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Abstract    A novel Bernstein copula-based spatial stochastic co-simulation 
(BCSCS) method for petrophysical properties using seismic attributes as a second-
ary variable is presented. The method is fully non-parametric and it has the ad-van-
tages of not requiring linear dependence between variables. The method-ology is 
illustrated in a case study from a marine reservoir in the Gulf of Mexico and the 
results are compared with sequential Gaussian co-simulation method. 

Introduction 

Modeling the spatial distribution of petrophysical properties in the framework of 
reservoir characterization is a crucial and difficult task due to the lack of data and 
hence the degree of uncertainty associated with it. For this reason, in recent years a 
stochastic simulation approach for the spatial distribution of petrophysical proper-
ties has been adopted.  
Seismic attributes have been extensively used as secondary variables in static res-
ervoir modeling for petrophysical property prediction but usually assuming linear 
dependence and Gaussian distribution (Parra & Emery, 2013).  
Quite recently, copulas have become popular for being a flexible means of repre-
senting dependency relationships in the financial sector and applications are already 
emerging in the field of geostatistics (Bardossy & Li, 2008) (Kazianka & Pilz, 
2010). 
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A geostatistical simulation method, based on Bernstein copula approach as a tool to 
represent the underlying dependence structure between petrophysical properties and 
seismic attributes, is proposed.  The procedure basically consists of applying the 
simulated annealing method with a joint probability distribution model estimated 
by a Bernstein copula in a completely non-parametric fashion (Hernández-
Maldonado, Díaz-Viera, & Erdely, 2012).  
The method has the advantages of not requiring linear dependence or a specific type 
of distribution. The application of the methodology is illustrated in a case study 
where the results are compared with sequential Gaussian co-simulation method. 

Methodology 

As stated in the introduction, the main goal of this work is to show the application 
of a Bernstein copula-based spatial co-simulation method for petrophysical property 
predictions using seismic attributes as secondary variables and its comparison with 
the classical sequential Gaussian co-simulation method. In what follows a brief de-
scription of both methods and a general workflow outline are presented. 

Sequential Gaussian co-simulation (SGCS) 

The sequential Gaussian co-simulation (SGCS) method is very well established in 
the geostatistics literature, so here we will just mention the details of its application.  
Usually this method is applied with a linear model of coregionalization (Chiles & 
Delfiner, 1999) which is mostly unnatural, forced, very complicated and difficult to 
establish. The method assumes the existence of very strong linear dependence be-
tween primary and secondary variables, which is its main assumption and at the 
same time its main drawback. Here we choose to use an alternative variant, the 
Markov Model, given in (Chiles & Delfiner, 1999, p. 305) and implemented in 
SGeMS (Remy, Boucher, & Wu, 2009). 

Bernstein copula-based spatial stochastic co-simulation (BCSCS) 

A Bernstein copula-based spatial stochastic co-simulation (BCSCS) method has 
been previously presented in a series of papers (Hernández-Maldonado, Díaz-Viera, 
& Erdely, 2012), (Hernández-Maldonado, Díaz-Viera, & Erdely, 2014) and has 
been mainly applied in one dimension for petrophysical properties at well-log scale. 

The method basically consists of establishing a dependence model between a 
primary and a secondary variable, and then use this model in conjunction with the 
spatial dependence structure (variogram) of the primary variable to predict the first 
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one using the second one as a conditioning variable. This can be done in a global 
optimization framework using simulated annealing method, but other methods, such 
as genetic algorithms, could also be applied. 

The modern way to analyze dependencies is by copula approach (Joe, 1997). 
Copula approach assumes neither a predetermined nor a priori type of dependency, 
but from the data one tries to establish the best model that represents the existing 
dependence on them.  

In particular, here it is preferred to use a completely non-parametric approach to 
modeling the dependence by using Bernstein copulas, which gives name to the 
method. However other approaches, parametric (Díaz-Viera & Casar-González, 
2005) and semi-parametric (Erdely & Diaz-Viera, 2010), are also possible. The 
Bernstein copulas introduced by (Sancetta & Satchell, 2004) are nothing more than 
an approximation of the sample copula by Bernstein polynomials. Its main short-
coming is the curse of dimensionality, as it quickly becomes computationally pro-
hibitive for more than two dimensions. Alternatives have been proposed using vine 
copulas (Erdely & Diaz-Viera, 2016).  
In summary, the algorithm consists of two stages: 

1. A dependence model, using a Bernstein copula, is established from which 
a number of sample values are generated (see  Appendix A). 

2. A stochastic spatial simulation is performed using a simulated annealing 
method with a variogram model and a bivariate distribution functions as 
objective functions (Deutsch & Cockerham, 1994), (Deutsch & Journel, 
1998). 

Additional details about the mathematical formulation of the method and its 
computational implementation can be found on (Hernández-Maldonado, Díaz-
Viera, & Erdely, 2012) and (Hernández-Maldonado, Díaz-Viera, & Erdely, 2014) 

Workflow outline 

One of the biggest challenges in these applications is to simultaneously handle mul-
tiple scales. Here, we have two scales: a well-log scale and a seismic scale. But 
sometimes, due to the amount of data, an additional intermediate scale is required, 
since the well-log scale data is a very large dataset and upscaled well-logs may have 
from a statistical point of view not enough data. Log data usually have a sampling 
interval in the range of 10-25 centimeters, while seismic data are in the range of 
several meters. So it is necessary to perform some upscaling process to make well-
logs compatible with seismic data. For the upscaling process there is no single rec-
ipe because it is largely dependent on the data. Here we will use the median as 
upscaling procedure.  
The general workflow is as follows: 1- univariate data analysis, 2- bivariate depend-
ence analysis, 3- variography analysis and 4- simulations. 
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Case study 

Data used in the case study are from a marine reservoir in the Gulf of Mexico. The 
reservoir is siliciclastic and it is formed mainly by alternating sequences of sands 
and shales. 

Data description 

The data consist of a total porosity well-log from a well and seismic attribute (P-
impedance) obtained in a vertical (inline) section. The well-log has a sample inter-
val of 0.1 m. The section has a length of 412.5 m and covers an interval of 336.4 m 
in depth and was chosen so that the well was located in the middle of it (see Figure 
1). Seismic grid is made of 33 intervals of 12.5 m in X direction and 60 intervals of 
5.5 m in depth direction. 

 

Figure 1. Vertical (inline) section with P-impedance as a result of seismic inversion. The 
color scale represents impedance values. In the middle of the section two logs are plotted 
along a well: in yellow P-impedance and in green total porosity. 

At well-log scale, the P-wave impedance log is obtained from the product of P-
wave velocity and density logs. At the seismic scale, a seismic inversion method 
was used, based on the “LP Sparse Spike” approach by (Li, 2001). Proper care was 
taken in incorporating low frequency impedance trend so that the impedance from 
the log and the impedance from the seismic section are equivalent around the well. 

The impedance in general depends on the type of rock and its petrophysical prop-
erties as well as the containing fluid types and their saturations. It is very common 
in reservoir geophysics to take advantage of dependency relationships between 
petrophysical properties (for instance, total porosity and P-impedance) at well-log 
scale to predict the former ones (total porosity) using seismic attributes (P-imped-
ance) at the seismic scale. 

In particular, in this work the total porosity was considered as primary variable 
(variable to predict) and P wave impedance as secondary variable (conditioning 
variable). As mentioned in the previous section three scales are considered: a well-
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log, a seismic and an additional intermediate “one-meter” scale. Hereafter the fol-
lowing notation will be used: 

- PhiT_T and Ip_T for total porosity and P-impedance from original well-logs 
(well-log scale) 

- PhiT_T_1m and Ip_T_1m for total porosity and P-impedance from original 
well-logs subsampled every meter (one-meter scale) 

- PhiT_T_median and Ip_T_median for total porosity and P-impedance from 
original well-logs upscaled using median upscaling procedure (seismic 
scale) 

- Ip_inline for P-impedance from the vertical inline section (seismic scale) 
- Ip_inline_U for P-impedance from the vertical inline section restricted to 

the corresponding well coordinates, i.e., only along the well trajectory (seis-
mic scale) 

Univariate data analysis 

In Figure 2 are shown histograms and boxplots for PhiT and Ip at the three scales, 
and in Table 1 and Table 2 a summary of corresponding basic univariate statistics. 
Table 1 Statistics summary of original and one-meter upscaled well logs. 

Statistics PhiT_T Ip_T PhiT_T_1m Ip_T_1m 
n 4059 4059 337 337 
Minimum 0.030 4802.22 0.057 4802.22 
1st. Quartile 0.218 6163.18 0.230 6064.66 
Median 0.261 6717.99 0.273 6481.54 
Mean 0.257 6906.39 0.266 6740.08 
3rd. Quartile 0.299 7270.29 0.304 7099.52 
Maximum 0.571 11812.36 0.556 11013.43 
Variance 0.004 1264603 0.003 1133016 

Table 2 Statistics summary of median upscaled well logs and Ip at seismic scale. 

Statistics PhiT_T_med Ip_T_med Ip_inline_U Ip_inline 
n 60 60 60 1980 
Minimum 0.110 5730.23 5940.26 5940.16 
1st. Quartile 0.239 6074.77 6080.53 6083.72 
Median 0.273 6426.24 6350.74 6340.04 
Mean 0.267 6619.13 6623.50 6602.87 
3rd. Quartile 0.296 6967.11 6896.91 6893.98 
Maximum 0.340 10430.77 8726.18 8773.20 
Variance 0.002 630041 577250 485570 
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a) b) 

c) d) 

e) f) 

Figure 2. Histograms and boxplots for PhiT and Ip at well-log scale (a, b), at one-meter scale 
(c, d) and at seismic scale (e, f), respectively. 
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Note that median and mean are pretty close for one-meter scale and seismic 
scales, while Ip_inline_U and Ip_inline have very consistent statistics. 

Bivariate dependence analysis 

In Figure 3 are given the scatterplots with marginal histograms and boxplots for 
PhiT vs Ip a) at well-log, b) at one-meter and c) at seismic scale, respectively, while 

 

a) b) 

c) d)} 

Figure 3. Scatterplots with marginal histograms and boxplots for Ip vs. PhiT, a) at well-log 
scale, b) at one-meter scale, c) at seismic scale, d) a non-conditional bivariate simulation with 
a Bernstein copula at one-meter scale. 
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a) b)  

c)  }d) 

Figure 4. Pseudo-observations (sample copulas) scatterplots of Ip-PhiT data ranks, rescaled 
to [0,1]  a) at well-log scale, b) at one-meter scale, c) at seismic scale, and d) a non-conditional 
bivariate simulation with a Bernstein copula at one-meter scale. 

Table 3 Summary of correlation coefficients for Ip vs PhiT at well-log, one-meter and seismic 
scales, and for a non-conditional bivariate Ip-PhiT simulation with a Bernstein copula at one-
meter scale (BCS_1m).  

Correlation 
Coefficients 

well-log 
scale 

one-meter 
scale 

Seismic 
scale 

BCS_1m 

Spearman -0.589 -0.477 -0.361 -0.576 
Pearson -0.711 -0.657 -0.529 -0.703 
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in the Figure 3 d) the corresponding scatterplot for a non-conditional Ip-PhiT sim-
ulation using a Bernstein copula at one-meter scale. In Figure 4 are given pseudo-
observations (sample copula) scatterplots for Ip-PhiT, a) at well-log scale, b) at one-
meter scale, c) at seismic scale, and d) for a non-conditional bivariate simulation 
with a Bernstein copula at one-meter scale. In  

Table 3 a summary of corresponding correlation (Spearman and Pearson) coeffi-
cients is given. It can be observed that the dependence is weakened with the increas-
ing of the scale. 

Variography analysis 

In the Figure 5 are shown estimated variograms (a, b) and best fit variogram models 
(c, d) for PhiT and Ip at seismic scale in depth direction. As is evident in Figure 5 
b) the sample variogram of Ip_inline_U shows a typical behavior related with the 
presence of trend, which means that at least the intrinsic hypothesis is not satisfied. 
Then, the trend, which in this case was of second order, was estimated and removed, 
resulting a new variable Ip_inline_U_r2 without trend. The same previous proce-
dure was applied to Ip_Inline and a resulting detrended variable was named Ip_in-
line_r2. Note, in Figure 5 d) the variogram was obtained after removing trend from 
Ip_inline_U.  While in the Figure 6 are displayed estimated variograms and best fit 
variogram models for impedance at seismic scale in a) X and b) depth directions, 
respectively, after removing trend from Ip_inline. 
Because of lack of data for total porosity in the X direction the same variogram 
structure of the impedance in this direction is adopted, considering that they show 
almost the same structure in the depth direction (see Figure 5). A variogram model 
for porosity at seismic scale is proposed so that the total variance of PhiT_T median 
is preserved. Which basically it is to consider a correlation range equal to the im-
pedance variogram in the X direction (see Figure 6). For both simulation methods 
the following variogram model for porosity is used: model=spherical, nugget= 
0.0002, structure contribution=0.0016, ranges: maximum=160, medium=50, mini-
mum=1, angles: x=90, y=0, z=0. 

SGCS simulations 

A sequential Gaussian co-simulation (SGCS) with Markov Model variant (MM1), 
implemented in SGeMS (Remy, Boucher, & Wu, 2009) was performed with the 
following parameters: primary variable: PhiT_T_median, secondary variable: 
Ip_Inline_r2, grid: 33x60x1 (the same as Ip_Inline_r2), Kriging type: Simple 
Kriging (SK), max conditioning data: 12, correlation coefficient= -0.657, search 
ellipsoid: 160, 50, 1, variogram model of primary variable=spherical, nugget= 
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0.0002, structure contribution=0.0016, ranges: maximum=160, medium=50, mini-
mum=1, angles: x=90, y=0, z=0.  
The resulting simulation is named PhiT_SGC and its map in the vertical (inline) 
section is given in the Figure 8 a). 

a) b) 

c) d) 

Figure 5. PhiT and Ip estimated variograms (a, b) and best fit variogram models (c, d) at 
seismic scale in depth direction. Note, in d) variogram after removing trend from Ip. 

BCSCS simulations 

A Bernstein copula-based spatial stochastic co-simulation (BCSCS) was performed 
using the procedure explained before. First, a dependence model, using a Bernstein 
copula at one-meter scale (see Figure 4 b) was obtained from which 40,000 condi-
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tional bivariate simulations (BCsim40000_cond) conditioning by secondary varia-
ble were generated (see Figure 7). Then, as the simulated annealing program was 
used a modified version of SASIM from GSLIB (Deutsch & Journel, GSLIB: 
Geostatistical software library and user’s guide, 1998) with the following parame-
ters: primary variable: PhiT_T_median, secondary variable: Ip_Inline, grid: 
33x60x1 (the same as Ip_Inline), objective function: variogram and bivariate distri-
bution function, paired data: 40,000 conditional bivariate simulations using a Bern-
stein copula (BCsim40000_cond), number of primary thresholds=10, number of 
secondary thresholds=10, number of variogram lags: 40, variogram model of pri-
mary variable= spherical, nugget= 0.0002, structure contribution=0.0016, ranges: 
maximum=160, medium=50, minimum=1, angles: x=90, y=0, z=0. A map of the 
resulting simulation is given in the Figure 8 b). 

a) b) 

Figure 6. Estimated variograms and best fit variogram models for Ip at seismic scale after 
removing trend in a) X and b) depth directions, respectively.  

a) 
 

b) 
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Figure 7. a) Scatterplot with marginal histograms and boxplots and .b) pseudo-observations 
(sample copulas) scatterplot for 40,000 conditional bivariate simulations using a Bernstein 
copula at one-meter scale. 

a) b) 

Figure 8. Maps for a) a PhiT sequential Gaussian co-simulation, and b) a PhiT Bernstein 
copula-based co-simulation in the vertical (inline) section. 

SGCS vs. BCSCS, a comparative summary 

In comparison with the SGCS method the BCSCS method better reproduce the sta-
tistics in terms of variance and extreme values (see Figure 9), and both methods 
reproduce quite well the spatial structure (see Figure 11), but the sequential Gauss-
ian co-simulation shows spurious correlation dependence, which does not exist in 
the original data, highlighted in red color in Figure 10. This is the main reason of 
the difference between Figures 8a and 8b. 
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a) b) 

Figure 9. PhiT histograms and boxplots for a) a sequential Gaussian co-simulation and b) a 
Bernstein copula-based co-simulation, respectively. 

 

a) 
       

b) 

Figure 10. Ip vs. PhiT scatterplots with marginal histograms and boxplots for a) a sequential 
Gaussian co-simulation and b) a Bernstein copula-based co-simulation, respectively. Simu-
lated values with spurious dependence, which does not exist in the original data, are high-
lighted in red color.  
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a) b) 

c) d) 

Figure 11. Estimated variograms and best fit variogram models in X and depth directions for 
a sequential Gaussian co-simulation (a, b) and a Bernstein copula-based co-simulation (c, d), 
respectively. 

Final remarks and future work 

A Bernstein copula-based spatial stochastic co-simulation (BCSCS) method pre-
sented in this paper possess several advantages over the classical sequential Gauss-
ian co-simulation (SGCS). Firstly of all, it does not require of a strong linear de-
pendence between variables, on the contrary it can capture and reproduce the 
existing dependence between them. The method is non-parametric which means 
that it does not need a specific distribution function. Since the Bernstein copula is 
based on the sample distribution function it may reproduce the variability and the 
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extreme values. Another advantage is that there is no need to make back transfor-
mations, which are potentially biased, since copulas are invariant under strictly in-
creasing transformations. 
 
Instead of using a single seismic attribute, it could be used the best combination of 
them depending on the primary (explanatory) variable by applying standard multi-
variate statistical procedures such as principal component and factorial analysis. 
Another option would be using a multivariate copula with three or more variables 
to directly exploit their dependencies. 
This work can be easily extended to 3D problems but it depends on the computing 
power available. Although in this work the aim was to show the performance of the 
simulation method, a simpler and efficient alternative, perhaps more convenient for 
3D large problems, could be the median regression approach already shown in pre-
vious works (Erdely & Diaz-Viera, 2010) and (Hernández-Maldonado, Díaz-Viera, 
& Erdely, 2012) in 1D. 
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Appendix A: Copula-based approach for dependence modeling 

A theorem by (Sklar, 1959) proved that there exists a functional relationship be-
tween the joint probability distribution function of a random vector and its univari-
ate marginal distribution functions. In the bivariate case, for example, if (푋,푌) is a 
random vector with joint probability distribution 퐹 (푥, 푦) = 푃(푋 ≤ 푥,푌 ≤ 푦) 
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then the marginal distribution functions of 푋 and 푌 are 퐹 (푥) = 푃(푋 ≤ 푥) =
퐹 (푥,∞) and 퐹 (푦) = 푃(푌 ≤ 푦) = 퐹 (∞,푦), respectively, but in the marginali-
zation of 퐹  some information is lost since with the only knowledge of the marginal 
distributions 퐹  and 퐹  is not generally possible to specify 퐹  because the margin-
als only explain the probabilistic individual behavior of the random variables they 
represent. Sklar’s Theorem proves that there exists a function 퐶 : [0,1] → [0,1] 
such that 

퐹 (푥,푦) = 퐶 (퐹 (푥),퐹 (푦)) 
 
퐶  is called copula function associated to (푋,푌) and contains information about 
the dependence relationship between 푋 and 푌, independently from their marginal 
probabilistic behavior. 퐶  is uniquely determined on 푅푎푛	퐹 × 푅푎푛	퐹 , and there-
fore if 퐹  and 퐹  are continuous then 퐶  is unique on [0,1] . Among several prop-
erties of copula functions, see (Nelsen, 2006), we have the following: 
 

 퐶(푢, 0) = 0 = 퐶(0, 푣) 
 퐶(푢, 1) = 푢,					퐶(1,푣) = 푣 
 퐶(푢 , 푣 ) − 퐶(푢 , 푣 )− 퐶(푢 , 푣 ) + 퐶(푢 , 푣 ) ≥ 0   if  푢 ≤ 푢 , 푣 ≤ 푣  
 퐶 is uniformly continuous on its domain [0,1] . 
 The horizontal, vertical, and diagonal sections of a copula 퐶 are all nonde-

creasing and uniformly continuous on [0,1]. 
 푊(푢, 푣) ≤ 퐶(푢, 푣) ≤ 푀(푢, 푣) where 푊(푢,푣) = max(푢 + 푣 − 1, 0) and 

푀(푢,푣) = min	(푢, 푣) are also copulas known as the lower and upper Fré-
chet-Hoeffding bounds. 

 A convex linear combination of copula functions is also a copula function. 
 If 푋 and 푌 are continuous random variables with copula 퐶 , and if 훼 and 

훽 are strictly increasing functions on 푅푎푛	푋 and 푅푎푛	푌, respectively, then 
퐶 ( ) ( ) = 퐶 . Thus 퐶  is invariant under strictly increasing transfor-
mations of 푋 and 푌. 

 
Copula functions are a useful tool to build joint probability models in a more flexi-
ble way since we may choose separately the univariate models for the random var-
iables of interest and the copula function that better represents the dependence 
among them, in each case in a parametric or non-parametric way. In the case of a 
multivariate normal model, for example, all the marginal distributions have to be 
normally distributed, with no tail dependence at all, and with finite second moments 
for the correlations to be well defined. In fact, the multivariate normal model is a 
particular case when the underlying copula is Gaussian and all the univariate mar-
ginals are normally distributed. 
 
In case 퐹  and 퐹  are continuous, by elementary probability we know that 푈 =
퐹 (푋) and 푉 = 퐹 (푌) are continuous Uniform(0,1) random variables, and the un-
derlying copula 퐶 for the random vector (푈,푉) is the same copula corresponding to 
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(푋,푌), and by Sklar’s Theorem we have that the joint probability distribution func-
tion for (푈,푉) is equal to 퐹 (푢, 푣) = 퐶 퐹 (푢),퐹 (푣) = 퐶(푢,푣). Therefore, in 
case 퐹  and 퐹  are known and 퐹  is unknown, if {(푥 , 푦 ), … 	 , (푥 ,푦 )}	 is an ob-
served random sample from (푋,푌), the set {(푢 , 푣 ) = 퐹 (푥 ),퐹 (푦 ) ∶ 	푘 =
1, … ,푛}	would be an observed random sample from (푈,푉) with the same underly-
ing copula 퐶 as (푋,푌), and since 퐶 = 퐹  we may use the (푢 ,푣 ) values (called 
copula observations) to estimate 퐶 as a joint empirical distribution: 

퐶(푢, 푣) =
1
푛	 1{ 	 	 	,	 	 	 } 

Strictly speaking, the estimation 퐶 is not a copula since it is discontinuous and cop-
ulas are always continuous.  If 퐹 , 퐹 , and 퐹  are all unknown (the usual case) we 
estimate 퐹  and 퐹  by univariate empirical distribution functions: 

퐹 (푥) =
1
푛	 1{ 	 	 } 											퐹 (푦) =

1
푛	 1{ 	 	 } 

 
Now the set of pairs {(푢 ,푣 ) = 퐹 (푥 ),퐹 (푦 ) ∶ 	푘 = 1, … , 푛} is referred to as 
copula pseudo-observations. It is straightforward to verify that 퐹 (푥 ) =
	푟푎푛푘(푥 ) and 퐹 (푦 ) = 	푟푎푛푘(푦 ). In this case the concept of empirical cop-

ula, see Nelsen (2006), is defined as the following function 퐶 : 퐼 → [0,1], where 
퐼 = {	 ∶ 푖 = 0, … , 푛}, given by:  

퐶
푖
푛
	 ,
푗
푛

= 	
1
푛
	 1{ ( )	 	 	,			 ( )	 	 } 

Again, 퐶  is not a copula but it is an estimation of the underlying copula 퐶 on the 
grid 퐼  that may be extended to a copula on [0,1]  by means of, for example, Bern-
stein polynomials, as proposed and studied in (Sancetta & Satchell, 2004), which 
leads to what is known as a Bernstein copula non-parametric estimation 퐶: [0,1] →
[0,1] given by: 

퐶(푢, 푣) = 퐶
푖
푛	 ,

푗
푛

푛
푖 푢 (1 − 푢)

푛
푗 푣 (1− 푣)  

As summarized in (Erdely & Diaz-Viera, 2010) in order to simulate replications 
from the random vector (푋,푌) with the dependence structure inferred from the ob-
served data {(푥 ,푦 ), … 	, (푥 , 푦 )}	 we have the following: 
 
Algorithm 1 
 

1. Generate two independent and continuous Uniform(0,1) random variates 
푢 and 푡. 

2. Set 푣 = 푐 (푡) where 푐 (푣) = ( , ) . 
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3. The desired pair is (푥, 푦) = 푄 (푢),푅 (푣)  where 푄  and 푅  are empiri-
cal quantile functions for 푋 and 푌, respectively. 

 
For a value 푥 in the range of the random variable 푋 and a given 0 < 훼 < 1 let 푦 =
휑 (푥) denote the solution to the equation 푃(푌 ≤ 푦|푋 = 푥) = 훼. Then the graph of 
푦 = 휑 (푥) is the α-quantile regression curve of 푌 conditional on 푋 = 푥. In (Nelsen, 
2006) is proven that: 

푃(푌 ≤ 푦|푋 = 푥) = 푐 (푣)| ( ), ( ) 
This result leads to the following algorithm to obtain the α-quantile regression curve 
of 푌 conditional on 푋 = 푥: 
 
Algorithm 2 
 

1. Set 푐 (푣) = 훼. 
2. Solve for 푣 the regression curve, say 푣 = 푔 (푢). 
3. Replace 푢 by 푄 (푥) and 푣 by 푅 (푦). 
4. Solve for 푦 the regression curve, say 푦 = 휑 (푥). 

 


