset of
a permutation whose elements trade places with one another. For example in the
permutation of I4 given above, since σ is such that 1 → 4 → 3 → 1, and 2 → 2,
then we have two cycles, which we will denote by (1, 4, 3) and (2), the first one is a
3-cycle and the the second one a 1-cycle. Therefore we can write σ in terms of its
cycles, in our example σ = (1, 4, 3)(2). In many instances, the 1-cycles are omitted
in these expressions. In general the number of elements in a cycle determine its
order, so a k-cycle in a permutation σ on In is of the form (i1, i2, · · · , ik), where
i1, i2, . . . , ik ∈ In and 1 ≤ k ≤ n.
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It is well known, see for example Skiena [14], that every permutation σ of In can
be uniquely expressed as a product of disjoint cycles.

Using the concept of cycles, the theory of permutations has been immersed in
group theory. In fact, since a permutation σ is a bijection on In, we can compose σ
with itself to obtain powers of σ, where σr = σ ◦ σr−1 for each r ≥ 2.

Definition 2.1. The order of a permutation σ of In is the minimum value of
r ∈ {1, 2, . . .} such that σr = I, where I is the identity function on In.

It is well known that any permutation σ of In has finite order and in fact, the
order of a permutation is determined by the order of its cycles. The idea of the
following result relies on the fact that a cycle of the form (i1, i2, i3, · · · , ir) can be
written as (i1, σ(i1), σ2(i1), · · · , σr−1(i1)), where σr(i1) = i1.

Remark 2.2. Let σ be a permutation of In with unique disjoint cycle decomposi-
tion

σ = (i1,1, i1,2, · · · , i1,r1)(i2,1, i2,2, · · · , i2,r2) · · · (ik,1, ik,2, · · · , ik,rk
).

Then the order of σ is given by

order(σ) = Least Common Multiple{r1, r2, . . . rk}.

We will denote by LCM the least common multiple.
Now, let us recall that a sample (X1, Y1), . . . , (Xn, Yn) is symmetric if and only if

for every i = 1, 2, . . . , n if (Xi, Yi) is in the sample then (Yi, Xi) is also in the sample.
Because we have agreed that our samples can be written as (1, σ(1)), . . . , (n, σ(n)),
then our samples are symmetric if and only if for each i = 1, 2, . . . , n if (i, σ(i)) is in
the sample, so is (σ(i), i). Therefore, for every i = 1, 2, . . . , n, σ2(i) = i. Hence, a
sample is symmetric if and only if the permutation it generates is of order two, this
fact was proved in Mayor et al. [8].

In some applications it is important to consider permutations σ of order r, for
r > 2. We will say that a discrete copula C is r-symmetric if and only if its
associated permutation σ has order r. In fact, we know that if C ′

n is associative,
then it is symmetric, so if σ is the permutation associated to C ′

n, its order is 2.
However, not every permutation σ of order 2 induces an associative discrete copula,
see Example 2.5. It is easy to see how many r-symmetric discrete copulas exist, at
least in the case when r is a prime number, maybe this result is known, but we do
not have a reference, and we include its proof for completeness.

Proposition 2.3. The total number of r-symmetric samples of size n, σ
(n)
r , dif-

ferent from the identity, where r is a prime number is given by

σ(n)
r =

[n/r]−1∑

k=0

n!
(n− rk − r)!

· 1
rk+1(k + 1)!

.
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P r o o f . Let (1, σ(1)), . . . , (n, σ(n)) be a r-symmetric sample, for some r prime
integer. Then the order(σ) = r, according to Remark 2.2, if σ has l disjoint cycles,
with cardinality r1, r2, . . . , rl, then r = LCM{r1, r2, . . . , rl}. Therefore, there exists
at least one j ∈ {1, 2, . . . , l} such that rj = r, and the remaining r′is are equal to
one or r. Therefore, σ = (i1,1 · · · i1,r)(i2,1 · · · i2,r) · · · (ik,1 · · · ik,r), where we have
omitted all the cycles of order one, and k ≤ [n/r]. Hence, if σ has k r-cycles, all
we have to do is to select the r numbers that form each of those cycles, and observe
that having selected r numbers, the number of different r-cycles is determined by
(r − 1)!, according to the order inside this cycle. Therefore,

σ(n)
r =

[n/r]−1∑

k=0

(
n
r

)(
n− r

r

)
· · ·

(
n− rk

r

)
((r − 1)!)k+1/(k + 1)!

=
[n/r]−1∑

k=0

n(n− 1) · · · (n− rk) · · · (n− rk − r + 1)((k − 1)!)k+1

(r!)k+1(k + 1)!

=
[n/r]−1∑

k=0

n!
(n− rk − r)!

· 1
rk+1(k + 1)!

,

where the division by (k + 1)! is due to the fact that the order in which we select
the k r-cycles is irrelevant. ¤

Observe that this formula applies to r = 2, extending the result in Mayor et al.
[8]. In Table 1 we give the number of permutations of order k, k = 2, 3, 5, 7 for In

with n = 2, 3, . . . , 15, it can be seen that this numbers increases very rapidly for
fixed k as n increases.

In the case in which k is not a prime number similar arguments can be used, but
we have to be careful, since many other cases appear. For example if k = 6, we
may have one or more 6-cycles, or we may have at least one 3-cycle and a 2-cycle,
in order to have that the permutation has order k = 6.

Also, if k is not a prime number we can use a known recurrent formula to obtain
σ

(k)
2 , given by

σ
(k)
2 = σ

(k−1)
2 + (k − 1)(σ(k−2)

2 + 1) with σ
(2)
2 = 1, σ

(3)
2 = 3.

Another interesting question is the following: What is the highest order of a
permutation σ of In? In order to answer this question we have to refer to the concept
of integer partition of n, that is the different ways in which n can be expressed as a
sum of positive integers, for example the 5 integer partitions of 4 are

1.− 4
2.− 3 + 1
3.− 2 + 2
4.− 2 + 1 + 1
5.− 1 + 1 + 1 + 1
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Table 1. Number of Permutations of Order k in In.

value of n σ
(n)
2 σ

(n)
3 σ

(n)
5 σ

(n)
7

2 1 0 0 0
3 3 2 0 0
4 9 8 0 0
5 25 20 24 0
6 75 80 144 0
7 231 350 504 720
8 763 1232 1344 5760
9 2619 5768 3024 25920

10 9495 31040 78624 86400
11 35695 142010 809424 237600
12 140151 776600 4809024 570240
13 568503 4874012 20787624 1235520
14 2390479 27027728 72696624 892045440
15 10349539 168369110 1961583624 13348249200

Of course, we can identify the orders of the cycles of any permutation with a
unique integer partition. Now, if σ is a permutation of In, and the integer par-
tition generated by its r cycles is k1 + k2 + · · ·+ kr, where k1 ≥ k2 ≥ · · · ≥ kr, and
k1 + k2 + · · · + kr = n, then the order of σ equals LCM{k1, k2, · · · , kr}. So, given
any integer partition of n, P (k1, . . . , kr) = k1 + k2 + · · ·+ kr, let

o(P (k1, . . . , kr)) = LCM{k1, k2, · · · , kr},

Then, we have the following bounds for the order of any permutation σ of In:

1 ≤ order of σ ≤ max
{Pk1,...,kr integer partition of n}

o(P (k1, . . . , kr)) = g(n). (2)

For example, for n = 8, the set

{o(P (k1, . . . , kr)) | P (k1, . . . , kr) is an integer partition of n}

= {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15}.
where 15 is attained at the integer partition P (5, 3). Hence the maximum order of
a permutation of I8 is g(8) = 15.

The function g(n) is known as Landau’s formula. He proved that

lim
n→∞

ln(g(n))√
n ln(n)

= 1.

Some interesting remarks about g(n) can be found for example in Miller [11], as far
as we know there is no closed formula for the values of g(n).
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Definition 2.4. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample of
a copula C, with empirical copula C ′

n. We define the associativity measure AXn of
this sample by:

AXn =
∑

i,j,k∈{1,2,...,n−1}
|C ′

n(C ′
n(i, j), k)− C ′

n(i, C ′
n(j, k))|.

First, we observe that AXn is well defined by equation (1) and the fact that the
empirical copula C ′

n take values of the form k, for k = 0, 1, . . . , n. Besides, AXn = 0
if and only if the sample is such that C ′

n (equivalently Cn) is associative, in that
case we will say that the sample is associative. Second, in the definition of AXn

we do not include i = n, j = n or k = n, because if i = n, j = n or k = n then
C ′

n(C ′
n(i, j), k) − C ′

n(i, C ′
n(j, k)) = 0. There seems to be a direct relation between

the order of a permutation associated to C ′
n and the value of AXn . Now, we will

provide an example of a symmetric discrete copula which is non associative.

Example 2.5. Let Xn = {(X1, Y1), . . . (Xn, Yn)} be a sample of size n from a
copula C. Assume that the first coordinate is such that 0 < X1 < X2 < · · · < Xn

and Y1 = Y[n], Yj = Y[j], for j = 2, 3, . . . , n−1 and Yn = Y[1]. Then Xn is symmetric
and

AXn = 2
n−1∑

k=3

(
k − 1

2

)
+ 2

n−1∑

j=4

(
j − 2

2

)
.

Since the sample is given by

Xn = {(X[1], Y[n]), (X[2], Y[2]), . . . , (X[n−1], Y[n−1]), (X[n], Y[1])}

it is clearly symmetric, see Figure 1.
Equivalently, using equation (1), the sample can be thought as

Xn = {(1, n), (2, 2), . . . , (n− 1, n− 1), (n, 1)}.

From here, we have that the discrete copula C
′
n equivalent to the empirical copula

is given by
C

′
n(i, j) =

{
min{i, j} − 1 if 1 ≤ i, j < n
min{i, j} if i = n or j = n.

Observe that if i or j are equal to 1, then C
′
n(i, j) = 0, except for the case in

which the other one is n. Now, since

AXn =
∑

i,j,k∈{1,2,...,n−1}
|C ′

n(C ′
n(i, j), k)− C ′

n(i, C ′
n(j, k))|,

it is easy to evaluate AXn proceeding by cases.
Since associative discrete copulas are ordinal sums of ÃLukasiewicz permutation

matrices, as noticed in Mayor et al. [8] and Kolesárová and Mordelová [7]. We do
have a very simple and nice geometric representation of associativity in terms of an
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Fig. 1. Symmetric sample Xn with large value of AXn .

associative sample and its idempotent elements. See Figure 2, where an associative
sample of size n = 18 is shown in the case that the idempotent elements are i0 =
0, i1 = 3, i2 = 7, i3 = 8, i4 = 9, i5 = 10, i6 = 11, i7 = 12 and i8 = 18 = n. That
is from rescaling the original sample into (1, σ(1)), . . . (n, σ(n)) and observing the
resulting graph we can easily deduce if C ′

n is associative or not, just by checking if
all points are located in the main diagonal or in secondary diagonals.

3. A NEW SYMMETRY STATISTIC OF A COPULA

We have already seen that a sample of the form (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)),
where σ is a permutation on In, is symmetric if and only if σ2(i) = i for every
i ∈ In. It is natural then to define a sample measure of symmetry by taking:

Sn
σ =

n∑

i=1

(
i− σ2(i)

)2
. (3)

Of course Sn
σ = 0 if and only if the sample is symmetric. In fact, under the hypothesis

of independence, all n! permutations σ of In are equally probable. Therefore, we
can find the exact probability of σ(i) = j for any i, j ∈ In.
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Fig. 2. Associative sample with idempotent elements i0 = 0 < i1 < · · · < i8 = n = 18.

Theorem 3.1. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a continuous random
sample of size n where X and Y are independent and continuous random variables,
that is, the pair (X,Y ) has copula Π. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the
modified sample that generates Π′n. Then for any i ∈ In and σ a random permutation
of In we have that

Pr
(
σ2(i) = i

)
=

2
n

and
Pr

(
σ2(i) = j

)
=

(n− 2)
n(n− 1)

for any j ∈ In\{i}.

P r o o f . If (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) is the modified sample from the inde-
pendent copula, the event {σ2(i) = i} can be written as

{σ2(i) = i} = {σ(i) = i} ∪
(
∪n

k=1,k 6=i{σ(i) = k, σ(k) = i}
)
,

that is, i belongs to a one-cycle of σ or i belongs to a two-cycle of σ. Now,

Pr(σ(i) = i) =
(n− 1)!

n!
=

1
n

,

since fixing σ(i) = i, we can permute the remaining n− 1 elements of In in (n− 1)!
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ways. Also,

Pr
(
∪n

k=1,k 6=i{σ(i) = k, σ(k) = i}
)

=

(
n− 1

1

)
(n− 2)!

n!
=

1
n

,

since we first select the value of k that forms the two-cycle together with i, and then
the remaining n− 2 values of In can be permuted in (n− 2)! ways. Hence

Pr
(
σ2(i) = i

)
=

1
n

+
1
n

=
2
n

.

Now let i ∈ In and j ∈ In different from i. Then the event {σ2(i) = j} can be
written as

{σ2(i) = j} = ∪n
k=1,k 6=i,j{σ(i) = k, σ(k) = j},

because i and j must belong to at least a three-cycle of σ. Then

Pr
(
σ2(i) = j

)
=

(
n− 2

1

)
(n− 2)!

n!
=

n− 2
n(n− 1)

,

since first we have to select k from In\{i, j}, then we have to fix σ(i) as k and σ(k)
as j, the remaining values of σ can be permuted in (n−2)! ways, including the value
of σ(j). ¤

Using Theorem 3.1 we can find the expectation of Sn
σ .

Proposition 3.2. For any n ≥ 2 and under the hypothesis of independence.

E
((

σ2(i)
)k

)
=

n− 2
n(n− 1)

n∑

j=1

jk +
ik

n− 1
.

Besides,
E (Sn

σ ) =
(n− 2)n(n + 1)

6
. (4)

P r o o f . From Theorem 3.1

E
((

σ2(i)
)k

)
=

i−1∑

j=1

jk n− 2
n(n− 1)

+ ik
2
n

+
n∑

j=i+1

jk n− 2
n(n− 1)

=
n∑

j=1

jk n− 2
n(n− 1)

+ ik
2
n
− ik

n− 2
n(n− 1)

=
n− 2

n(n− 1)

n∑

j=1

jk +
ik

n− 1
.
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Now, using the above expression for k = 1 equation (10) and the fact that

n∑

i=1

(σ2(i))2 =
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
,

we get

E (Sn
σ ) = E

(
n∑

i=1

i2 − 2
n∑

i=1

iσ2(i) +
n∑

i=1

(
σ2(i)

)2

)

=
n(n + 1)(2n + 1)

3
− 2

n∑

i=1

i


 n− 2

n(n− 1)

n∑

j=1

j +
i

n− 1




=
n(n + 1)(2n + 1)

3
− n(n + 1)2(n− 2)

2(n− 1)
− 2n(n + 1)(2n + 1)

6(n− 1)

=
n(n + 1)
6(n− 1)

(
n2 − 3n + 2

)

=
(n− 2)n(n + 1)

6
.

¤

In order to find the variance, we need to find first the joint distribution of σ2(i)
and σ2(j) for i 6= j.

Theorem 3.3. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample of
the product copula Π for n ≥ 5. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the modified
sample that generates C ′

n. Then for any i, j ∈ In with i 6= j and σ permutation of
In we have that

Pr
(
σ2(i) = k, σ2(j) = l

)
=





0 if k = l ∈ {1, 2, . . . , n}
5

n(n−1) if k = i and l = j

1
n(n−1) if k = j and l = i

(2n−7)
n(n−1)(n−2) if k = i and l 6= i, j

(2n−7)
n(n−1)(n−2) if k 6= i, j and l = j

(n−3)
n(n−1)(n−2) if k = j and l 6= i, j

(n−3)
n(n−1)(n−2) if k 6= i, j and l = i

2(n−3)+(n−4)(n−5)
n(n−1)(n−2)(n−3) if k 6= l and k, l 6= i, j.

P r o o f . Let us denote the joint density of σ2(i) and σ2(j) for i 6= j, i, j ∈ In by

f(k, l) = Pr
(
σ2(i) = k, σ2(j) = l

)
.
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First we observe that since σ is a bijection on In, then f(k, k) = 0 for every k ∈ In.
Second, to evaluate f(i, j), we observe that we have five possibilities for the

permutation σ. If (i) and (j) are one-cycles of σ, if (ij) is a two-cycle of σ, if (i)
and (jr) are a one-cycle and a two-cycle of σ, if (j) and (ir) are a one-cycle and a
two-cycle of σ, or if (ir) and (js) are two-cycles of σ. Then

f(i, j) = Pr(σ(i) = i, σ(j) = j) + Pr(σ(i) = j, σ(j) = i)
+Pr(σ(i) = i, σ(j) = r, σ(r) = j, r 6= i, j)
+Pr(σ(j) = j, σ(i) = r, σ(r) = i, r 6= i, j)
+Pr(σ(i) = r, σ(r) = i, σ(j) = s, σ(s) = j, r 6= s, r, s 6= i, j)

=
2(n− 2)!

n!
+

2
(

n− 2
1

)
(n− 3)!

n!
+

2
(

n− 2
2

)
(n− 4)!

n!

=
5

n(n− 1)
.

Third, to find f(j, i), observe that the only possibility is that σ contains a four-
cycle of the form (irjs). Hence

f(j, i) = Pr(σ(i) = r, σ(r) = j, σ(j) = s, σ(s) = i)

=
2
(

n− 2
2

)
(n− 4)!

n!

=
1

n(n− 1)
.

Fourth, in order to find f(i, l) for l 6= i, j, we observe that we have two possibilities:
If (i) and (jsl · · · ) are a one-cycle and at least a three-cycle of σ, or if (ir) and
(jsl · · · ) are a two-cycle and at least a three-cycle of σ. Therefore,

f(i, l) = Pr(σ(i) = i, σ(j) = s, σ(s) = l, s 6= i, j, l)
+Pr(σ(i) = r, σ(r) = i, σ(j) = s, σ(s) = l, r 6= s, r, s 6= i, j)

=

( n− 3

1

)
(n− 3)!

n!
+

2
(

n− 3
2

)
(n− 4)!

n!

=
2n− 7

n(n− 1)(n− 2)
.

Fifth, to evaluate f(k, j) for k 6= i, j, we simply observe that interchanging i and
j we have the same result as in case four. So,

f(k, j) =
2n− 7

n(n− 1)(n− 2)
.

Sixth, in order to find f(j, l) for l 6= i, j, we observe that there are two possibilities:
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If (ilj) is a three-cycle of σ, or if (irjsl · · · ) is at least a five-cycle of σ. Then

f(j, l) = Pr(σ(i) = l, σ(l) = j, σ(j) = i)
+Pr(σ(i) = r, σ(r) = j, σ(j) = s, σ(s) = l, r 6= s, r, s 6= i, j, l)

=
(n− 3)!

n!
+

2
(

n− 3
2

)
(n− 4)!

n!

=
(n− 3)

n(n− 1)(n− 2)
.

Seventh, to evaluate f(k, i) for k 6= i, j, we simply observe that interchanging i and
j we have the same result as in case six. So,

f(k, i) =
(n− 3)

n(n− 1)(n− 2)
.

Eighth, in order to find f(k, l) for k 6= l and k, l 6= i, j, we observe that we have
three possibilities: if (ijkl · · · ) is at least a four-cycle of σ, if (jilk · · · ) is at least
a four-cycle of σ, or if (irk · · · ) and (jsl · · · ) are at least three-cycles of σ, observe
that both can belong to the same cycle, that is it is possible that (irk · · · jsl) is a
cycle of σ. Hence,

f(k, l) = Pr(σ(i) = j, σ(j) = k, σ(k) = l)
+Pr(σ(i) = l, σ(l) = k, σ(j) = i)
+Pr(σ(i) = r, σ(r) = k, σ(j) = s, σ(s) = l, r 6= s, r, s 6= i, j)

=
2(n− 3)!

n!
+

2
(

n− 4
2

)
(n− 4)!

n!

=
2(n− 3) + (n− 4)(n− 5)
n(n− 1)(n− 2)(n− 3)

.

By summing over all pairs f(k, l) we obtain

n∑

k,l=1

f(k, l) =
(n− 2)!

n!
(5 + 1 + 2(2n− 7) + 2(n− 3) + 2(n− 3) + (n− 4)(n− 5))

=
(n− 2)!

n!
(n2 − n)

= 1.

Therefore, f(k, l) is a density. ¤

Now we are ready to compute the variance of Sn
σ .

Proposition 3.4. For any n ≥ 5 and under the hypothesis of independence.

Var(Sn
σ ) =

n(n + 1)(5n3 + 9n2 − 12)
180

.
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If n = 2 then Var(S2
σ) = 0, and if n = 3 then Var(S3

σ) = 8.

P r o o f . From Proposition 3.2 we know that E(Sn
σ ) = (n(n− 2)(n + 1)/6. Hence

Var(Sn
σ ) = E((Sn

σ ) 2)−
[

n(n− 2)(n + 1)
6

]2

.

Since Sn
σ =

n∑

i = 1

[ i− σ2(i) ] 2 =
n(n + 1)(2n + 1)

3
− 2

n∑

i = 1

i σ2(i) then

(Sn
σ ) 2 =

[
n(n + 1)(2n + 1)

3

] 2

− 4
3

n(n + 1)(2n + 1)
n∑

i = 1

i σ2(i)

+ 4
[ n∑

i = 1

i 2σ2(i) 2 +
∑∑

i 6= j

ij σ2(i)σ2(j)
]
.

Using the above expression for (Sn
σ ) 2 we evaluate its expectation using Proposition

3.2 and Theorem 3.3 to obtain:

E((Sn
σ ) 2) =

[
n(n + 1)(2n + 1)

3

] 2

− 4
3

n(n + 1)(2n + 1)ϕ0(n) + 4[ ϕ1(n) + ϕ 2(n) ] ,

where

ϕ0(n) :=
n∑

i = 1

iE[σ2(i) ] =
n(n− 2)(n + 1) 2

4(n− 1)
+

n(n + 1)(2n + 1)
6(n− 1)

,

ϕ1(n) :=
n∑

i = 1

i 2 E[σ2(i) 2 ]

=
n(n− 2)(n + 1) 2(2n + 1) 2

36(n− 1)
+

n(n + 1)(2n + 1)(3n 2 + 3n− 1)
30(n− 1)

,

and

ϕ 2(n) :=
∑ ∑

i 6= j

ij E [ σ2(i)σ2(j) ]
]

=
6

n(n− 1)
g1(n) +

2(3n− 10)
n(n− 1)(n− 2)

g2(n)

+
2(n− 3) + (n− 4)(n− 5)
n(n− 1)(n− 2)(n− 3)

g3(n)

where after some tedious algebra we obtain

g1(n) :=
∑∑

i 6= j

i 2j 2 =
( ∑

i 2
)2

−
∑

i 4 ,

g2(n) :=
∑∑ ∑

i , j , k different

i 2jk

=
( ∑

i
)2( ∑

i 2
)
−

( ∑
i 2

)2

− 2
( ∑

i
)( ∑

i 3
)

+ 2
∑

i 4,
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and

g3(n)=
∑∑∑∑

i , j , k , l different

ijk l

=
( ∑

i
)4

− 6
∑

i 4 + 3
( ∑

i 2
)2

+ 8
( ∑

i
)( ∑

i 3
)
− 6

( ∑
i
)2( ∑

i 2
)

using the well known formulas
∑

i = 1
2 n(n + 1) ,

∑
i 2 = 1

6 n(n + 1)(2n + 1) ,∑
i 3 = 1

4 n 2(n + 1) 2 ,
∑

i4 = 1
30 n(n + 1)(2n + 1)(3n 2 + 3n − 1) . Making the

substitutions and simplifying we obtain

Var(Sn
σ ) =

n(n + 1)(5n3 + 9n2 − 12)
180

.

If n = 2 then σ2 is the identity, hence Var(S2
σ) = 0, and for n = 3 the density of S3

σ

is given by

Pr(S3
σ = k) =

{
2/3 if k = 0
1/3 if k = 6

Therefore Var(S3
σ) = 8. For n = 4 if we let f(k) = Pr(S4

σ = k), it easy to see
that f(0) = 5/12, f(4) = f(16) = f(20) = 1/12 y f(6) = f(14) = 2/12, hence
E(S4

σ) = 20/3 and Var(S4
σ) = 452/9, which finishes the proof. ¤

In Table 2, values for E(Sn
σ ) ,

√
Var(Sn

σ ) , and
√

Var(Sn
σ )/E(Sn

σ ) are given for
different values of n.

Since we have explicit expressions for the expectation and variance of Sn
σ (under

independence), we can define Sn
σ in its standardized form

Tn
σ :=

∑n
i = 1 [ i− σ2(i) ] 2 − n(n− 2)(n + 1)/6√

n(n + 1)(5n3 + 9n2 − 12)/180
, (5)

so that E(Tn
σ ) = 0 and Var(Tn

σ ) = 1. We also observe that Sn
σ and Tn

σ are sums of
identically distributed random variables, but the terms of this sum are not indepen-
dent, see Theorems 3.1 and 3.3. Therefore its exact distribution is not easy to find.
However, the statistics Sn

σ or Tn
σ can be used to test for symmetry as we will see in

the next section.

4. A NEW SYMMETRY TEST FOR COPULAS AND FINAL REMARKS

In order to propose a test of symmetry, we could use the statistic Sn
σ or equivalently

the standardized version Tn
σ , since they measure the symmetry of samples. Of course

large values of these statistics give evidence of asymmetric densities.
So let us assume that Xn = (X1, Y1), . . . , (Xn, Yn) is a random sample of a com-

mon unknown copula C, and let (1, σ(1)), . . . , (n, σ(n)) the rescaled sample defined
in Section 2. In order to test the hypotheses

H0 : C is a symmetric copula vs H1 : C is not a symmetric copula, (6)

at level 0 < α < 1. We propose the following methodology:
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Table 2. Values for E(Sn
σ ) ,

p
Var(Sn

σ ) , and
p

Var(Sn
σ )/E(Sn

σ ).

value of n E(Sn
σ )

[
Var(Sn

σ )
]1/2 [

Var(Sn
σ )

]1/2
/E(Sn

σ )
2 0.000 0.000 —
3 2.000 2.828 1.414
4 6.667 7.087 1.063
5 15.000 11.818 0.788
6 28.000 18.022 0.644
7 46.667 25.827 0.553
8 72.000 35.350 0.491
9 105.000 46.701 0.445

10 146.667 59.985 0.409
30 4340.000 859.819 0.198
50 20400.000 3028.654 0.148

• Obtain the value of Sn
σ (or Tn

σ ) for the original sample.

• Simulate a large number m of samples of size n coming from the independent
copula Π.

• Obtain for each simulated sample the value of Sn
σ (or Tn

σ ).

• Estimate the quantile (1− α) of Sn
σ (or Tn

σ ) using the m simulations.

• Reject H0 if the value of Sn
σ (or Tn

σ ) for the original sample exceeds the esti-
mated quantile.

In order to clarify this proposal, we observe that we are simulating m samples
coming from the independent copula Π, instead of sampling from the true copula
C, but since C is unknown we can not simulate samples from it. The idea of
simulating samples from the product copula, and comparing the (1− α)-quantile of
Sn

σ (or Tn
σ ) with the respective statistic of the original sample, is based on the idea

that the product copula may produce the greatest asymmetries among the family
of symmetric copulas, this statement is not easy to prove. However, we observed
this behavior when we simulated many sets of data from several known symmetric
families. Hence, in case H0 holds, our proposal makes comparisons against the “most
extreme case” of symmetric copulas.

The methodology proposed above works nicely if the true copula is quite asym-
metric, for example if the copula has support S = ([1/3, 2/3]× [0, 1/3])∪ ([2/3, 1]×
[1/3, 2/3]) ∪ ([0, 1/3]× [2/3, 1]) and it is uniform in each little square of its domain.
However, if the copula is slightly asymmetric, it is difficult to detect this asymmetry
using this methodology.

It is also important to notice that in the definition of the empirical copula Cn,
its domain is the grid {0, 1/n, . . . , (n− 1)/n, 1}2, and not the grid generated by the
original sample Xn = (X1, Y1), . . . , (Xn, Yn). Hence, we can not recover the original
sample if we only know its empirical copula.
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That is symmetry of the empirical copula or the discrete copula does not neces-
sarily imply symmetry of the sample.

Future work: It seems only natural to provide a method to test for associativity
of a continuous random sample (X1, Y1), . . . , (Xn, Yn).

ACKNOWLEDGEMENT

We want to thank the referees for a careful revision and interesting comments on the first
version of the manuscript. This work was partially supported by Mexico’s CONACyT grant
50152.

(Received May 13, 2008.)

REFERENCES

[1] I. Aguiló, J. Suñer, and J. Torrens: Matrix representation of discrete quasi-copulas.
Fuzzy Sets and Systems 159 (2008), 1658–1672.

[2] C. Alsina, M. J Frank, and B. Schweizer: Associative Functions: Triangular Norms
and Copulas. World Scientific Publishing Co., Singapore 2006.
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José M. González-Barrios: Universidad Nacional Autónoma de México, Instituto de

Investigaciones en Matemáticas Aplicadas y en Sistemas, Departamento de Probabilidad

y Estad́ıstica, Circuito Escolar s/n, Ciudad Universitaria, C.P. 04510, México D.F.
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