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arturo.erdely@comunidad.unam.mx

Abstract

A statistical test based on the geometric mean is proposed to determine if a predictive model
should be rejected or not, when the quantity of interest is a strictly positive continuous ran-
dom variable. A simulation study is performed to compare test power performance against an
alternative procedure, and an application to insurance claims reserving is illustrated.
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1 Introduction

From Diebold and Mariano (2001):

Prediction is of fundamental importance in all of the sciences, including economics. Fore-
cast accuracy is of obvious importance to users of forecasts because forecasts are used to
guide decisions. Forecast accuracy is also of obvious importance to producers of forecasts,
whose reputations (and fortunes) rise and fall with forecast accuracy [. . . ] Predictive per-
formance and model adequacy are inextricably linked—predictive failure implies model
inadequacy.

Several measures of forecast accuracy have been proposed, mainly for the purpose of comparing two or
more forecasting competing methods, see for example Hyndman and Koehler (2006) or Shcherbakov
et al.(2013), and statistical tests have been proposed for the null hypothesis of equal forecast accuracy
of such competing methods, see Diebold and Mariano (2001). But if the objective is to evaluate a
single forecasting method, the value itself reported by a measure of forecast accuracy does not allow
us to assess how good/bad such method is, since it is made for comparison purposes, it is a relative
rather than an absolute measure for the forecasting quality of the predictive model in question.

In the present work a statistical test is proposed to decide whether a single forecasting method should
be rejected or not as accurate, based on the geometric mean of the ratios of observed/forecasted
values, in the particular case when all the involved quantities are strictly positive. A simulation study
is performed to compare the statistical power of the proposed accuracy test versus a binomial test,
and an application to insurance claims reserving is illustrated.
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Figure 1: Left: Lognormal pdf with parameters µ = 0 and θ = 1. Right: Normal pdf with µ = 0 and
θ = 1.

2 Accuracy test

Consider the case when all the observed (si) and forecasted (ri) values are strictly positive, for
i = 1, . . . , n. If we calculate the ratios xi = si/ri then xi = 1 means a perfect forecast, xi < 1 implies
overestimation, and xi > 1 underestimation by forecast i. We will assume that in {xi : i = 1 . . . , n}
there are no repeated values and that these values may be considered as an observed random sample
from a strictly positive and continuous random variable X with unknown probability density function
(pdf) fX .

The hypothesis of interest is whether or not fX is centered around 1 (the value that represents
perfect forecasts) under a certain measure of central location. If this is the case, the pdf fX may
look something like in Fig.1(left), and if we make the transformation Y := logX the resulting pdf
fY may look something like in Figure 1(right), since the log function maps 0 < X < 1 values to the
open interval ]−∞, 0 [ and X ≥ 1 values are mapped to [ 0,+∞[ .

If we define the transformed values yi = log xi (i = 1, . . . , n) these may be considered as an observed
random sample from a random variable Y = logX. If a statistical test applied to the yi values does
not reject the null hypothesis of normality this would be equivalent to not rejecting that the xi
values are an observed random sample from a LogNormal distribution, that is, if Y is a Normal(µ, θ)
random variable then X = eY would be a LogNormal(µ, θ) random variable.

As stated in Johnson et al.(1994), even without the lognormality assumption, if X1, . . . , Xn are inde-
pendent and continuous positive random variables, and Wn :=

∏n
i=1Xi then logWn =

∑n
i=1 logXi

and if the independent random variables Yi = logXi are such that a central limit type of result
applies, then the standardized distribution of logWn would tend to a standard Normal distribution
as n tends to infinity, and the limiting distribution of Wn would then be LogNormal.

Closely related to the random variable Wn :=
∏n

i=1Xi is the concept of sample geometric mean

X̃ := (Wn)1/n and then log X̃ = 1
n

∑n
i=1 logXi = Y (the sample mean of Y1, . . . , Yn), so that X̃ may

also have either an exact or limiting LogNormal distribution, according to the above arguments. As
defined in Kotz et al.(2006) for a random variable X, a parameter analogous to the sample geometric
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mean is GM(X) := exp(E[logX]) when E[| logX|] < ∞. In the following, µ will denote E[logX]
so that GM(X) = eµ. Therefore, if X is distributed LogNormal(µ, θ) then GM(X) = eµ since
E[logX] = µ . By the way, for the lognormal distribution the geometric mean is equal to its median.

Assuming we have a random sample of observed/forecasted ratios X1, . . . , Xn distributed as
LogNormal(µ, θ) we have the following equivalent ways of expressing the null hypothesis of interest:

H0 : GM(X) = 1 ≡ H0 : eµ = 1 ≡ H0 : µ = 0 (1)

UnderH0 the transformation Yi := logXi leads to a random sample from a Normal(µ, θ) distribution,
therefore we may use the standard t−test of size 0 < α < 1 for H0 : µ = 0 with unknown variance
θ > 0, see for example Mood et al.(1974), rejecting H0 whenever |T | > kα , where T = Y

√
n/SY ,

S2
Y = 1

n−1
∑n

i=1(Yi − Y )2 and kα is the 1 − α/2 quantile of a t distribution with n − 1 degrees of
freedom.

Finally, to validate the lognormality assumption of the the observed/forecasted ratios X1, . . . , Xn

we may apply a normality test to logX1, . . . , logXn such as the Shapiro-Wilk (1965) test since it is
a more powerful test for normality than the tests by Anderson-Darling, Lilliefors and Kolmogorov-
Smirnov, according to a power study by Razali and Wah (2011).

3 Power study

Define the random variables R ∼ LogNormal(µR, θR) and S ∼ LogNormal(µS, θS), then GM(R) =
eµR and GM(S) = eµS . If we define the ratio random variable X := S/R then logX = logS − logR,
and since logS ∼ Normal(µS, θS) and logR ∼ Normal(µR, θR) then logX is normally distributed
with mean µS−µR and variance θS+θR−2ρ

√
θSθR (where ρ stands for linear correlation coefficient of

logS and logR, which is also referred to as log-correlation) and therefore the ratio X has LogNormal
distribution with parameters equal to the previous mean and variance of logX. This implies that
GM(X) = eµS−µR = GM(S)/GM(R). Just as an observation, this is not generally true for the usual
mean: E(X) is not equal to E(S)/E(R) unless θR = ρ2θS (under lognormality).

Under the above assumptions, the null hypothesis of interest (1) would be equivalent to H0 :
GM(S) = GM(R) or H0 : µS = µR . Let β > −1 such that GM(S) = (1 + β)GM(R) , then
µS = log(1+β)+µR and (1) will also be equivalent to H0 : β = 0 . In a power study for the accuracy
test proposed in the previous section, it would be expected a low probability of rejection whenever
β = 0 (type I error) and higher probabilities of rejection as β gets closer either to −1 or to +∞.

If in addition to µS = µR we have that θS = θR then the ratio X ∼ LogNormal(0, 2θR(1− ρ)), that
is, for fixed θR, the lower the linear correlation between logS and logR the larger the variability of
X and vice versa, as expected. So in this power study several scenarios are considered with different
values for both β and ρ, for fixed θR = 1 and sample sizes n ∈ {20, 100}.

The accuracy test proposed in the previous section is compared to the usual backtesting technique
based on a binomial test for the number of exceptions (or violations) of a given VaRε (Value-at-Risk
of level ε) as in (for example) McNeil et al.(2015) with ε = 1/2, since under H0 it would be expected
a balance between forecasts above and below the observed values, and therefore too many forecasts
above or below observed values should lead to the rejection of the forecasting method.
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To be more specific, as a summary of both the proposed accuracy test and the binomial test of level
0 < α < 1, given the forecasts r1, . . . , rn and the corresponding observed values s1, . . . , sn , calculate
the ratios xi = si/ri and:

Accuracy test

1. Calculate y1, . . . , yn by yi = log xi .

2. Apply Shapiro-Wilk normality test to the set {yi : i = 1, . . . , n}. If normality is rejected, the
test should not be used; otherwise, continue.

3. Apply a t−test for H0 : µ = 0 to the set {yi : i = 1, . . . , n}. If the null hypothesis is rejected
(p-value ≤ α) the forecast method is considered inaccurate.

Binomial test

1. Calculate b the number of xi values greater than 1.

2. Calculate (two-sided test) p-value with B ∼ Binomial(n, 1
2
), that is, if b > n

2
then p-value is

2P(B ≥ b) = 1
2n−1

∑n
x= b

(
n
x

)
, and if b < n

2
then p-value is 2P(B ≤ b) = 1

2n−1

∑b
x=0

(
n
x

)
. In case

b = n
2

that is exactly the center of the distribution, that is E(B) = n
2
, and therefore the p-value

should be defined as 1.

3. If p-value ≤ α the forecast method is considered inaccurate.

10, 000 simulations were used to estimate each point of the power functions and the results obtained
are summarized in Figure 2 where it is clear that in all cases the proposed accuracy test (thick line)
is uniformly more powerful than the binomial test (thin line), which should not be a surprise mainly
for two reasons: first, the lognormality assumption is guaranteed; second, the proposed accuracy test
is based on the sample geometric mean, which is a sufficient statistic for the theoretical geometric
mean, while the binomial test is based on counts of observed above/below forecasts, which is certainly
not a sufficient statistic for the parameter of interest.

Now let R and S be continuous strictly positive non LogNormal random variables, such that
E[| logR|] < ∞ and E[| logS|] < ∞. Define µR := E[logR] and µS := E[logS], then GM(R) = eµR

and GM(S) = eµS . Define the ratio random variable X := S/R then E[| logX|] is finite since

E[| logX|] = E[| logS − logR|] ≤ E[| logS|+ | logR|] = E[| logS|] + E[| logR|] <∞

and so GM(X) = exp(E[logX]) = eµS−µR = GM(S)/GM(R). Under these assumptions, the null
hypothesis of interest (1) would be (again) equivalent to H0 : GM(S) = GM(R) or H0 : µS = µR .
Let β > −1 such that GM(S) = (1 + β)GM(R) , then µS = log(1 + β) + µR and (1) will also
be equivalent to H0 : β = 0 . In a power study for the accuracy test proposed in the previous
section, it would be expected a low probability of rejection whenever β = 0 (type I error) and higher
probabilities of rejection as β gets closer either to −1 or to +∞.

Lets analyze, for example, the case when R ∼ Gamma(aR, bR) and S ∼ Gamma(aS, bS) where the
pdf for a Gamma random variable Z with parameters a > 0 and b > 0 is given by

fZ(z | a, b) =
ba

Γ(a)
za−1e−bz , z > 0
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Figure 2: Estimated power functions for the proposed accuracy test (thick line) versus the binomial
test (thin line), for −0.2 < β < +0.2, log-correlations {−0.5, 0,+0.5} and sample sizes n ∈ {20, 100},
with α = 0.05 test level.

with E(Z) = a
b
, V(Z) = a

b2
, E(logZ) = ψ(a)−log b , and so GM(Z) = 1

b
eψ(a) , where ψ is the digamma

function given by ψ(a) := d log Γ(a)/da = Γ′(a)/Γ(a) . We get then the following equivalences:

GM(Z) = 1 ⇔ eψ(a) = b ⇔ ψ(a) = log b (2)

Given Z ∼ Gamma(a, b) if we define the transformation Y := logZ then Y is a continuous random
variable with support the whole real line R and with a standard probability transformation procedure
the following is the resulting pdf of Y :

fY (y | a, b) =
ba

Γ(a)
eay−be

y

, y ∈ R (3)

and clearly logZ is not Normal when Z is Gamma (in fact, the probability distribution of logZ is
known as LogGamma distribution.) If R ∼ Gamma(aR, bR) and S ∼ Gamma(aS, bS) and X := S/R
then logX = logS − logR and clearly logX is not Normal, therefore X is not LogNormal. But it
is still valid to calculate GM(X) = GM(S)/GM(R) which leads to

GM(X) =
bR
bS
eψ(aS)−ψ(aR) (4)

From (4) we have that if aR = aS and bR = bS then GM(X) = 1. For a power study to compare
statistical tests for the null hypothesis H0 : GM(X) = 1 we may use, as before, the equation
GM(X) = 1 + β with β > −1 and the hypothesis of interest would be equivalent to H0 : β = 0. We
will consider two cases:

If aR = aS : GM(X) = 1 + β ⇔ bR = (1 + β)bS (5)
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Figure 3: Estimated power functions for the proposed accuracy test (thick line) versus the binomial
test (thin line), for −0.7 < β < +0.7, aR = aS = 3, bS ∈ {1, 5, 10} and sample sizes n ∈ {20, 100},
with α = 0.05 test level.

If bR = bS : GM(X) = 1 + β ⇔ ψ(aS) = log(1 + β) + ψ(aR) (6)

Since E[logX] = E[logS]−E[logR] = ψ(aS)−ψ(aR) + log bR− log bS does not involve the (possible)
dependence between S and R then GM(X) depends only on the marginal parameters of R and S.
That is not the case of the variance:

V[logX] = V[logS] + V[logR]− 2Cov[logS, logR]

= ψ1(aS) + ψ1(aR)− 2ρ
√
ψ1(aS)ψ1(aR) (7)

where ρ is the linear correlation between logS and logR and ψ1 is the trigamma function defined by
ψ1(a) := ψ′(a) = d2 log Γ(a)/da2. Therefore, the dependence between S and R affects the variability
of logX but not its geometric mean GM(X), and since the hypothesis of interest only involves the
geometric mean, without loss of generality we will assume that S and R are independent Gamma
random variables, for the purpose of a power comparison study.

The results obtained for the case (5) are summarized in Figure 3 where it is clear that in all cases
the proposed accuracy test (thick line) is uniformly more powerful than the binomial test (thin line).
10, 000 simulations were used to estimate each point of the power functions with aR = aS = 3,
bS ∈ {1, 5, 10} and sample sizes n ∈ {20, 100}. As expected, the power of both tests increases with
a larger sample size, but remains the same independently of bS and bR since the variance of logX
does not depend on them, see (7).

The results obtained for the case (6) are summarized in Figure 4 where it is clear that in all cases
the proposed accuracy test (thick line) is again uniformly more powerful than the binomial test (thin
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Figure 4: Estimated power functions for the proposed accuracy test (thick line) versus the binomial
test (thin line), for −0.7 < β < +0.7, bR = bS = 3, aR ∈ {1, 5, 10} and sample sizes n ∈ {20, 100},
with α = 0.05 test level.

line). 10, 000 simulations were used to estimate each point of the power functions with bR = bS = 3,
aR ∈ {1, 5, 10} and sample sizes n ∈ {20, 100}. As expected, the power of both tests increases with
a larger sample size, but now their power is affected by the values of aR and aS since the variance of
logX does depend on them, see (7).

Eventhough the log-ratio of two independent Gamma random variables is not normally distributed,
the proposed accuracy test had a better power performance than the binomial test. In Table 1 we
show the rejection rate (% of times p-value ≤ 0.05 in 100, 000 simulations) by the Shapiro-Wilk
normality test for a ratio of two independent Gamma(a, b) random variables under sample sizes
n ∈ {20, 100} with the different a and b values used in the test power comparisons in Figures 3 and
4. As a reference, the rejection rate even if the sample is standard normal would be 5%, and as
expected, all the rejection rates are above 5% but in some cases for not so much, which means that
these Gamma log-ratios are not too far from being normally distributed.

4 Application to claims reserving

According to Kotz et al.(2006):

Although less obvious as a measure of location than the arithmetic mean, the geometric
mean does arise naturally as a measure of location in at least three circumstances: when
observations Xi possess a certain relation between their conditional means and variances,
when observed values are thought to be the results of many minor multiplicative (rather
than additive) random effects, and when products of moderate to large numbers of random
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case a b n % reject
1 3 1 20 6.94
2 3 5 20 7.07
3 3 10 20 6.89
4 3 1 100 10.98
5 3 5 100 10.98
6 3 10 100 10.99
7 1 3 20 11.65
8 5 3 20 6.17
9 10 3 20 5.49
10 1 3 100 30.33
11 5 3 100 8.00
12 10 3 100 6.26

Table 1: 12 different combinations of parameters (a, b) for a ratio of two independent gamma random
variables, and sample sizes n ∈ {20, 100}. Column % reject is the percentage of times the Shapiro-
Wilk normality test reported a p-value ≤ 0.05 in 100, 000 simulations.

variables are of interest [. . . ] The second circumstance when the geometric mean is
relevant occurs when X is the cumulative result of many minor influences which combine
in a multiplicative way, so that the same influence has a greater absolute effect on a
larger result than on a smaller one. Since logX is thus the sum of a great many small
random effects, the central limit theorem suggests that X may well be close to log-normal
in distribution, even if the contributing influences are not all independent.

The above interpretation fits well when the objective is to compare claim amounts paid by an
insurance company along several periods (s1, . . . , sn), and the forecasted claims for such periods
(r1, . . . , rn). To determine if certain actuarial claims reserving method may or may not be considered
as accurate, more important than the absolute differences si − ri is to measure how large is that
difference as a percentage of what was forecasted, that is si/ri = (1 + γi) means that si happened to
be 100γi% above (if γi > 0) or below (if γi < 0) forecast ri .

Both the proposed accuracy test and the binomial test were applied to the data analyzed in Aguilar
and Avendaño (2009) as “Modelo A”, where the authors made a mistake in applying the binomial
test by calculating the p-value as P(B = b) instead of the two-sided cumulative probability of the
tails, as it should be in two-sided statistical tests.

The ratios xi = si/ri for i = 1, . . . , 20 are shown in Fig.5 and the horizontal thick line level is the
sample geometric mean x̃ = (

∏20
i=1 xi)

1/20 = 1.083604. The proposed accuracy test gives a p-value of
0.04092635 with a Shapiro-Wilk normality p-value of 0.5280804 (so lognormality assumption for ratios
is not rejected), while the binomial test gives a p-value of 0.1153183, therefore for a significance level
α = 0.05 the proposed accuracy test rejects that the forecast method is accurate, but the binomial
test fails to reject. Because the lognormality assumption for the ratios is not rejected, we prefer the
conclusion from the proposed accuracy test since it is based on a sufficient statistic for the parameter
of interest (the geometric mean).
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Figure 5: Ratios of observed/forecasted values of “Modelo A” in Aguilar and Avendano (2009). The
horizontal thick line level is the value of the sample geometric mean x̃ = 1.083604.

5 Final remarks

In case the lognormality assumption of the ratios observed versus forecasted is not rejected by the
Shapiro-Wilk normality test applied to the log-ratios, the proposed accuracy test shows a better
power performance than the binomial test, and since it is based on a sufficient statistic for the
hypothesis of interest it would be expected to have a good performance compared to some other test.

In case the normality of the log-ratios is rejected, there is still the possibility of trying with the
more general Box-Cox (1964) transformation (xλi − 1)/λ for some λ 6= 0 (recall that the limit of this
transformation when λ→ 0 is log xi).

An example where the ratios are not lognormal was analyzed (a ratio of Gamma random variables)
and the power of the proposed accuracy test seems to be still better than the binomial test, but a
more thorough analysis could be made in future work in order to assess the robustness of the proposed
test under some other kind of departures from lognormality. But as stated in Johnson et al.(1994),
even without the lognormality assumption, if X1, . . . , Xn are independent and continuous positive
random variables, and if the independent random variables Yi = logXi are such that a central limit
type of result applies, then the standardized distribution of log X̃ = 1

n

∑n
i=1 logXi would tend to

a standard Normal distribution as n tends to infinity, and the limiting distribution of the sample
geometric mean X̃ would then be LogNormal, and the proposed accuracy test may be applied.
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