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Joint Porosity-permeability Stochastic Simulation 
and Spatial Median Regression by 
Nonparametric Copula Modeling 
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Abstract 

In petrophysics, assesment of formation permeability is a complex and challenging problem 
that plays a key role in reservoir forecasts and optimal reservoir management. In 
heterogeneous carbonate reservoirs, permeability evaluation is commonly performed using 
permeability-porosity relationships, which often seem to be nonlinear and complex. 
Copulas are marginal-free dependence functions that may capture such nonlinear 
relationships. In the present work we make use of a nonparametric copula approach for 
bivariate modeling of permeability- porosity real data, and its application for a spatial 
median regression. 

1 Introduction 

Assessment of formation permeability is a complex and challenging problem that plays a 
key role in oil reservoir forecasts and optimized reservoir management. Generally, 
permeability evaluation is performed using porosity-permeability relationships obtained by 
integrated analysis of various petro physical parameters from cores and well logs. In 
carbonate double-porosity formations with complex microstructure of pore space this 
problem becomes more difficult because the permeability usually does not depend on the 
total porosity, but on classes of porosity, such as vuggular and fracture porosity (secondary 
porosity). Even more, in such cases permeability is directly related to the connectivity 
structure of the pore system. This fact makes permeability prediction a challenging task. 

Dependence relationships between pairs of petro physical random variables, such as 
permeability and porosity, are usually nonlinear and complex, and therefore those statistical 
tools that rely on assumptions of linearity and/or normality are not suitable in this case. The 
use of copulas for modelling petro physical dependencies is not new (DÍAZ-VIERA & 

CASAR-GONZÁLEZ 2005) and t-copulas have been used for this purpose. But expecting a 
single copula family to be able to model a any kind of bivariate dependency seems to be 
still too restrictive, at least for the petro physical variables under consideration in this work. 
Therefore, we adopted a nonparametric approach by the use of the Bernstein copula 
(SANCETTA & SATCHELL 2004, SANCETTA 2007). 
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1.1 The problem of modelling the complex dependence pattern between 
porosity and permeability in carbonate formations 

By far the most used permeability predictor is the porosity-permeability relationship 
(BALAN et al. 1995). It has long been assumed that most reservoir rocks show a reasonably 
linear relationship between these parameters in a semi-log scale, which allows for the 
estimation of permeability when a porosity profile is available. This normally requires a 
calibration data set that is represented by one or more key wells where comprehensive 
information is available in terms of core and log data. This calibration data set is used to 
build the predictor and to test the reliability of the results. 

The regression approach, using statistical instead of deterministic formalism, tries to predict 
a conditional average, or expectation of permeability, corresponding to a given set of 
parameters. A different predictive equation must be established for each new area or new 
field. The main drawback of traditional regression methods is that the complex variability 
of data may not be effectively captured just in terms of variance or standard deviation 
(which may not even exist), and therefore the predicted permeability profile will be 
ineffective in reproducing extreme values. 

What is important to note in this case is that the predicted permeability profile will be 
effective in estimating the average characteristics of the true profile, but will be ineffective 
in estimating the extreme values. These extreme values, from a fluid flow point of view, are 
the most important parts of the distribution, since they may represent either high 
permeability streaks or impermeable barriers. 

Reservoir rocks show a wide spectrum of porosity-permeability relationships. In some 
formations, like for example homogeneous clastic rocks, these relationships show very low 
dispersion and can be reasonably used for prediction purposes. In other cases, as it is 
frequently for carbonates, this relationship is very loose and does not allow any safe 
regression, under traditional statistical tools. 

On the other hand, model-free function estimators like artificial neural networks are very 
flexible tools for recognizing and reproducing the pattern of permeability distribution, but 
require a time consuming “learning” process which strongly depends on the amount and 
quality of available data. 

A competitive and more systematic method for predicting permeability may be achieved by 
applying stochastic joint simulations, in which the correct specification of dependence 
pattern in the bivariate porosity-permeability distribution is crucial. This approach 
(DEUTSCH & COCKERHAM 1994) basically consisted on an annealing geostatistical po-
rosity-permeability cosimulation using their empirical joint distribution. A modification of 
the previous methodology was proposed (DÍAZ-VIERA & CASAR-GONZÁLEZ 2005) where 
the basic idea was to apply a t-copula bivariate distribution instead of the empirical one, in 
which the permeability-porosity observed dependence pattern is specified through a rank 
correlation measure such as Kendall’s tau or Spearman’s rho. 
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1.2 Bivariate copula and random variables dependence 

According to Sklar’s Theorem (SKLAR 1959), the underlying bivariate copula associated to 
a bivariate random vector (X, Y) represents a functional link between the joint probability 
distribution H and the univariate marginal distributions F and G, respectively: 

H (x, y) = C (F (x) , G (y) ) (1) 

for all x, y in the extended real numbers system, where C : [0, 1]2 → [0, 1] is unique 
whenever X and Y are continuous random variables. Therefore, all the information about the 
dependence between random variables is contained in their corresponding copula. Several 
properties may be derived for copulas (SCHWEIZER & SKLAR 1983, NELSEN 2006), and 
among them we have an immediate corollary from Sklar’s Theorem: X and Y are 
independent continuous random variables if and only if their underlying copula is 
Π (u, v) = uv. 

Let S := {(x1, y1), . . . , (xn , yn)} be observations of a random vector (X, Y). We may obtain 
empirical estimates for the marginal distributions of X and Y by means of 

   
1 1
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      (2) 

where I stands for an indicator function which takes a value equal to 1 whenever its 
argument is true, and 0 otherwise. It is well-known (BILLINGSLEY 1995) that the empirical 
distribution Fn is a consistent estimator of F, that is, Fn (t) converges almost surely to F (t) 
as n → ∞, for all t. See Figure 1 (left, center) for the graphs of the empirical distribution 
functions of the data that will be used in the present work (KAZATCHENKO et al. 2006b). 

 

Fig. 1: Empirical marginal distributions and copula 

Similarly, we have the empirical copula (DEHEUVELS 1979), a function Cn with domain 
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and its convergence to the true copula C has also been proved (FERMANIAN et al. 2004). 
The empirical copula is not a copula, since it is only defined on a finite grid, not in the 
whole unit square [0, 1]2 , but by Sklar’s Theorem (SKLAR 1959) Cn may be extended to a 
copula. See Figure 1 (right) for the graph of the level curves of the empirical copula 
corresponding to the data that will be used in the present work (KAZATCHENKO et al. 
2006b). 

2 Porosity-permeability Data Modelling 

We propose a copula-based nonparametric approach to model the relationship between the 
permeability and porosity of the double porosity carbonate formations of a South Florida 
Aquifer in the western Hillsboro Basin of Palm Beach County, Florida. 

The characterization of this aquifer for the borehole and field scales is given in PARRA et al. 
(2001) and PARRA & HACKERT (2002) and a hydrogeological situation is described by 
BENNETT et al. (2002). The interpretation of the borehole data and determination of the 
matrix and secondary porosity and secondary-pore types (shapes of spheroids 
approximating secondary pores) were presented by KAZATCHENKO et al. (2006b), where to 
determine the pore microstructure of aquifer carbonate formations the authors applied the 
petro physical inversion technique that consists in minimizing a cost function that includes 
the sum of weighted square differences between the experimentally measured and 
theoretically calculated logs (KAZATCHENKO et al. 2004). 

In this case the following well logs were used for joint simultaneous inversion as input data: 
resistivity log, transit times of the P- and S-waves (acoustic log), total porosity (neutron 
log), and formation density (density log). To calculate the theoretical acoustic and 
resistivity logs the double-porosity model for describing carbonate formations was applied 
(KAZATCHENKO et al. 2006a). 

This model treats carbonate rocks as a composite material that consists of a homogeneous 
isotropic matrix (solid skeleton and matrix pore system) where the secondary pores of 
different shapes are embedded. The secondary pores were approximated by spheroids with 
variable aspect ratios to represent different secondary porosity types: vugs (close-to-sphere 
shapes), quasi-vugs (oblate spheroids), channels (prolate spheroids), and micro fractures 
(flattened spheroids). For computing the effective properties the symmetrical self-consistent 
method of the effective medium approximation was used. 

In this paper we used the results of inversion obtained by KAZATCHENKO et al. (2006b) for 
carbonate formations of South Florida Aquifer that includes the following petro physical 
characteristics: matrix porosity, secondary vuggy and crack porosities. It should be noted 
that the secondary-porosity system of this formation has complex microstructure and 
corresponds to a model with two types of pore shapes: cracks (flattered ellipsoids) with the 
overall porosity of 2% and vugs (close to sphere) with the porosity variations in the range 
of 10-30%. Such a secondary-porosity model can be interpreted as the interconnected by 
micro fractures and channels vuggy formation. 
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Fig. 2:  Smoothed marginal distributions and copula 

We model vuggy porosities as an absolutely continuous random variable X with unknown 
marginal distribution function F, and permeability as an absolutely continuous random 
variable Y with unknown marginal distribution function G. From KAZATCHENKO et al. 
2006b we have bivariate observations from the random vector (X, Y). For simulation of 
continuous random variables, the use of the empirical distribution function estimates (2) is 
not appropriate since Fn is a step function, and therefore discontinuous, so a smoothing 
technique is needed. Since our main goal is simulation of porosity-permeability, it will be 
better to have a smooth estimation of the marginal quantile function Q (u) = F−1 (u) = 
inf {x : F (x) ≥ u}, 0 ≤ u ≤ 1, which is possible by means of Bernstein polynomials as in 
MUÑOZ-PÉREZ & FERNÁNDEZ-PALACÍN (1987): 
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and the analogous case for marginal G in terms of values yk . For a smooth estimation of the 
underlying copula we make use of the Bernstein copula (SANCETTA & SATCHELL 2004, 
SANCETTA 2007): 
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Fig. 3: Original data and simulations 
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for every (u, v) in the unit square [0, 1]2 , and where Cn is as defined in (3). By means of (4) 
and (5), in Figure 2 we present the smoothed counterparts of the empirical versions shown 
in Figure 1. 

3 Simulation and nonparametric regression 

With smoothed estimations of the underlying copula (dependence structure) and the 
marginal distribution function of the random variables involved, we have enough 
information to perform simulations and to make inferences. 

In order to simulate replications from the random vector (X, Y) with the dependence 
structure inferred from the observed data S := {(x1, y1), . . . , (xn, yn)}, accordingly to a result 
in NELSEN (2006) we have the following algorithm: 

1. Generate two independent and continuous Uniform (0, 1) random variates u and t. 

2. Set 1( )uv c t  where 

( , )
( )u

C u v
C v

u







 (6)

and C  is obtained by (5). 

3. The desired pair is (x, y) = ( ( ), ( ))n nQ u R v  , where nQ and nR  are the smoothed estimated 

quantile functions of X and Y, respectively, accordingly to (4). 

In Figure 3 we show: a scatterplot of porosity-permeability real data (sample size of n = 
380) taken from KAZATCHENKO et al. (2006b) (left); simulation of n = 380 and n = 3800 
porosity-permeability observations, accordingly with the dependence structure learned from 
the original data (center, right). 

For a value x in the range of the random variable X and 0 < α < 1 let y = φα (x) denote a 
solution to the equation P (Y ≤ y | X = x) = α . Then the graph of y = φα (x) is the α-quantile 
regression curve of Y conditional on X = x . Recalling (6), it has been proved (NELSEN 
2006) that 

( ), ( )P ( ) ( ) ,u u F x v G xY y X x c v      (7)

and this result leads to the following algorithm (NELSEN 2006) to obtain the α-quantile 
regression curve of Y conditional on X = x : 

1. Set cu (v) = α. 

2. Solve for the regression curve v = gα (u) . 

3. Replace u by ( )nQ x  and v by ( )nR x . 

4. Solve for the regression curve y = φα (x). 

In Figure 4 we present: median regression curve (left), that is α = 0.50 quantile regression 
curve; first and third quartile regression curves (center), that is α = 0.25 and α = 0.75 
quantiles; first and ninth decile regression curves (right), that is α = 0.10 and α = 0.90 
quantiles. 
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Finally, since the original data in KAZATCHENKO et al. (2006b) is presented in one-
dimensional spatial form (depth of measurements), given the spatial data for porosity, see 
Figure 5 (down), we compare the original spatial data for log-permeability versus a spatial 
median regression based on porosity, Figure 5 (up). 

 

Fig. 4:  Regression curves: α = 0.50; 0.25 and 0.75; 0.10 and 0.90 

 

Fig. 5:  Spatial regression of permeability given porosity 

4 Conclusions 

From a methodological point of view, this approach provides a very flexible statistical 
research tool to investigate the existing complex dependence relationships between pairs of 
petro physical properties such as porosity and permeability, without imposing strong 
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assumptions of linearity or log-linearity, and/or normality when we are modelling them as 
random variables, not even the existence of first or second moments of the variables 
involved. The only assumption has been the random variables to be jointly absolutely 
continuous, and thereafter the data is allowed to speak by itself about the dependence 
structure. 

The methodology used in this work has two main advantages: first, an easy way to simulate 
bivariate data with the dependence structure and marginal behaviour suggested by already 
observed data; second, a straightforward way to perform nonparametric quantile regression, 
which is useful in obtaining conditional point and interval estimates for Y given X = x, and 
without imposing or assuming functional relationships between variables. 

All the information about the dependence structure is contained in the underlying copula, 
and its estimation is being used, instead of the extreme information reduction that is done 
by the use of numerical measures such as the linear correlation coefficient, which under the 
presence of nonlinear dependence may become useless and/or quite misleading 
(EMBRECHTS et al. 1999). 

The nonparametric regression obtained is useful to confirm or to question prior ideas about 
relationships between variables, or even in proposing an appropriate model to explain such 
relations. The results obtained in this work were discussed with A. Mousatov (KAZAT-
CHENKO et al. 2004, 2006a, 2006b) and the median regression (Figure 4, left) reflects what 
was expected: a very moderate increase in permeability while porosity increases below a 
level of 0.2 (percolation threshold), with an explosive increase in permeability when 
porosity is above such threshold, since at those levels the vug clusters finally become 
connected. 

In relation with the geostatistical applications this method opens a promising line of 
research to model in a nonparametric fashion the intrinsic spatial dependence of random 
functions overcoming the restriction imposed by a linear coregionalization models. This 
methodology may be extended to more than two variables, but some intensive computing 
issues need to be efficiently solved. 
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