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Resumen

En este trabajo se presenta un método no 
paramétrico general de simulación estocástica 
conjunta de propiedades petrofísicas utilizando 
la cópula Bernstein. Este método consiste 
básicamente generar simulaciones estocásticas 
de una determinada propiedad petrofísica 
(variable primaria) modelando la dependencia 
empírica subyacente con otras propiedades 
petrofísicas (variables secundarias), mientras 
también es reproducida la dependencia espacial 
de la primera.
Este enfoque multivariado provee una herramienta 
muy flexible para modelar las complejas re-
laciones de dependencia de las propiedades 
petrofísicas. Tiene varias ventajas sobre otros 
métodos tradicionales, ya que no se limita al caso 
de la dependencia lineal entre las variables, y 
tampoco requiere de la suposición de normalidad 
y/o existencia de momentos.
En este trabajo este método es aplicado para 
simular un perfil de permeabilidad utilizando la 
porosidad vugular y velocidad de onda de corte 
(Ondas S) como covariables, en una formación 
carbonatada de doble porosidad a escala de 
pozo. Los valores simulados de la permeabilidad 
muestran un alto grado de precisión en 
comparación con los valores reales.

Palabras clave: permeabilidad, porosidad, 
velocidad de onda de corte, dependencia 
multivariada, cópula de Bernstein, simulación 
geoestadística.

Abstract

This paper introduces a general nonparametric 
method for joint stochastic simulation of 
petrophysical properties using the Bernstein 
copula. This method consists basically in 
generating stochastic simulations of a given 
petrophysical property (primary variable) 
modeling the underlying empirical dependence 
with other petrophysical properties (secondary 
variables) while reproducing the spatial 
dependence of the first one.
This multivariate approach provides a very 
flexible tool to model the complex dependence 
relationships of petrophysical properties. It 
has several advantages over other traditional 
methods, since it is not restricted to the case 
of linear dependence among variables, it does 
not require the assumption of normality and/or 
existence of moments. 
In this paper this method is applied to simulate 
rock permeability using Vugular Porosity and 
Shear Wave Velocity (S-Waves) as covariates in 
a carbonate double-porosity formation at well 
log scale. Simulated permeability values show a 
high degree of accuracy compared to the actual 
values.

Key words: permeability, porosity, shear wave 
velocity, multivariate dependence, Bernstein 
copula, geostatistical simulation.
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Introduction

Integrated Reservoir Modeling (IRM) is the 
most accepted way to obtain the spatial 
distribution of petrophysical properties in 
oilfields (Cosentino, 2001). An important and 
common task performed in this method is the 
estimation of permeability, because it is well 
known that this petrophysical property is quite 
informative about the oil flux patterns in a 
reservoir. However, it is difficult to obtain direct 
information about permeability, and therefore 
it is necessary to find models of dependence 
with another petrophysical property (such as 
porosity, water saturation, etc.) in order to 
have an estimation of its profile (Landa et al., 
1996). 
 

The linear regression approach is the 
most common way to model permeability 
values using other petrophysical properties 
as covariates (Balan et al., 1995). To meet 
the requirement of linearity it is common to 
perform transformations which imply that the 
final result could be biased when it is back 
transformed; there are approaches that, in 
order to fit linear models, apply logarithmic 
transformations to induce this behavior, for 
example, to use the Cokriging method it is 
necessary to have a linear relationship since 
it requires the linear corregionalization model 
(Sanjay and Journel 1994). 

The main disadvantage of linear dependency 
models is their lack of ability to capture and 
model the dependence structure or pattern (Al-
Harthy et al. 2005). In other words, traditional 
methods cannot capture the complex variability 
of data, in terms of variance or standard 
deviation; hence, the predicted permeability 
will not reproduce extreme values of the real 
data. In other words, these approaches will not 
be able to represent impermeable barriers or 
high permeability zones, and from a fluid flow 
point of view this aspects are the most important 
characteristics that determine the patterns of 
fluid movement. In this context, the predicted 
permeability profile, using linear estimators, 
will not be an effective approximation due to 
its oversmoothing nature.

On the other hand, model-free function 
estimators like artificial neural networks are 
very flexible tools that have been used to 
model permeability. However, neural networks 
have some disadvantages too. First, the 
training process has to be done with caution 
and can be a lengthy process. The good results 
obtained by this technique are reached using a 
comprehensive training data set, which is not 

always available. On the other hand, failing in 
correctly calibrating the network may result 
in aberrant results. Another point to take into 
consideration is that the methodology is not 
yet an “off the shelf” application and requires 
expertise by the geoscientist (Cosentino, 
2001).

Another alternative are Bayesian methods; 
however, the traditional framework of the 
Bayesian analysis is based on the multivariate 
normal distribution where the lower and upper 
tails are symmetrical. Armstrong et al. (2004) 
proposed an alternative Bayesian analysis that 
is based on Archimedean copulas where the 
joint distribution does not have to be normal 
and there is flexibility to have a lower tail or 
upper tail dependence based on the specific 
type of copula.

Constructing numerical models of the 
reservoir that honor all available data (core 
measurements, well logs, seismic and geological 
interpretations, etc.) having sparse knowledge 
of rock properties, leads us to consider the 
stochastic simulation approach (Deutsch, 
1992). This is not a new concept (Haldorsen 
and Damsleth, 1990; Journel and Alabert, 
1990), stochastic models of physical systems 
are used extensively in many disciplines.

Stochastic simulation is the process of 
building alternate, equally probable models of 
the spatial distribution of a random function. 
It is said that a simulation is conditional if the 
resulting realizations honor the raw data values 
at their locations. The most straightforward 
algorithms for generating realizations of a 
multivariate Gaussian field is provided by 
Sequential Gaussian Simulation (SGS) and 
Sequential Indicator Simulation (SIS), which 
are extensively used to perform permeability 
simulations (Holden et al. 1995). However 
despite of their improvements (Journel and 
Zhu, 1990; Suro-Perez, 1990) these methods 
are limited to cases when the spatial continuity 
is characterized by stationary two-point 
statistics and to data that is defined on the 
same support (Deutsch, 1992).

A competitive and more systematic method 
for predicting permeability may be achieved by 
applying stochastic joint simulations, in which 
the correct specification of dependence pattern 
between petrophysical properties is crucial 
(Deutsch and Cockerham, 1994). According 
to Deutsch this approach basically consists 
of an annealing geostatistical cosimulation of 
porosity-permeability using their empirical 
joint distribution.
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A modification of Deutsch’s methodology 
was presented by Díaz-Viera and Casar-
González, (2005). Here, it was proposed the 
use of a bivariate t-copula to construct the 
joint distribution function between porosity 
and permeability rather than use the joint 
distribution function of the sample data, the 
dependence structure was specified by matching 
concordance measures such as Kendall’s τ 
and Spearman’s ρ. The above methodology 
was applied to simulate permeability from the 
porosity profile in a double porosity carbonate 
systems, restricted to one-dimensional case at 
well-log scale (Díaz-Viera et al. 2006).

While Díaz-Viera and Casar-González 
proposal can reproduce adequately the 
observed data, and also their extreme values 
using a t-copula, the critical problem is that the 
applied copula is parametric, and consequently, 
it is based on a given distribution function, 
the student t. In that sense, expecting a 
single copula family to be able to model any 
kind of dependency relationship seems to be 
too restrictive, at least for the petrophysical 
properties under consideration. It does not 
mean that parametric copulas have not 
practical use. It means that petrophysical 
properties modeling, where dependence 
structure can be complex or non linear, using 
parametric copulas could be available but in a 
very complicated form, Sancetta and Satchell 
(2004).

The copula approach has been successfully 
used to model dependence patterns in few 
areas of oil industry, for example, for field 
development decision process (Accioly and 
Chiyoshi 2004) or to model dependence in 
petroleum decision making (Al-Harthy et al. 
2005). 

In a recent work we use the copula 
approach to model the bivariate dependence 
between petrophysical properties in a 
complete nonparametric fashion (Hernández-
Maldonado et al. 2012), it means we did not 
impose a priori a parametric joint distribution 
function to characterize the dependence 
structure of the sample; instead, we used a 
bivariate Bernstein copula function to model 
the intrinsic distribution of data values. In 
this work we introduce a multivariate method 
for estimating empirical dependence among 
several petrophysical properties using a 
nonparametric copula. The dependency 
model obtained is then used to stochastically 
simulate one property (primary variable) given 
other ones (secondary variables). Here, we 
apply a method widely used in geostatistics, 

the Simulated Annealing method, which is a 
global optimization framework where we can 
add restrictions to simulation. In this case, in 
addition of using multivariate dependence by 
sampling the empirical copula model, a spatial 
correlation function (a variogram) for the 
secondary variable is imposed. Additionally, 
if any raw data of the primary variable is 
available, it can be exactly honored, that is, 
the method can be conditional.

In this paper this method is applied to 
simulate rock permeability using a trivariate 
copula model where permeability is described 
by Vugular Porosity and Shear Wave Velocity. It 
is introduced a two stage simulation method in 
a multivariate fashion to model stochastically 
the spatial distribution of permeability at 
well log scale. Conditional and nonconditional 
simulations, and the median of simulations are 
performed in order to show the results that this 
method provides; also it is established that, as 
far as more descriptive variables integrate the 
Bernstein copula it will reproduce permeability 
values in a very precise form, consequently 
it will not be necessary to perform many 
simulations to reduce small scale variability. 

Brief introduction to multivariate copulas

The main disadvantage of dependency models 
based on a linear regression approach is 
their lack of ability to capture and model 
more general dependence structure. As an 
alternative a copula can model the joint 
distribution of petrophysical properties in better 
ways. The essence of the copula approach is 
that a joint distribution of random variables 
can be expressed as a function of the marginal 
distributions (Al-Harthy et al., 2005). 

According to Sklar’s theorem (Sklar, 
1959), the underlying copula associated to 
a multivariate random vector (X1, X2, ..., Xm) 
represents a functional link between the joint 
probability distribution  and the univariate 
marginal distributions F1, F2, ..., FM respectively:

	 H(x1, x2, ..., xm) = C(F1(x1), F2(x2), ..., Fm(xm))		
		  (1)

For all x1, x2, ..., xm in the extended real 
numbers system, where C:[0, 1]m →[0, 1] 
the underlying copula is unique whenever X1, 
X2, and Xm are continuous random variables. 
Therefore, all the information about the 
dependence between continuous random va-
riables is contained in their corresponding 
copula. Several properties may be derived 
for copulas (Nelsen, 2006), and among them 
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we have an immediate corollary from Sklar’s 
theorem: X1, X2 and Xm are independent 
continuous random variables if and only if their 
underlying copula is C(u1,...,un)=u,...,un.

Let S={(x11, x21, ... xm1), ..., (x1n, x2n, ... xmn)} be 
n observations of a random vector (X1, X2, ..., Xm). We may obtain empirical estimates for the 
marginal distributions X1, X2, ..., Xm by means 
of:
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where stands for an indicator function which 
takes value whenever its argument is true, and 
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and its convergence to the true copula  has 
also been proved (Fermanian et al., 2004). 
The empirical copula is not a copula, since it is 
only defined on a finite grid, not in the whole 
unit hypercube [0, 1]n, but by Sklar’s Theorem 
(Sklar, 1959) Cn may be extended to a copula.

Sklar’s theorem is completely general and 
a joint distribution function can be constructed 
using the copula function. The copula separates 
the marginal distributions from correlation and 
the copula itself can capture the dependence 
structure. This is an essential property of 
copulas. 

A general example of a multivariate copula 
model that describes the relationship of 
three random variables (a trivariate copula) 
according to Sklar’s theorem is shown:

	 H(x1, x2, x3) = C(F1(x1), F2(x2), F3(x3))	 (4)

There are different classes and families of 
copulas but, for this study, we will work with 
the Bernstein copula, which is a nonparametric 
copula since it is a nonparametric smoothing 
based on the empirical copula.

Joint stochastic simulation method using 
a multivariate Bernstein copula

The method presented here basically consists 
in generating a stochastic simulation of a 
primary variable, where the joint distribution 
function of its covariates is modeled using a 
nonparametric copula. In other words, the 
spatial dependence and dependence pattern 
between variables are decoupled; in this 
context, the Bernstein copula only models 
the dependence between variables and the 
spatial dependence is modeled by a variogram 
applying the Simulated Annealing method.

Basically this proposal is a two-stage 
modeling algorithm method; first, the pattern 
relationship between petrophysical properties 
under study; and second, the spatial structure. 
In the first stage it is modeled the dependence 
structure of petrophysical properties using 
a multivariate nonparametric copula (the 
Bernstein copula), then a geostatistical 
simulation of primary variable is performed 
using simulated annealing technique, whose 
objective function is the variogram model 
(Deutsch and Cockerham, 1994). A detailed 
description of each step of the algorithm will 
be described.

Multivariate Bernstein Copula Modeling.

Each petrophysical property is modeled as an 
absolutely continuous random variable X with 
unknown marginal distribution function F. For 
simulation of continuous random variables, the 
use of the empirical distribution function (2) 
is not appropriate since Fj is a step function, 
and therefore discontinuous, so a smoothing 
technique is needed. Since our main goal is to 
simulate a primary variable using more than 
one descriptive variable, it will be better to have 
a smooth estimation of the marginal quantile 
function Q(u) = F-1(u) = inf{x:F(x)≥u},0≤u≤1 
which is possible by means of Bernstein 
polynomials as in Muñoz-Pérez and Fernández-
Palacín (1987).
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For a smooth estimation of the underlying 
copula we make use of the Bernstein copula 
(Sancetta and Satchell, 2004; Sancetta, 2007):
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where;
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For example, the trivariate Bernstein copula 
model derived from (6) is:
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Sampling algorithm of a Bernstein copula 

model

For a pair of random variables (X1, X2) with 
joint distribution function H and underlying 
copula C we need to generate an observation 
of uniform (0, 1) random variables (U, V) 
whose joint distribution function is C and 
then transform those uniform variables as in 
step 3 of the sampling bivariate algorithm. 
For generating such pair (u, v) it is used a 
conditional distribution method, this method 
needs the conditional distribution function for 
V given U = u, which we denote as cu (v):

	
c v C u v

uu
B( )
( , )

=
�
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where  is the bivariate Bernstein copula 
model, obtained by (6).

To simulate replications from the random 
vector with the dependence structure estimated 
from the observed data S:={(x11, x21), ..., (x1n, x2n)} it is applied the following algorithm: 

Sampling bivariate algorithm:

1.Generate two independent and continuous 
Uniform (0,1) random variates u and t

2.Set v = cu
-1 (t); where cu is defined in (9).

3.The desired pair is ( , ) ( ( ), ( ))x x Q u R vn n1 2 =    
where Qn  and Rn  according to (5), are the 
estimated and smoothed quantile functions X1 
of X2 and, respectively. 

For the multivariate case we must 
solve equations that represent conditional 
distribution functions for W given U=u,V=v.

To simulate replications from the random 
vector with the dependence structure estimated 
from the observed data S:={(x11, x21, x31), ..., 
(x1n, x2n, x3n)} it is applied the next algorithm.

Sampling trivariate algorithm:

1.Generate three independent and continuous 
Uniform (0, 1) random variables u and t1, t2.

2.Set v = cu
-1 (t1) where cu is defined in (9).

3.Set w = cuv
-1 (t2) where 

	 c w
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u v
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where is the trivariate Bernstein copula model 
(8).

4.The desired vector is 
x x x Q u R v H wn n n1 2 3, , , ,( ) = ( ) ( ) ( )( )    where 
 Q u R vn n( ) ( ),  and,  according to (5), are 

the estimated and smoothed quantile functions 
of X1,X2 y X3, respectively.

Simulated Annealing method.

To perform stochastic simulations of a primary 
variable it is applied a method widely used in 
geostatistics, the Simulated Annealing method, 
which is a global optimization framework 
where we can add restrictions to simulation. 
In this case, in addition of using multivariate 
dependence by sampling the copula model, a 
spatial correlation function (a variogram) for 
the secondary variable is imposed. Additionally, 
if any raw data of the primary variable is 
available, it can be exactly honored, that is, 
the method can be conditional.

A more detailed explanation of each single 
step of simulated annealing method, as well 
as technical terminology, can be found in Dréo 
et al. (2006), Dafflon et. al., (2009a, 2009b), 
Dafflon and Barrash (2012), Hernández-
Maldonado et al. (2012), Deutsch (2002). In 
this work, we will just briefly mention its steps.

a.Generating an initial configuration, 
known as “seed”. An initial configuration is the 
starting point of the simulation, also, it can be 
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considered as a “possible solution” of the spatial 
disposition of the primary variable. There are 
some ways of proposing this configuration, 
see Deutsch (2002), Dréo et al. (2006). One 
of most popular of them is just proposing 
random numbers with uniform distribution. 
We decided to use the multivariate Bernstein 
copula sampling algorithm (section 3.1.1) to 
obtain this starting point in order to have a 
better approximation of the final solution.

b.Defining the objective function. Since 
we use the Bernstein copula we do not 
have to include univariate histograms into 
the objective function because they are 
reproduced automatically; in the same way, 
as Bernstein copula models the dependence 
structure between variables, it is not necessary 
to include neither a correlation coefficient. In 
other words, in order to satisfy the spatial 
distribution of the primary variable, we are able 
to propose an objective function that consists 
only in one term (11) the variogram function

	 FO h h
h

i i
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c.Measuring the initial configuration energy. 
By (12), it is calculated the variogram of the 
initial configuration  and it is compared to the 
variogram of the real configuration (11), this 
value is the energy of the starting point, and 
the main idea is that it must be decreased 
during the simulation procedure, see Deutsch 
(2002). This step gives us an idea of the 
seed´s quality, if we use random numbers to 
generate it, its measured energy will be very 
high, however, as long as this method uses a 
sample given by the Bernstein copula the initial 
energy is significantly small.

d.Obtaining the initial temperature and the 
annealing schedule. The initial temperature is 
obtained by (13):

The annealing schedule is obtained following 
the procedure proposed by Dréo et al. (2006).

e.Ending up a realization. The simulation 
ends whenever the objective function error 
is reached, or an accumulation of 3 stages 

without change occurs, or when the maximum 
number of attempted perturbations is reached.

It is shown a diagram of the method to 
perform multivariate stochastic simulations in, 
Figure1.

Case study

It will be modeled the Permeability of double 
porosity carbonate formations of a South 
Florida Aquifer in the western Hillsboro Basin 
of Palm Beach County, Florida. Based in the 
algorithm described in Section 3, we propose 
a copula-based approach to model the 
relationship between permeability, porosity 
and Shear Wave Velocity (S-waves). The 
dependency model obtained will be then used 
to stochastically simulate permeability using 
Porosity and Shear Wave velocity.

Data description

The characterization of this aquifer for the 
borehole and field scales is given in Parra et 
al. (2001), Parra and Hackert (2002), and 
a hydrogeological situation is described by 
Bennett et al. (2002). The interpretation 

Figure 1. Diagram of the two-stage method to 
perform multivariate stochastic simulations using 

multivariate Bernstein copula.



Geofísica Internacional

April - June 2014      169

Figure 2. Crack porosity (PHICR), vuggy porosity (PHIV), total porosity (PHITOT) and permeability (K).

of the borehole data, the determination 
of the matrix and secondary porosity and 
secondary-pore types (shapes of spheroids 
approximating secondary pores) were 
presented by Kazatchenko et al. (2006), where 
to determine the pore microstructure of aquifer 
carbonate formations the authors applied the 
petrophysical inversion technique that consists 
in minimizing a cost function that includes the 
sum of weighted square differences between 
the experimentally measured and theoretically 
calculated logs as in Kazatchenko et al. (2004). 

In this case the following well logs were 
used for joint simultaneous inversion as input 
data: resistivity log, transit times of the P- 
and S-waves (acoustic log), total porosity 
(neutron log), and formation density (density 
log). To calculate the theoretical acoustic and 
resistivity logs the double-porosity model for 
describing carbonate formations was applied: 
Kazatchenko et al. (2006).

This model treats carbonate rocks as 
a composite material that consists of a 
homogeneous isotropic matrix (solid skeleton 
and matrix pore system) where the secondary 
pores of different shapes are embedded. 
The secondary pores were approximated 
by spheroids with variable aspect ratios 
to represent different secondary porosity 
types: vugs (close-to-sphere shapes), quasi-
vugs (oblate spheroids), channels (prolate 
spheroids), and microfractures (flattened 
spheroids) Kazatchenko et al. (2006).

We used the results of inversion obtained 
by Kazatchenko et al. (2006) for carbonate 
formations of South Florida Aquifer that includes 
the following petrophysical characteristics: 

matrix porosity, secondary vugular and crack 
porosities (Figure 2). 

The secondary-porosity system of this 
formation has complex microstructure and 
corresponds to a model with two types of 
pore shapes: cracks (flattened ellipsoids) with 
the overall porosity of 2% and vugs (close 
to sphere) with the porosity variations in the 
range of 10-30%.

Statistical data analysis.

Given multivariate data, it is common to start 
choosing as explanatory variables those who 
exhibit higher dependence with the variable 
that is to be explained. We measured the 
dependence between the petrophysical 
properties in terms of the dependence index Φ 
proposed by Hoeffding (1941), which satisfies 
all desirable properties for a dependence 
measure for continuous random variables, see 
Nelsen (2006).

From all possible explanatory variables 
(PHITOT, PHIMAT, PHICR, PHIV, VS Meas, 
VP meas) for permeability (K), for the first 
explanatory random variable it was chosen 
relative vugular porosity (PHIV) since it 
exhibited the highest dependence F (PHI, 
K)=0.71 (on a [0,1] scale). In choosing a 
second explanatory random variable we 
need, in addition, to have a high dependence 
with permeability, and the lowest possible 
dependence with the first explanatory variable 
(PHIV), otherwise it would mean that it is 
quite similar to it and it will add no significant 
information to what the first one already can 
provide. Under this criteria, the second best 
choice was Share Wave Velocity (VS meas), 
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Figure 3. Scatter plot distribution 
and histograms of PHIV and K of real 

data values.

data taken from Kazatchenko et al. (2006), 
it shows their bivariate distribution. In Figure 
4 it is shown a scatter-plot distribution and 
histograms of VS meas–K data values

Bernstein Copula Model.

It is modeled the trivariate Bernstein Copula 
using relative vugular porosities (PHIV), Shear 
Wave Velocity (VS meas = velocity of S-waves 
measured) and K as absolutely continuous 
random variables X1, X2 and X3, with unknown 
theoretical univariate distribution functions F1, F2 and F3, see (2). Observations of this random 
vector were obtained from Kazatchenko et al. 
(2006).

We use (2) to estimate the empirical 
distribution function for each variable; however; 

Table 1. Dependence index F, Hoeffding (1941), 
for possible explanatory variables (PHITOT, 

PHIMAT, PHICR, PHIV, VS Meas, VP meas).

with F (VS meas, K) = 0.60 and F (PHIV, VS 
meas) = 0.55

Table 1 shows all dependence index F of 
explanatory variables that are the results 
of inversion obtained by Kazatchenko et 
al. (2006); Total porosity (PHITOT), Matrix 
porosity (PHIMAT), Crack porosity (PHICR), 
Vugular porosity (PHIV), Share Wave Velocity 
(VS Meas), P-Wave velocity (VP meas).

In table 1 explanatory variables are shown, 
using this information we confirm that PHIV 
has the highest dependence, but following the 
order of this table we should use as second 
explanatory variable PHITOT. We did not make 
this choice because, as we said before, a second 
explanatory variable needs to have a high 
dependence with permeability, and the lowest 
possible dependence with the first explanatory 
variable (PHIV). To see this behavior in table 
two we show the explanatory variables matrix 
dependence Hoeffding index.

We have chosen PHIV as the first explanatory 
variable; it means we must pay attention to the 
first line of table 2, and select the variable with 
the lowest dependence to PHIV. It should be 
PHICR but in Table 1 we see that this property 
offers poor information about K. Finally, we 
may choose VP meas but, VS Meas explains K 
in some better way (Table 1).

In Figure 3 it is shown a scatter-plot 
distribution and histograms of PHIV–K sample 

	 Explanatory 	 Corresponding
	 variable	 Hoeffding index F vs. K

	 PHIV	 0.71
	 PHITOT	 0.62
	 PHIMAT	 0.50
	 VS Meas	 0.60
	 VP meas	 0.55
	 PHICR	 0.16
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Table 2. Hoeffding dependence index F matrix, for possible explanatory variables (PHITOT, 
PHIMAT, PHICR, PHIV, VS Meas, VP meas).

in order to model them as continuous random 
variables they should be smoothed using (5), 
since (2) is not appropriate because Fj is a 
step function and therefore discontinuous. The 
trivariate Bernstein copula model (8) will be 
used to sample data to stochastically simulate 
permeability.

Sampling from Bernstein copula.

In Figure 5 (left side) it is shown a scatterplot 
distribution and histograms of porosity–
permeability real data (sample size of ) taken 
from Kazatchenko et al. (2006). At the center 
of the same figure, it is shown a trivariate 
simulation of permeability values using vugular 
porosity and shear wave velocity as explicative 
variables. If we do not label these two scatter 
plots it would be difficult to know which one 
of them is the original one. In this case the 
multivariate Bernstein copula provides an 
acceptable the dependence structure for 
continuous variables with complex relationship. 
The right side of Figure 5 shows 3800 simulated 
values of permeability, according to some 
analysis, it shows more clearly percolation 
patterns.

Permeability simulations and discussion.

In this section spatial simulation will be 
performed using simulated annealing 
technique. Since multivariate dependence is 
modeled by the Bernstein copula, a spatial 
correlation function (the variogram) will be 
used as an objective function in the annealing 
algorithm.

We propose a copula-based nonparametric 
approach and simulated annealing technique to 
model the spatial distribution of permeability 
using as secondary variables, porosity and 
shear wave velocity (S-waves). In Figure 
6 we can see a single nonconditional spatial 

simulation of permeability (K) in terms of depth. 
As we note the simulation (blue line) follows 
very close the real data behavior (red line), 
this is because we introduce more descriptive 
information into the Bernstein copula model. 
However, there is still a small-scale variability 
which does not exist in the original data values.

As a descriptive measure of the goodness of 
fit of predicted values of log-permeability (Log 
K) given values of the explanatory variables 
PHIV and VS meas, we calculated the Mean 
Squared Error (MSE) in each case:

 MSE K PHIV( log | ) ( )[ ].= -
=

1
1
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z x
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where a lower value of MSE represents a better 
goodness of fit. 

The simulated values of log K, given PHIV 
and VS meas (log K | PHIV, VS meas), show a 
MSE value of 0.5, which is very low compared 
to that obtained by Deutsch and Cockerham’s 
method (1994), which MSE value is 7.76; also 
it is lower than the obtained one by Díaz-Viera 
and Casar-González method, where the MSE 
value is 5.5, details are shown in Hernandez-
Maldonado et al., (2012). Finally, the MSE value 
for the trivariate copula simulation is lower 
than the MSE value of the bivariate copula 
simulation (log K | PHIV) (14), consequently it 
means that trivariate simulation has the best 
fitted values.

	 Hoeffding index F	 PHIV	 PHITOT	 PHIMAT	 PHICR	 VS Meas	 VP meas

	 PHIV	 1	 0.88	 0.72	 0.34	 0.58	 0.57
	 PHITOT		  1	 0.43	 0.32	 0.64	 0.61
	 PHIMAT			   1	 0.24	 0.30	 0.36
	 PHICR				    1	 0.31	 0.20
	 VS Meas					     1	 0.32
	 VP meas						      1
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In terms of histograms, scatterplots and 
variograms, the proposed method shows very 
good agreement with the original data values. 
As we are using three variables, the scatterplots 
of permeability can be seen in terms of K-PHIV 
(Figure 7) and K-S-waves (Figure 8). The 
scatterplots of the original data values are 
shown in Figure 3 and Figure 4 respectively.

The variogram of the simulation (Figure 
9) and its fitted model (Table 3), also shows 
good agreement with respect to real data 
(Figure 10). We can note that both variograms 
are almost equal, but in a detailed view, the 
empirical variogram of the simulated values is 
a little softer than the original one.

As we could anticipate, the dependence 
structure between these three petrophysical 
properties is well represented. The extreme 
values, and in general, all of most important 
statistics are quite well reproduced, (Figure 
11). In order to reduce small-scale variability 
seen in Figure 6, a median of 10 nonconditional 
SA simulations was performed, Figure 12. Once 
again, the spatial structure, the histograms 
and the Scatter-plot reproduction shows a very 
good agreement respecting to real data, see 
also Figure 13 and Figure 14.

In Figure 12 we can see that for small 
values of K the simulation is not following 
real data values too closely, there are two 

Figure 4. Scatter plot distribution 
and histograms of PHIV and K of real 

data values.

Figure 5. Scatter plot between Porosity and Permeability. Left, the 380 data values. Center, 380 simulated 
values using trivariate Bernstein copula. Right, 3800 simulated values.
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Table 3. Variograms Models of the data values and single nonconditional SA simulation.

Figure 6. Single nonconditional simulation of permeability (K), using porosity and shear wave velocity (VS 
meas) as secondary variables.

Figure 7. Scatter plot and histograms 
of PHIV and K (Simulated values).

	 Configuration	 Nugget	 Sill	 Range

	 Data values	 0.00	 2.61 x 106	 85.07
	 Single SA nonconditional Simulation.	 0.00	 2.57 x 106	 87.52
	 Median of 10 SA nonconditional Simulations.	 0.00	 2.51 x 106	 87.27
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reasons. First, this “behavior” is observed in 
all simulation methods that were performed 
in order to compare the simulated values for 
the bivariate case of this proposal [Hernandez-
Maldonado et al., (2012)]. In that work the 
most accurate results were shown by Bernstein 
copula. In this particular case is hard to have a 

simulation that follow too closely the behavior 
of the real data values, because there is very 
little information. And second, this is a median 
value of 10 different simulations, which means 
that each simulation has different degrees of 
accuracy, which is normal.

Figure 8. Scatter plot and histograms 
of VS Meas and K (Simulated values).

Figure 9. Estimated variogram 
and its fitted model for simulated K 

(Simulated values).
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Figure 10. Estimated variogram and 
its fitted model for original K (Data 

values).

Figure 11. Statistical comparison 
of to the original data and a single 

trivariate SA simulation.

Figure 12. Median 
of 10 nonconditional 
simulation of perme-
ability (K), using po-
rosity and shear wave 
velocity (S-waves) as 
secondary variables.



V. Hernández-Maldonado*, M. Díaz-Viera and A. Erdely

176      Volume 53 Number 2

Figure 15 shows the variogram of this 
simulation and its fitted model. In contrast to 
Figure 10 (real data values) we can see that 
this method represents very well, the spatial 
structure of permeability.

The values of the variogram model for 
a single simulation and the median of 10 

Figure 13. Scatter plot and histograms 
of PHIV and K simulated values (median 

of 10 simulations).

Figure 14. Scatter plot distribution 
and histograms of VS-meas and K 
simulated values (a median of 10 

simulations).

simulations are very close to the real data as 
well (Table 3). The same happens with their 
most important statistics (Figure 16).

Using (16) we can see that the MSE values 
between the real data and these nonconditional 
simulations are very similar (Table 4). It is an 
indicative that it is not necessary to perform 
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an efficient and fast algorithm in terms 
of data storage and computing speed to 
implement a multidimensional copula. We 
propose a procedure to efficiently implement 
a multidimensional empirical copula. Shortly 
described, this procedure fundamentally 
solves the two main disadvantages of using 
nonparametric copulas: it avoids redundant 
calculation, which increases its speed and just 
needs to storage the most important values of 
the generated hypercube.

Of course the method can be extended to 
more dimensions, but the purpose of the article 
is to show its application to a well log scale, 
where we have more control and better data 
quality. Its application to more dimensions will 
be the subject of future work.

Figure 15. Estimated variogram and 
its fitted model for simulated K data 

values.

Table 4. MSE values of nonconditional 
simulations

The Bernstein copula (8) requires that 
the empirical copula be ready to be used all 
the time, hence, it is necessary to propose 

many simulations to smooth the small-scale 
variability, and may be unnecessary.

Finally we perform conditional simulations 
and compare the MSE values in order to 
study the effect of different percentage of 
conditioning values. Figure 17 shows the results 
of the spatial distribution of the permeability 
in various percentages of conditioning values, 
from top to bottom order, it is conditioned to 
10 percent, 50 percent and 90 percent of the 
conditioning data values. Note that results are, 
graphically, very similar to real data and their 
MSE values as well (see Table 5). This shows 
that the proposed method in a multivariate 
fashion does not require big amounts of 
conditioning data to have consistent results.

Table. 5. MSE values of the single conditional 
simulations.Configuration	 MSE

Single SA nonconditional Sim.	 0.50
Median of 10 nonconditionals Sims.	 0.35 Configuration	 MSE

Single SA nonconditional Sim.	 0.50
Single SA 10% conditional Sim.	 0.41
Single SA 50% conditional Sim.	 0.36
Single SA 90% conditional Sim.	 0.27
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Figure 17. Spatial distribution of permeability in single conditional simulations using PHIV and VS meas as 
secondary variables. Conditioning levels (in top to bottom order) 10 percent, 50 percent and 90 percent.

Figure 16: Statistical comparison 
of to the original data, and the 

median of 10 SA simulations.
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Conclusions

From a methodological point of view, a 
multivariate copula approach provides a very 
flexible tool to model complex dependence 
relationships of petrophysical properties, such 
as porosity, permeability and shear wave 
velocity, without imposing strong assumptions 
of linearity or log-linearity, and/or normality 
when we are modeling them as random 
variables.

All the information about the dependence 
structure is contained in the underlying copula, 
and its estimation is being used, instead of the 
extreme information reduction that is done 
by the use of numerical measures such as 
the linear correlation coefficient, which under 
the presence of nonlinear dependence may 
become useless and/or quite misleading, see 
Embrechts et al. (1999, 2003). For this reason 
it is very important to extend the method to 
higher dimensions, because if we have more 
than one relevant explanatory variable, we 
may use this tool to take them into account.

The main advantage of the methodology 
used in this work is that it represents a 
straightforward way to perform nonparametric 
simulations, conditional and nonconditional. As 
we have said in the results of the application 
of this method, including more than one 
explanatory petrophysical property to leads 
to more accurate results. Consequently, it will 
not be necessary to perform many simulations 
(Figure 6 vs. Figure 12) or conditioning with 
high quantities of data values (Figure 17) to 
obtain acceptable results (Table 5).

This method has an important improvement 
with respect to the bivariate case, not only 
because it provides better results, but also it 
reduces the number of simulations to decrease 
the small scale variability. In other words 
it is not necessary to perform 10 or more 
simulations. Even more, it is not necessary to 
have a great number of conditioning values; 
the conditioned simulations did not show a lot 
of variation in terms of MSE values.

For future work, we think we can use 
a Bernstein copula to explore complex 
relationships between petrophysical properties 
and then fit, if possible, a semiparametric gluing 
copula, Siburg and Stoimenov (2008). Also, 
we consider we may use another optimization 
method which could give improved results, for 
example, we can implement genetic algorithms 
or Estimation of Distribution Algorithms (EDAs). 
It is very important to remark that the use of 

multivariate copulas leads to significant serious 
computational challenges, for this reason it is 
necessary to propose better ways to calculate 
them, for example parallel computing.
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