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Abstract. Statistical dependence between petrophysical properties in heterogeneous
formations is usually nonlinear and complex; therefore, traditional statistical methods
based on assumptions of linearity and normality are usually not appropriate. Copula
based models have been previously applied to this kind of variables but it seems to be
very restrictive to find a single copula family to be flexible enough to model complex
dependencies in highly heterogeneous porous media. The present work combines vine
copula modeling with a bivariate gluing copula approach to model rock permeability
using vugular porosity and measured P-wave velocity as covariates in a carbonate
double-porosity formation at well log scale.
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1 Copula basics

A copula function is the functional link between the joint probability distribu-
tion function of a random vector and the marginal distribution functions of the
random variables involved. For example, in a bivariate case, if (X,Y ) is a ran-
dom vector with joint probability distribution FXY (x, y) = P(X ≤ x, Y ≤ y)
with continuous marginal distribution functions FX and FY then by Sklar’s
Theorem[19] there exists a unique bivariate copula function CXY : [0, 1]2 →
[0, 1] such that FXY (x, y) = CXY (FX(x), FY (y)). Therefore, all the informa-
tion about the dependence between X and Y is contained in the underlying
copula CXY , since FX and FY only explain the individual (marginal) behavior
of such random variables. As an example, for continuous random variables, X
and Y are independent if and only if CXY (u, v) = Π(u, v) := uv.

As a consequence of results by Hoeffding[9] and Fréchet[6], particularly
what is known as the Fréchet-Hoeffding bounds for joint probability distribu-
tion functions, Sklar’s Theorem leads to the following sharp bounds for any
bivariate copula: W (u, v) ≤ CXY (u, v) ≤ M(u, v) for all u, v in [0, 1], where
W (u, v) := max{u+v−1, 0} and M(u, v) := min{u, v} are themselves copulas.
W (respectively M) is the underlying copula of a bivariate random vector of

16thASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece

c© 2015 ISAST



continuous random variables (X,Y ) if, say, Y is an almost surely decreasing
(respectively increasing) function of X.

Formal definitions and main properties of copula functions are covered in
detail in Nelsen[14] and Durante and Sempi[3]. Among many other properties,
any copula C is a uniformly continuous function, and in particular its diagonal
section δC(t) := C(t, t) is uniformly continuous and nondecreasing on [0, 1]. In
terms of the Fréchet-Hoeffding bounds, we get max{2t − 1, 0} ≤ δC(t) ≤ t for
all t in [0, 1].

Let {(x1, y1), . . . , (xn, yn)} denote an observed sample of size n from a bi-
variate random vector (X,Y ) of continuous random variables. We may estimate
the underlying copula CXY by the empirical copula Cn, see Deheuvels[2], which
is a function with domain { in : i = 0, 1, . . . , n}2 defined as:

Cn

(
i

n
,
j

n

)
:=

1

n

n∑
k=1

I{rank(xk) ≤ i , rank(yk) ≤ j} (1)

and its convergence to the true copula CXY has also been proved, see Rüschendorf[17]
and Fermanian et al.[5]. Strictly speaking, the empirical copula is not a copula
since it is only defined on a finite grid, but by Sklar’s Theorem Cn may be ex-
tended to a copula. Based on the empirical copula several goodness-of-fit tests
have been developed, see for example Genest et al.[7], to choose the best para-
metric family of copulas from an already existing long catalog, see for example
chapter 4 in Joe[11].

The underlying copula CXY is invariant under strictly increasing transfor-
mations of X and Y, that is CXY = Cα(X),β(Y ) for any strictly increasing
functions α and β. Recall that for any continuous random variable X we have
that the random variable FX(X) is uniformly distributed on the open interval
]0, 1[ . Let U := FX(X) and V := FY (Y ), then (X,Y ) has the same underlying
copula as (U, V ) and by Sklar’s Theorem FUV (u, v) = CUV (FU (u), FV (v)) =
CUV (u, v). So the transformed sample {(u1, v1), . . . , (un, vn)} where (uk, vk) =
(FX(xk), FY (yk)) may be considered as observations from the underlying cop-
ula CXY . If FX and FY are unknown (which is usually the case) they can be
replaced by the empirical aproximation Fn(x) = 1

n

∑n
k=1 I{xk ≤ x} and in

such case we obtain what is known as pseudo-observations of the underlying
copula CXY , which are used for copula estimation purposes, since they are
equivalent to the ranks in (1).

2 Gluing copulas

Sklar’s Theorem is also useful for building new multivariate probability models.
For example, if F and G are univariate probability distribution functions, and
C is any bivariate copula, then H(x, y) := C(F (x), G(y)) defines a joint prob-
ability distribution function with univariate marginal distributions F and G.
Several methods for constructing families of copulas have been developed (geo-
metric methods, archimedean generators, ordinal sums, convex sums, shuffles)
and among them we may include gluing copulas by Siburg and Stoimenov[18],
which we will illustrate in a very particular case: let C1 and C2 be two given



bivariate copulas, and 0 < θ < 1 a fixed value, we may scale C1 to [0, θ]× [0, 1]
and C2 to [θ, 1]× [0, 1] and glue them into a single copula:

C1,2,θ(u, v) :=

{
θC1(uθ , v), 0 ≤ u ≤ θ,
(1− θ)C2(u−θ1−θ , v) + θv, θ ≤ u ≤ 1.

(2)

A gluing copula construction may easily lead to a copula with a diagonal sec-
tion δ1,2,θ(t) = C1,2,θ(t, t) that has a discontinuiy in its derivative at the gluing
point t = θ. This fact may be taken into consideration when trying to fit a
parametric copula to observed data, since common families of copulas have di-
agonal sections without discontinuities in their derivatives, and if the empirical
diagonal δn( in ) := Cn( in ,

i
n ) strongly suggests there is one or more points at

which a discontinuity of the derivative occurs, an appropriate data partition by
means of finding some gluing points could be helpful to model the underlying
copula by the gluing copula technique.

For a more specific example, in the particular case C1 = M and C2 = Π
it is straightforward to verify that for 0 ≤ t ≤ θ we get a diagonal section
δ1,2,θ(t) = θt, while for θ ≤ t ≤ 1 we get δ1,2,θ(t) = t2 and clearly the left and
right derivatives at the gluing point t = θ are not the same, see Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gluing copula diagonal section

t

di
ag

 (
 t 

)

●

Fig. 1. Diagonal section of the resulting gluing copula with C1 = M, C2 = Π and
gluing point θ = 1

2

3 Trivariate vine copulas

In the previous sections we summarized some main facts about bivariate copu-
las, but Sklar’s Theorem is valid for any d ≥ 2 random variables. For example,



in the case of a trivariate random vector (X1, X2, X3) of continuous random
variables with joint probability distribution F123(x1, x2, x3) = P(X1 ≤ x1, X2 ≤
x2, X3 ≤ x3) and marginal univariate distributions F1, F2, and F3, by Sklar’s
Therem there exists a unique underlying copula C123 : [0, 1]3 → [0, 1] such that
F123(x1, x2, x3) = C123(F1(x1), F2(x2), F3(x3)). In case F123 is absolutely con-
tinuous we may obtain the following expression for the trivariate joint density:

f123(x1, x2, x3) = c123(F1(x1), F2(x2), F3(x3))f1(x1)f2(x2)f3(x3) (3)

where the copula density c123(u, v, w) = ∂3

∂u∂v∂wC123(u, v, w) and the marginal

densities fk(x) = d
dxFk(x), k ∈ {1, 2, 3}. According to Kurowicka[13]:

The choice of copula is an important question as this can affect the
results significantly. In the bivariate case [d = 2], this choice is based on
statistical tests when joint data are available [. . . ] Bivariate copulae are
well studied, understood and applied [. . . ] Multivariate copulae [d ≥ 3]
are often limited in the range of dependence structures that they can
handle [. . . ] Graphical models with bivariate copulae as building blocks
have recently become the tool of choice in dependence modeling.

The main idea behind vine copulas (or pair-copula constructions) is to express
aribitrary dimensional dependence structures in terms of bivariate copulas and
univariate marginals. For example, we may rewrite the trivariate joint density
(3) in the following manner by conditioning in one of the random variables, say
X1 :

f123 = f23|1 · f1
= c23|1(F2|1, F3|1) · f2|1 · f3|1 · f1

= c23|1(F2|1, F3|1) · f12
f1
· f13
f1
· f1

= c23|1(F2|1, F3|1) · c12(F1, F2) · c13(F1, F3) · f1 · f2 · f3 (4)

with other two similar possibilities by conditioning on random variables X2 or
X3. If {(x1k, x2k, x3k)}nk=1 is a an observed sample size n from an absolutely
continuous random vector (X1, X2, X3) we may use the bivariate observations
{(x1k, x2k}nk=1 to estimate c12 and F2|1, and we use {(x1k, x3k}nk=1 to estimate
c13 and F3|1. Following the ideas in Gijbels et al.[8] we obtain the following
expression for the conditional bivariate joint distribution of (X2, X3) given
X1 = x1 :

F23|1(x2, x3 |x1) = P(X2 ≤ x2, X3 ≤ x3 |X1 = x1)

= C23|1
(
F2|1(x2 |x1), F3|1(x3 |x1)

∣∣x1) (5)

Here the value x1 becomes a parameter for the conditional bivariate copula
C23|1 and for the conditional univariate marginals F2|1 and F3|1. In case there
is some kind of evidence (empirical or expert-based) to assume that the un-
derlying bivariate copula for F23|1 does not depend on the value of the condi-
tioning variable, we have what is known as a simplifying assumption, see for



example Joe[11], and so to estimate such bivariate copula C∗23 ≡ C23|1 again
we may follow the ideas in Gijbels et al.[8] and use the pseudo-observations
{(u2k, u3k) =

(
F2|1(x2k |x1k), F3|1(x3k |x1k)

)
}nk=1.

4 Application to petrophysical data

As mentioned in Erdely and Diaz-Viera[4]:

Assessment of rock formation permeability is a complex and challenging
problem that plays a key role in oil reservoir modeling, production
forecast, and the optimal exploitation management [. . . ] Dependence
relationships [among] petrophysical random variables [. . . ] are usually
nonlinear and complex, and therefore those statistical tools that rely on
assumptions of linearity and/or normality and/or existence of moments
are commonly not suitable in this case.

In the present work we apply a trivariate vine copula model to petrophysical
data from Kazatchenko et al.[12] for variables X1 = vugular porosity (PHIV),
X2 = measured P-wave velocity (VP), and X3 = permeability(K), see Figure
2 for bivariate scatterplots and bivariate copula pseudo-observations.
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Fig. 2. First row: bivariate scatterplots. Second row: bivariate copula pseudo-
observations.

First we searched for empirical evidence to check if a simplifying assumption
is reasonable by splitting the pseudo-observations



{(u2k, u3k) =
(
F2|1(x2k |x1k), F3|1(x3k |x1k)

)
}nk=1 in two sets A and B depend-

ing on whether the conditioning variable was less or greater than its median,
and use them for an equality of copulas hypothesis test H0 : CA = CB by
Rémillard and Scaillet[16] implemented in the TwoCop R-package[15], see Ta-
ble 1 for a summary of the results obtained. An extremely low p-value leads
to the conclusion of rejecting a simplifying assumption, since lower values of
the conditioning variable suggest a different dependence structure that the one
corresponding to higher values. From Table 1 we conclude that a simplfying
assumption condtioning on variable X3 is definitely rejected, and conditioning
on X1 would be the best option in this case.

Conditioning variable Simplifying assumption p-value

X1 0.34

X2 0.13

X3 0.00

Table 1. p-values from Rémillard-Scaillet test adapted to test for simplifying as-
sumption.

For the three bivariate copulas needed in the trivariate vine copula model
(4) no single family of parametric bivariate copulas was able to achieve an
acceptable goodness-of-fit, according to results obtained with the copula R-
package[10]. Therefore a gluing approach has been applied, using a heuristic
procedure to find gluing point candidates, called also knots, for a piecewise cubic
polynomial fit (a particular case of splines) to the empirical diagonal δn but
without the usual assumption of having continuous first or second derivative at
the knots, since for gluing copula purposes that is exactly what we are looking
for: points of discontinuity in the derivative of the diagonal section of the
underlying copula.

Let K := {t0, . . . , tm} be a set of m+ 1 knots in the interval [0, 1] such that
0 = t0 < t1 < · · · < tm = 1. Consider the set P of all continuous functions p
on [0, 1] such that:

• p(ti) = δn(ti), i ∈ {0, 1, . . . ,m}
• p is a cubic polynomial on [ti−1, ti], i ∈ {1, . . . ,m}

The goal is to find the smallest sets of knots K such that the mean squared error
(MSE) of piecewise polynomial approximations to each empirical diagonal δn
is minimal and such that it is possible to reach an acceptable goodness-of-fit
of bivariate copulas for the data partitions induced by each K :

Step 1 Calculate pseudo-observations S := {(uk, vk) : k = 1, . . . , n} and rearrange
pairs such that u1 < · · · < un.

Step 2 Calculate empirical diagonal Dn := {( in , δn( in )) : i = 0, 1, . . . , n}.
Step 3 Find optimal knot (or gluing point) t∗ = i∗

n such that K = {0, t∗, 1} leads
to minimal MSE on Dn.



Step 4 Define subsets G1 and G2 from S such that G1 := {(uk, vk) ∈ S : uk ≤ t∗}
and G2 := {(uk, vk) ∈ S : uk ≥ t∗}.

Step 5 Apply goodnes-of-fit tests for parametric copulas in each subset G1 and G2.
Step 6 If an acceptable fit is reached in both subsets, we are done. Otherwise,

apply steps 1 to 5 to the subset(s) which could not fit.

In Table 2 we present a summary of results, specifying how many partitions
were needed and the best copula goodness-of-fit achieved on each one, for each
bivariate relationship required by (4), making use of the copula R-package[10].

Bivariate dependence Best parametric copula fit p-value

X1 , −X2 Plackett* 0.6079
Galambos* 0.1384

Plackett 0.3941
independence 0.5200

X1 , X3 Plackett* 0.6539
Clayton 0.1494

Husler-Reiss 0.8586

−X2 , X3 |X1 Plackett* 0.3541
Clayton* 0.4800

Table 2. Families of copulas indicated with * means that the transformed copula
C∗(u, v) = u+ v−1 +C(1−u, 1− v) was used, where C is the original copula family.

5 Final remark

According to Czado and Stöber[1]:

[. . . ] compared to to the scarceness of work on multivariate copulas,
there is an extensive literature on bivariate copulas and their proper-
ties. Pair copula constructions (PCCs) build high-dimensional copulas
out of bivariate ones, thus exploiting the richness of the class of bivari-
ate copulas and providing a flexible and convenient way to extend the
bivariate theory to arbitrary dimensions.

But even expecting a single copula family to be able to model a complex bivari-
ate dependency seems to be still too restrictive, at least for the petrophysical
variables under consideration in this work. In such case, an alternative found
was to apply a gluing copula approach[18]: decomposing bivariate samples
into subsamples whose dependence structures were simpler to model by known
parametric families of copulas, taking advantage of already existing tools (and
their computational implementations) for bivariate copula estimation.
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2. P. Deheuvels. La fonction de dépendance empirique et ses propriétés. Un test non
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