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The statistical dependence between petrophysical properties (porosity, permeability, water saturation,

etc.) in heterogeneous formations is usually nonlinear and complex; therefore, traditional statistical

techniques based on assumptions of linearity are not appropriate for modeling these dependence

relationships. Also, these methods may not reproduce the extreme values and data variability, which

may represent impermeable barriers or high permeability zones. A modern way to model the

petrophysical dependence structure between random variables is using copulas.

Copula functions have been previously applied to this kind of problems, but it seems to be very

restrictive that a single copula family be flexible enough to model the nonlinear dependence structure

between petrophysical properties in highly heterogeneous porous media. For this reason, in this work

we have resorted to a nonparametric approach, where the Bernstein copula is used to model the

empirical petrophysical relationship without imposing any distributional constraint.

The copula based stochastic method proposed here, basically consists on applying the simulated

annealing method with a joint probability distribution model estimated by a nonparametric Bernstein

copula. This approach has several advantages, among others we can mention that does not require the

assumption of normality or other probability distribution, and is not restricted to the case of linear

dependence between the variables. The proposed method provides a very flexible tool to model the

complex dependence relationships between pairs of petrophysical properties. It is shown a case study

where this tool is applied to model the permeability–porosity nonlinear relationship in carbonate

double-porosity formations with complex microstructure of pore. It is discussed a comparative study

between methods already established and the proposed one.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Currently, the integrated reservoir modeling is the most accepted
way to perform a reservoir study. In a simple manner it consists of
modeling, from a geological and petrophysical point of view, the
spatial distribution of facies and petrophysical properties (Cosentino,
2001). In integrated reservoir modeling, permeability estimation is
normally a common objective. A way to perform this task is
establishing dependence models between petrophysical properties
such as the porosity–permeability relationship. Since it is difficult to
have direct data about permeability, we use the porosity information
to estimate it (Landa et al., 1996). In particular, in the context of
integrated reservoir modeling, we propose a stochastic method to
estimate permeability, at well log scale, using the available informa-
tion of porosity.
ll rights reserved.

ernández-Maldonado).
In carbonate double-porosity formations with complex micro-
structure of pore space the permeability prediction becomes more
difficult to estimate because it usually depends on classes of
porosity, such as vugular and fracture porosity (secondary porosity).
Even more, in such cases permeability is directly related to the
connectivity structure of the pore system. This fact makes perme-
ability prediction a challenging task.

By far the most used permeability predictor is the porosity–
permeability relationship (Balan et al., 1995). It has long been
assumed that most reservoir rocks show a reasonably linear
relationship between these parameters in a semi-log scale, which
allows for the estimation of permeability when a porosity profile
is available. This normally requires a calibration data set that is
represented by one or more key wells where comprehensive
information is available in terms of core and log data. This
calibration data set is used to build the predictor and to test the
reliability of the results.

The regression approach tries to predict a conditional average,
or expectation of permeability, corresponding to a given set of
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parameters. A different predictive equation must be established
for each new area or new field. The main drawback of traditional
regression methods is that the complex variability of data may
not be effectively captured just in terms of variance or standard
deviation and therefore the predicted permeability profile will be
ineffective in reproducing extreme values. This situation is critical
because, from a fluid flow point of view, these values may
represent either high permeability zones or impermeable barriers.

Neural networks provide an alternative to the traditional
techniques of estimating permeability. The method has been
introduced in the last years, following the widespread availability
of powerful computing resources and has rapidly found a number
of applications. In contrast to any other estimation method,
neural networks do not make use of a predefined relationship,
since the estimation function is built through experience during
the training phase (Rogers et al., 1995). In this respect, neural
networks are model-free estimators.

An interesting point is that the predicted permeability dis-
tribution does not obey usual statistical rules, e.g., the preserva-
tion of the mean value. In fact, one of the drawbacks of the
predictions made through regressions, i.e., the smoothing effect
and the loss of the extreme values, is not a concern in the case of
neural networks. In fact, the technique allows the actual varia-
bility of the data to be preserved (Cosentino, 2001).

Neural networks have some disadvantages, too. First, the
training process has to be done with caution and can be a lengthy
process, which requires a good calibration data set. The good
results obtained by this technique are reached utilising a com-
prehensive training data set, which is not always available in real
cases. On the other hand, failing in correctly calibrating the
network may result in aberrant results. Another point to take
into consideration is that the methodology is not yet an ‘off the

shelf’ application and requires expertise by the geoscientist
(Cosentino, 2001).

The idea of constructing numerical models of the reservoir that
honor all available data (core measurements, well logs, seismic and
geological interpretations, etc.) having sparse knowledge of rock
properties leads us to consider the stochastic simulation approach
(Deutsch, 1992). This is not a new concept (Haldorsen and
Damsleth, 1990; Journel and Alabert, 1990), stochastic models of
physical systems are used extensively in many disciplines.

Stochastic simulation is the process of building alternate,
equally probable models of the spatial distribution of the
unsampled values. The simulation is said to be ‘‘conditional’’ if
the resulting realizations honor the hard data values at their
locations. The most straightforward algorithm for generating
realizations of a multivariate Gaussian field is provided by the
Sequential Gaussian Simulation (SGS) and it is extensively used to
perform permeability simulations (Holden et al., 1995), another
algorithm used to make permeability predictions is the Sequential
Indicator Simulation. The sequential Gaussian simulation (SGS)
and sequential indicator simulation (SIS) algorithms are state-of-
the-art simulation methods that have contributed significantly to
reservoir modeling and risk-qualified decision making. Never-
theless, these methods and their enhancements (Journel and Zhu,
1990; Suro-Perez, 1992) are limited to cases when the spatial
continuity is characterized by stationary two-point statistics and
to data that is defined on the same support1 (Deutsch, 1992).

Deutsch and Cockerham (1994) used the simulated annealing
technique to specify the dependence relationship between petro-
physical properties and its spatial structure by minimizing a
Multivariate Objective Function (MOF). The terms of the MOF to
1 Data of different supports may only be considered if the averaging is linear,

which is not the case for permeability.
model the dependence structure are two individual marginals,
which describe the empirical distribution of each petrophysical
property; a correlation coefficient, which makes a linear descrip-
tion of the relationship, and a conditional distribution. To describe
the spatial distribution, a semivariogram model of the permeability
is used. The terms of the Multivariate Objective Function describe
the dependence structure and spatial distribution of the petrophy-
sical properties, however, the application of this approach do not
show a natural representation of them.

A modification of the above methodology was given by Dı́az-
Viera and Casar-González (2005). Here, it was proposed the use of
bivariate t-copula to construct the joint distribution function
rather than using the joint distribution function of the sample.
In this case, the structure relationship between petrophysical
properties was specified by dependence measures such as Ken-
dall’s t and Spearman’s r (Dı́az-Viera and Casar-González, 2005).
This methodology was applied to simulate permeability from a
porosity profile in a double porosity carbonate systems restricted
to one-dimensional case at well-log scale (Dı́az-Viera et al., 2006).

One of the main advantages of Dı́az-Viera and Casar-González
proposal is that it is used a modern statistical tool (the t-copula)
capable to catch and reproduce the most important statistical
characteristics of each variable (mean, median, variance, standard
deviation, etc.), and their joint behavior as well. Hence, a copula
function is ideal to model the complex dependence pattern
that frequently appears between petrophysical properties.
Another advantage is that the MOF of simulated annealing
technique is considerably reduced, because each univariate
marginal distribution is reproduced automatically, therefore it is
no longer necessary to include them into the MOF. Moreover, as a
consequence of this, the MOF becomes lighter and computationally
faster.

While Dı́az-Viera and Casar-González proposal can reproduce
many features of the observed data, including their extreme
values, the critical problem of this approach is that the t-copula
is a parametric type copula, i.e., it is based on a given distribution
function, the student t. Consequently, expecting a single copula
family to be capable to model any kind of bivariate dependency
seems to be too restrictive, at least for the petrophysical proper-
ties under consideration.

It is worth mentioning that the copula approach has been
successfully used to model dependence patterns in other areas of
oil industry, for example, for field development decision process
(De Melo e Silva Accioly and Yassuo Chiyoshi, 2004); or to model
dependence in petroleum decision making (Al-harthy et al.,
2005). In this context, copulas have become the new way of
modeling dependence structure between variables.

In this work we continue using copulas, extending their
application to the nonparametric case. In other words, we do
not impose a priori a parametric joint distribution function to
characterize the behavior of the sample data, instead, we use a
copula function to model the intrinsic distribution of data values
through a nonparametric approach, using the Bernstein copula
(Sancetta and Satchell, 2004; Sancetta, 2007).

The Bernstein copula is a function that fits its joint distribution
behavior to the joint empirical distribution, consequently, it does
not need to specify the porosity–permeability relationship using
dependence measures such as Kendall’s t and Spearman’s r. As a
consequence, the simulated values of permeability are reproduced
in a much more natural way and this occurs because we do not
impose any dependence relationship, instead, we allow the data to
‘speak’. The simulated annealing technique is used to model the
spatial distribution of permeability. Unlike previous cases the Multi-
variate Objective Function has only two terms, one for modeling the
dependence structure between petrophysical properties, and the
other one for modeling the spatial distribution. In this way the MOF
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is lighter and hence it becomes computationally faster. Another
advantage is that this methodology is not limited to petrophysical
properties modeling, and can be used in many areas of geostatistics.

In next sections we will make a brief introduction to copulas;
next, we will model porosity–permeability relationship using the
Bernstein copula; then, we will show the two steps method for
spatial permeability modeling, and we will conclude this part
with a detailed case study. To finish, we perform a comparative
study of three stochastic simulation techniques (our proposal
included).
2. A short introduction to copulas

The basic idea of the method proposed here consists of using a
stochastic simulation approach for modeling permeability based
on the permeability–porosity observed dependence patterns. To
explain it, we will give a very short introduction to copulas.

According to Sklar’s (1959) Theorem, the underlying bivariate

copula associated to a bivariate random vector (X,Y) represents a
functional link between the joint probability distribution H and
the univariate marginal distributions F and G, respectively:

Hðx,yÞ ¼ CðFðxÞ,GðyÞÞ ð1Þ

for all x,y in the extended real numbers system, where C :
½0;1�2-½0;1� is unique whenever X and Y are continuous random
variables. Therefore, all the information about the dependence
between continuous random variables is contained in their
corresponding copula. Several properties may be derived for
copulas (Nelsen, 2006), and among them we have an immediate
corollary from Sklar’s Theorem: X and Y are independent contin-
uous random variables if and only if their underlying copula is
Pðu,vÞ ¼ uv:

Let S :¼ fðx1,y1Þ, . . . ,ðxn,ynÞg be observations of a random vector
ðX,YÞ: We may obtain empirical estimates for the marginal
distributions of X and Y by means of

FnðxÞ ¼
1

n

Xn

k ¼ 1

Ifxkrxg; GnðyÞ ¼
1

n

Xn

k ¼ 1

Ifykryg ð2Þ

where I stands for an indicator function which takes a value equal
to 1 whenever its argument is true, and 0 otherwise. It is well-
known (Billingsley, 1995) that the empirical distribution Fn is a
consistent estimator of F, and that, Fn(t) converges almost surely
to F(t) as n-1, for all t.

Similarly, we have the empirical copula (Deheuvels, 1979), a
function Cn with domain fi=n : i¼ 0;1, . . . ,ng2 defined as

Cn
i

n
,

j

n

� �
¼

1

n

Xn

k ¼ 1

IfrankðxkÞr i,rankðykÞr jg ð3Þ

and its convergence to the true copula C has also been proved
(Fermanian et al., 2004). The empirical copula is not a copula,
since it is only defined on a finite grid, not in the whole unit
square ½0;1�2, but by Sklar’s (1959) Theorem Cn may be extended
to a copula.
3. Porosity–permeability data modeling using Bernstein
copula

We model porosity as an absolutely continuous random
variable X with unknown marginal distribution function F, and
permeability as an absolutely continuous random variable Y with
unknown marginal distribution function G. Having bivariate
observations from the random vector (X,Y), for simulation of
continuous random variables, the use of the empirical distribu-
tion function estimates (2) is not appropriate since Fn is a step
function, and therefore discontinuous, so a smoothing technique
is needed. Since our main goal is simulation of porosity–perme-
ability, it will be better to have a smooth estimation of the
marginal quantile function Q ðuÞ ¼ F�1

ðuÞ ¼ inf fx : FðxÞZug,
0rur1, which is possible by means of Bernstein polynomials
as in (Muñoz-Pérez and Fernández-Palacı́n, 1987):

~Q nðuÞ ¼
Xn

k ¼ 0

1

2
ðxkþxkþ1Þ

n

k

� �
ukð1�uÞn�k

ð4Þ

and the analogous case for marginal G in terms of values yk. For a
smooth estimation of the underlying copula we make use of the
Bernstein copula (Sancetta and Satchell, 2004; Sancetta, 2007):

~C nðu,vÞ ¼
Xn

i ¼ 1

Xn

j ¼ 1

Cn
i

n
,

j

n

� �
n

i

� �
uið1�uÞn�i

n

j

 !
vjð1�vÞn�j

ð5Þ

for every (u,v) in the unit square ½0;1�2, and where Cn is as defined
in (3).

3.1. Nonparametric simulation algorithm

In order to simulate replications from the random vector (X,Y)
with the dependence structure estimated from the observed data
S :¼ fðx1,y1Þ, . . . ,ðxn,ynÞg, according to a result in Nelsen (2006) we
have the following algorithm:
(1)
 Generate two independent and continuous Uniform ð0;1Þ
random variates u and t.
(2)
 Set v¼ C�1
u ðtÞ where

CuðvÞ ¼
@ ~C ðu,vÞ

@u
ð6Þ

and ~C is obtained by (5)

(3)
 The desired pair is ðx,yÞ ¼ ð ~Q nðuÞ, ~RnðvÞÞ, where ~Q n and ~Rn, are

the estimated and smoothed quantile functions of X and Y,
respectively, according to (4).
For details about this section see Erdely and Dı́az-Viera (2009).
4. Permeability modeling by nonconditional stochastic
simulation method using the Bernstein copula

Basically the methodology can be described as a two-stage
algorithm. In the first one, the empirical porosity–permeability
bivariate distribution is reproduced by a nonparametric copula
modeling, using the Bernstein copula. The aim is to reproduce the
joint dependence pattern between these two petrophysical
properties. In the second one, a geostatistical simulation of
permeability is performed using simulated annealing technique,
whose objective function is the variogram model (Deutsch and
Journel, 1998).

A description of each stage of the algorithm is described
below:
(1)
 Petrophysical properties dependence modeling using Bern-
stein copula.
(2)
 Stochastic spatial simulation of permeability profile, using
porosity as secondary variable. The simulated annealing
algorithm involves the following:
(a) Generation of an initial spatial configuration of perme-

ability, in stochastic simulation this configuration is
known as ‘seed’. It means that a simulation must initially
have a set of permeability values to begin with. It is not
necessary these values fulfill the variogram model, they
will be provided by the Bernstein copula.
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(b) Definition of the MOF (Multivariate Objective Function):
For this case we only need to define the variogram model,
hence, we have an univariate objective function.

(c) Measuring the energy of the seed: In a simplistic way, this
step gives us an idea of how far this configuration is from
the objective function.

(d) Calculating the simulated annealing starting parameters
(initial temperature (t0) and cooling schedule) based on
Dreo’s procedure (Dréo et al., 2006).

(e) Performing the simulation: It finalizes when the objective
function error is reached, or an accumulation of three
stages without change occurs, or when the maximum
number of attempted perturbations is completed.
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In the next section, we will show the application of this
proposal to a case study. First, a short description of the data
set will be done; then, each step of the algorithm above described
will be applied; finally, results will be discussed.

4.1. A case study

We model the relationship between permeability and porosity
of the double porosity carbonate formations of a South Florida
Aquifer in the western Hillsboro Basin of Palm Beach County,
Florida (Fig. 1). The characterization of this aquifer for the bore-
hole and field scales is given by Parra et al. (2001) and Parra and
Hackert (2002) and a hydrogeological situation is described by
Bennett et al. (2002). The interpretation of the borehole data and
determination of the matrix and secondary porosity and second-
ary-pore types (shapes of spheroids approximating secondary
pores) were presented by Kazatchenko et al. (2006), where to
determine the pore microstructure of aquifer carbonate forma-
tions the authors applied the petrophysical inversion technique
that consists in minimizing a cost function that includes the sum
of weighted square differences between the experimentally mea-
sured and theoretically calculated logs (Kazatchenko et al., 2004).

We used the results of inversion obtained by Kazatchenko
et al. (2006) for carbonate formations of South Florida Aquifer
that includes the following petrophysical characteristics: matrix
porosity, secondary vuggy and crack porosities. It should be noted
that the secondary porosity system of this formation has complex
microstructure and corresponds to a model with two types of
pore shapes: cracks (flattered ellipsoids) with the overall porosity
of 2% and vugs (close to sphere) with the porosity variations in
the range of 10–30%. Such a secondary porosity model can be
interpreted as the interconnected by microfractures and channels
vuggy formation.

Details of the statistical properties analysis of this results are
largely explained by (Dı́az-Viera et al., 2006). Based on this study
we determine that the highest observed dependence between the
1050 1100 1150 1200 1250
Depth

Permeability (K)
Total Porosity (TotPor)
Vuggy porosity (VugPor)
Crack porosity (CrPor)

ack porosity (PHICR), vuggy porosity (PHIV), total porosity (PHITOT) and

lity (K).
petrophysical properties corresponds to vuggy porosity (PHIV)
and permeability (K).
4.1.1. Porosity–permeability data modeling: generating the initial

configuration

Simulated Annealing (SA) has proved its effectiveness in
various fields such as the design of electronic circuits, image
processing, collection of the household garbage, or the organiza-
tion of the data-processing network (Dréo et al., 2006). The
simulated annealing method is a global optimization algorithm
which stochastically finds one of the best solutions. To start, the
method needs an initial configuration, in other words, needs a
possible solution which is not necessarily the best, this config-
uration is known as seed. At this point the method randomly
selects a single value of the initial configuration and proposes a
new one, this process is known as elemental perturbation. Then, it
asks if this new configuration is closer to a good solution, if it is
true, it keeps the new configuration and randomly selects another
value to do the same; if it is false, it accepts or rejects the new
configuration by a probability, determined by the Boltzmann
distribution. The simulated annealing method repeats this task
many times in order to reach a good solutions.

In our case, to perform a Simulated Annealig Realization (SAR)
it is necessary to propose an initial configuration (or ‘seed’) of the
primary variable, is this case the permeability. The Bernstein
copula is used to generate it through the nonparametric simula-
tion algorithm (presented before). Even more, this algorithm is
used to generate each new permeability value when the SAR is
performed.

In Fig. 2 it is shown a scatter-plot distribution and histograms
of porosity–permeability real data (sample size of n¼380) taken
from Kazatchenko et al. (2006). Using the nonparametric simula-
tion algorithm, we generate a single porosity–permeability data
set of the same size of observations (Fig. 3); this nonparametric
simulation will be considered as the initial configuration, or seed.
It should be noticed that the Bernstein copula reproduces very
well the marginal distribution and the joint distribution of
porosity and permeability. In fact, this is the reason why we do
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Fig. 2. Scatter-plot distribution and histograms of porosity and permeability of

real data values.
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Fig. 3. Scatter-plot distribution and histograms of porosity and permeability of

initial configuration (seed).
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using the Bernstein copula.
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Fig. 6. Estimated variogram for K (real data values), and its fitted model.
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not need any dependence measures or marginal distributions as
Dı́az-Viera and Casar-González (2005) and Deutsch and Cockerham
(1994) methods, respectively, do.

In addition, the Bernstein copula can reproduce the variability
and the extreme values of the original data. Both configurations
(data values and seed) show very similar statistics of permeability
(Fig. 4), scatter-plot distribution and marginal distributions of
each petrophysical property.

Finally in Fig. 5 it is shown the spatial distribution of perme-
ability (red) versus a single nonconditional Bernstein copula
simulation, using PHIV as secondary variable (blue). The depen-
dence structure between porosity and permeability is very well
reproduced, but the spatial structure has a lot of variability.
4.1.2. Defining the objective function

The simulated annealing technique runs many, often millions of
perturbations in order to achieve an acceptable realization, and that
implies a high computational effort. Therefore, it is not recommended
having too many components into the objective function, and also,
each one of them should be reasonably easy to compute (Deutsch
and Journel, 1998). Since Bernstein copula allows us to model the
dependence pattern between permeability and porosity, we can
propose an univariate objective function to satisfy the spatial
distribution, then, the objective function is the variogram model
(Deutsch and Journel, 1998).

FO¼
X

i

½gnðhiÞ�gðhiÞ�
2

gðhiÞ
2

ð7Þ

where

gðhÞ ¼ 1

2NðhÞ

XNðhÞ
i ¼ 1

½ZðxiþhÞ�ZðxiÞ�
2 ð8Þ

4.1.3. Measuring the energy of the initial configuration

According to the objective function, we use Eq. (7) to obtain
the energy of the seed, Ei¼159.63. This energy represents or
reflects how far we are from a good solution. In Figs. 6 and 7 we
plot the variogram model of each configuration, data values and
seed, respectively. In the initial configuration we have a great
nugget effect; it means that we have high small-scale variability.
RGEOESTAD program was used to analyze these results (Dı́az-
Viera et al., 2010).

In Table 1, we present the variogram models of each
configuration.



Table 1
Variograms models of the data values and initial configuration (seed).

Configuration Nugget Sill Range

Data values 0.00 261,1621.52 85.07

Seed 962,645.81 2,004,671.28 80.00
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Fig. 8. Scatter-plot distribution and histograms of PHIV and K simulated values

(a single simulation).
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Fig. 7. Estimated variogram for K (initial configuration or seed configuration) and

its fitted model.
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4.1.4. Calculating the initial temperature and the most suitable

annealing schedule

To calculate the annealing schedule the procedure proposed by
Dréo et al. (2006) is followed. The initial temperature is calculated
based on the following equation:

T0 ¼ �
DE

logðt0Þ

� �
ð9Þ

where DE¼ Eperturb�Einitial is the mean of the energy differences
between 100 perturbed configurations and the seed. The pertur-
bation mechanism consists in choosing a given value of porosity
and generating a new permeability value using the Bernstein
copula algorithm (see Section 3.1).

Using Eq. (9) and considering an acceptance rate t0 ¼ 0:5 (Dréo
et al., 2006), the initial temperature is

T0 ¼ 1:14

Annealing schedule:
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Fig. 9. Estimated variogram for K (a single simulation), and its fitted model.
where n is the data number.
The decreasing temperature values are calculated by geometric

law (10):

Tkþ1 ¼ 0:8nTk ð10Þ

4.1.5. Results

We have all necessary elements to perform simulated annealing
realizations, i.e., initial configuration, objective function, initial
temperature, cooling program schedule and a new permeability
value generator (the Bernstein copula). Now it is the moment to
execute realizations, we choose to make a single nonconditional
simulation and a median of 10 nonconditional simulations, both will
be compared to the original data values. It must be clarified that a
nonconditional simulation means that it is a simulation where any
permeability value is fixed.

The single nonconditional simulation shows a very good
agreement in terms of histograms, variogram and scatter-plot
reproduction (Fig. 8). Also its variogram and its fitted model show
very good agreement with respect to real data (Fig. 9).

As we could anticipate, the dependence structure between
these two petrophysical properties is well represented, the
extreme values, and in general, all of the most important statistics
are quite well reproduced (Fig. 10).
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tion of K, with bivariate Bernstein copula, using PHIV as secondary variable.
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Fig. 14. Spatial distribution of permeability in a median of 10 nonconditional SA

simulations of K, with bivariate Bernstein copula, using PHIV as secondary variable.

Table 2
Variograms models of the data set, seed, single nonconditional SA simulation and

the median of 10 SA nonconditional simulations.

Configuration Nugget Sill Range

Data values 0.00 2:611� 106 85.07

Seed 962,645.81 2:004� 106 80.00

K SA 1 0.00 2:612� 106 84.99

K SA median 0.00 2:620� 106 86.84

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3.309deeSK

1.415miS1ASK

K SA 10 Sim 0.921

Fig. 15. Mean Square Error (MSE) comparison between the initial configuration

(seed), a single SA simulation, and the median of 10 SA simulations.
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The spatial distribution of the permeability follows the same
general behavior of the original one (Fig. 11). However, there is
still a small-scale variability which does not exist in the original
data values; but certainly, it is smaller than the initial configura-
tion (Fig. 5).

The median of 10 nonconditional simulated annealing realiza-
tions was calculated in order to reduce small-scale variability
(Fig. 14). Histograms and scatter-plot reproduction also show a
very good agreement with respect to real data (Fig. 12), as well as
the variogram and its fitted model (Fig. 13).

Table 2 is a summary of the variogram models. Observe that
these values are very similar between each data set, except,
obviously, the seed values.
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Finally, Fig. 15 shows a comparison chart in terms of mean
square error (MSE). The data set values that has the greatest MSE
is the seed (3.309). The simulated annealing realizations using
bivariate Bernstein copula show very low MSE values (1.415 for
single simulation and 0.921 for median of 10 simulations).
5. Comparison of three different spatial stochastic methods

We have proposed the use of Bernstein copula as an alter-
native to traditional methods based on linear assumptions like
regressions or semi-logarithmic transformations. The reason is
because these methods eventually end up giving results that are
far away from the real data distribution. Also we said that a
parametric copula approach can represent very well the relation-
ship between porosity and permeability, but due to their complex
dependence structure, the data values may not to be naturally
estimated, since it is hard to fit the dependence structure between
these two petrophysical properties with a single model.

The purpose of this section is to perform a comparative and
quantitative study between three different methods to simulate
the spatial distribution of permeability (K versus Depth), using as
a covariate the porosity profile (PHIV). It will be shown that this
proposal is a feasible and consistent tool to model the spatial
structure of petrophysical properties using their dependence
relationship.
5.1. Stochastic simulation methods

The following three methods are used to perform the perme-
ability simulations:
(1)
 SASIM (Deutsch and Journel, 1998): SASIM is a program that
belongs to GS library (GSLIB) that uses a stochastic simulation
method based on simulated annealing technique. It has a MOF
consisting in: two individual histograms, a correlation coeffi-
cient, a conditional distribution and a semivariogram model
(Eqs. (11)–(14)).
(2)
 t-copula (Dı́az-Viera and Casar-González, 2005): stochastic
simulation method that uses simulated annealing technique
and t-copulas approach to model the dependence structure
between petrophysical properties. It has a MOF consisting in a
correlation coefficient, a semivariogram model, and condi-
tional distribution (Eqs. (12)–(14)).
(3)
 The proposed method (Bivariate Bernstein Copula): stochastic
simulation method that uses simulated annealing technique
and the Bernstein copula to model the dependence structure
between petrophysical properties. Here it is not assumed any
probability distribution function. The objective function con-
sists only of the semivariogram model (Eq. (12)).
Combinations of the following objective functions are used in
the above methods.

A histogram or univariate distribution is one statistical mea-
sure that stochastic realizations should honor. The cumulative
distribution Fn

ðzÞ of the simulated realization should match the
prespecified cumulative distribution F(z) for some number of z

values [chosen equally to discretize the reference cumulative
distribution F(z)]:

O1 ¼
X

z

½Fn
ðzÞ�FðzÞ�2 ð11Þ

A semivariogram captures the two-point spatial variability in
the realization. The semivariogram gnðhÞ of the simulated realiza-
tion should match the prespecified semivariogram gðhÞ. The
objective function is written:

O2 ¼
X

h

gnðhÞ�gðhÞ�2

gðhÞ2

" #
ð12Þ

A correlation coefficient between the primary variable being
simulated and a secondary variable (available at the same
resolution) captures any linear correlation. The component objec-
tive function is

O3 ¼ ½rn�r�2 ð13Þ

Conditional distribution between the primary variable being
simulated and a secondary variable captures much more than a
linear correlation coefficient. The objective function is

O4 ¼
Xns

i ¼ 0

Xnp

j ¼ 0

½f ni ðjÞ�f iðjÞ�
2 ð14Þ

where ns and np are the number of secondary and primary classes,
respectively; the notation fi(j) is used for the conditional distribu-
tion of the primary variable (j¼ 1, . . . ,np) given that the collocated
secondary variable is in class i. Note that

Pnp

j ¼ 1 f iðjÞ ¼ 1,8i.

5.2. Describing comparison method

We compare realizations of three stochastic geostatistical
methods in order to determine the accuracy of this proposal. As
hard reference for comparison we have the variogram model and
the Mean Squared Error (MSE). Also a graphical or qualitative
comparison is done.

Finally we make a percentage comparison for each MSE value.
We take as the highest error the largest MSE value, and then, with
respect to this value we calculate the corresponding proportion
for the other two methods.

We performed the simulations in the following order:
(1)
 A single nonconditional simulation and a median of 10
nonconditional simulations of permeability.
(2)
 A single conditional simulation and a median of 10 condi-
tional simulations of permeability (both conditioned to 10%).
(3)
 A single conditional simulation and a median of 10 condi-
tional simulations of permeability (both conditioned to 50%).
(4)
 A single conditional simulation and a median of 10 condi-
tional simulations of permeability (both conditioned to 90%).
We perform the median simulation in order to decrease the
small-scale variability; we strictly followed the order above
described and we will discuss the results.

5.3. Results and discussion

In a single nonconditional simulation Fig. 16 shows the spatial
distribution of permeability, using PHIV as secondary variable.
Simulation methodologies (from top to bottom order): SASIM-
GSLIb (Deutsch and Journel, 1998), t-copula (Dı́az-Viera and
Casar-González, 2005), bivariate Bernstein copula.

A complete table of the MSE differences between each meth-
odology, in terms of percentage, is presented (Table 3).

It should be noticed that the methodology with the greatest
MSE is SASIM method with a value of 7.76, followed by the
t-copula approach with 5.55 (which represents the 71.5% of SASIM-
GSLIB methodology); finally, the Bernstein copula with a value of
1.85 (which represents the 23.8% of SASIM-GSLIB methodology).

In median nonconditional simulations, Fig. 17 shows the
comparison of the spatial distribution of the permeability, using
PHIV as a secondary variable.



Table 3
Complete MSE table. For a single simulation.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 7.76 100 –

t-Copula 5.55 71.5 100

Bernstein copula 1.85 23.8 33.3
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Fig. 16. Spatial distribution of permeability in a single nonconditional simulation.

Simulation methodologies (from top to bottom order): SASIM, t-copula and bivariate

Bernstein copula.
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Fig. 17. Spatial distribution of permeability in a median of 10 nonconditional

simulations. Simulation methodologies (from top to bottom order): SASIM,

t-copula and bivariate Bernstein copula.

Table 4
Complete MSE table. For a median of 10 nonconditional simulations.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 7.00 100 –
t-Copula 3.82 54.6 100
Bernstein copula 1.17 16.7 30.6
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A complete table of the MSE differences of the median of 10
nonconditional simulations between each methodology, in terms
of percentage, is presented (Table 4).

In all cases the errors decreased and the low-scale variability
also decreased. Once again the methodology with the greatest
MSE is SASIM with a value of 7.00, followed by t-copula with 3.82
(which represents the 54% of SASIM-GSLIB methodology); finally,
the Bernstein copula appears with a value of 1.17 (which
represents the 16% respect SASIM-GSLIB methodology).

Between 1 and 10 simulations, each methodology has a MSE
reduction, 9% for SASIM (from 7.76 to 7.00); 31% for the t-copulas
(from 5.55 to 3.82); 36% for Bernstein copulas (from 1.85 to 1.17).

In a single conditional simulation, conditioned to 10%, Fig. 18
shows the spatial distribution of permeability. In this case we
observe the same tendency as in the above results, i.e., the
method with the greatest MSE is SASIM method and the method
with the lowest error is our proposal. The MSE differences
between each method are presented in Tables 5 and 6, for single
and median conditional simulations, respectively.

Fig. 19 shows the comparison of the spatial distribution of the
permeability of the median of 10 conditional simulations.

In simulations performed for conditioned values in higher
scales (50% and 90%), we notice the tendency to have better
results, but always in all cases the method presenting better
results was our proposal. Fig. 20 for single realization and Fig. 21
for median of 10 realizations, for 50% of conditioning; and Figs. 22
and 23 for 90% of conditioning, respectively.

Tables 7 and 8 show the MSE results for 50% of conditioning
values, single and median realizations, respectively. In Tables 9 and
10 we present the MSE results for 90% of conditioning values.

As we can see our proposal has shown the most accurate results of
permeability values, for nonconditional and conditional realizations.
For example, in 10% of conditioning, the methodology with the
greatest MSE is SASIM-GSLIB (MSE¼5.91), followed by the t-copula
(MSE¼2.90), which represents the 49% of SASIM-GSLIB method;
finally, Bernstein copula (MSE¼1.02) representing the 17%. The same
difference (for our proposal) is viewed in 50% of conditioning (17%),
but in 90% of conditioning the difference reaches to 59%. This last case
is very interesting because, graphically, it is easy to appreciate how
far a simulated value is from the original data. Bernstein copula
generates values very close to the original data set.

Another interesting point is that the accuracy between condi-
tioned simulations of the same method, for example, for our proposal
the MSE values are 1.85, 1.42, 0.88 and 0.40, for nonconditional and
conditional simulations (to 10%, 50% and 90%, respectively). The
differences are not too big; this leads us to think that, at least for
conditioned simulations, they are not so different. It does not happen
for SASIM-GSLIB method because the differences between each
conditioning simulation are very large (7.76, 6.66, 3.22 and 0.92).
Hence, the results for this method will strongly depend on the
quantity of the conditioning data values we have, and this is a
crucial point.



Table 5
Complete MSE table. For a single 10% conditional simulation.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 6.66 100 –

t-Copula 3.58 53.8 100

Bernstein copula 1.42 21.3 39.7

Table 6
Complete MSE table. For a median of 10% conditional simulations.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 5.91 100 –

t-Copula 2.90 49.1 100

Bernstein copula 1.02 17.3 35.2
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Fig. 18. Spatial distribution of permeability in a single 10% conditional simulation.

Simulation methodologies (from top to bottom order): SASIM, t-copula and

bivariate Bernstein copula.
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Fig. 19. Spatial distribution in a median of 10, 10% conditional simulations.

Simulation methodologies (from top to bottom order): SASIM, t-copula and

bivariate Bernstein copula.
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The above results suggest that the Bernstein copula has a promis-
ing potential in geostatistical modeling, due to its accurate results.

Finally, we compare the original spatial data for log-perme-
ability versus a spatial median regression based on porosity
(Erdely and Dı́az-Viera, 2009), Fig. 24. The mean squared error
of this regression is 1.83, the value for a single nonconditional
simulation is 1.85, and hence, we can see that a quantile median
regression, just using the Bernstein copula can compete with
simulated annealing results at least for this case.
Depth

Fig. 20. Spatial distribution in a single 50% conditional simulation. Simulation

methodologies (from top to bottom order): SASIM, t-copula and bivariate

Bernstein copula.
6. Conclusions

The proposed method provides a very flexible tool to model
the complex dependence relationships between pairs of petro-
physical properties such as porosity and permeability. It can
model bivariate dependencies in a much more efficient and
accurate way. Hence, it is an alternative to traditional methods
like linear regression, since it does not need the assumption of
linear dependence between variables.
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Fig. 22. Spatial distribution in a single 90% conditional simulation. Simulation metho-

dologies (from top to bottom order): SASIM, t-copula and bivariate Bernstein copula.

Table 7
Complete MSE table. For a single 50% conditional simulation.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 3.22 100 –

t-Copula 2.56 79.5 100

Bernstein copula 0.88 34.4 34.4

Table 8
Complete MSE table. For a median of 50% conditional simulations.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 3.04 100 –

t-Copula 1.65 54.3 100

Bernstein copula 0.53 17.4 32.1

Table 9
Complete MSE table. For a single 90% conditional simulation.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 0.92 100 –

t-Copula 0.51 55.4 100

Bernstein copula 0.40 43.5 78.4
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Fig. 21. Spatial distribution in a median of 10, 50% conditional simulations.

Simulation methodologies (from top to bottom order): SASIM, t-copula and

bivariate Bernstein copula.
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Fig. 23. Spatial distribution in a median of 10, 90% conditional simulations.

Simulation methodologies (from top to bottom order): SASIM, t-copula and

bivariate Bernstein copula.
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The proposed method has three main advantages: First, an
easy way to simulate bivariate data with the dependence struc-
ture and marginal behavior suggested by already observed data;
second, a straightforward way to perform nonparametric quantile
regression; and third, an easy way to implement a nonparametric
copula into a stochastic geostatistical simulation.

In contrast to the parametric approach, the nonparametric one
allows us to model nonlinear relationships between petrophysical
properties without assuming any distribution function as the
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Fig. 24. Spatial Bernstein copula median regression of permeability.

Table 10
Complete table of error differences between each method in terms of percentage.

For a median of 90% conditional simulations.

Method MSE Versus SASIM (%) Versus t-copula (%)

SASIM 0.81 100 –

t-Copula 0.40 49.4 100

Bernstein copula 0.33 40.7 82.5
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t-copula does, because the Bernstein copula is based on the
empirical distribution function, and consequently, it may reproduce
the data variability and the extreme values in a more natural way.

Since all information about the dependence structure is con-
tained in the underlying copula, the histogram of permeability
and porosity are automatically reproduced. Hence, the objective
function is reduced and consequently its computational cost is
lowered, we can take this advantage to introduce other compo-
nents to the objective function in order to get a better solution.

Another advantage about using the Bernstein copula is that
there is no need to make logarithmic transformations of perme-
ability, i.e., we do not have to make back transformations that can
potentially bias the results. In fact, copulas are invariant under
strictly increasing transformations of the variables.

In the case study, in contrast with the other two methods,
SASIM of GSLIB and t-copula, the Bernstein copula has a mean
squared error reduction of about 83% (from 7.00 to 1.17) in
nonconditional simulations, consequently, it has more accurate
results. It is necessary to say that there must be implemented
efficient computational algorithms in order to speed up the
computing time, because the Bernstein copula increases the
computational effort in higher dimensions.

In this study case we noted that if we just performed a nonpara-
metric quantile regression we obtain results that can compete
(spatially speaking) with simulated annealing results (1.83 Bernstein
copula median regression versus 1.85 in a single SA simulation).

The use of nonparametric copulas opens a promising line of
research to model complex dependence structures between petro-
physical properties and their intrinsic spatial dependence. In the
geostatistical simulation framework, for joint simulations we pro-
pose to use the simulated annealing method, but we can use another
optimization method which may give us more accurate results.
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