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A SUBCOPULA BASED DEPENDENCE MEASURE

Arturo Erdely

A dependence measure for arbitrary type pairs of random variables is proposed and analyzed,
which in the particular case where both random variables are continuous turns out to be a
concordance measure. Also, a sample version of the proposed dependence measure based on
the empirical subcopula is provided, along with an R package to perform the corresponding
calculations.
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1. INTRODUCTION

If (X,Y ) is a bivariate random vector with joint probability distribution FX,Y (x, y) =
P (X ≤ x, Y ≤ y), the outstanding theorem by Sklar [15] ensures that there exists a
unique functional relationship S between FX,Y and its marginal univariate probability
distribution functions FX(x) = P (X ≤ x) and FY (y) = P (Y ≤ y), such that:

FX,Y (x, y) = S(FX(x), FY (y)) , x, y ∈ R = [−∞,+∞]. (1)

Since the ranges of FX,Y , FX , and FY are subsets of the unit interval I = [0, 1] which
at least include 0 and 1 then S is a function with domain Ran FX × Ran FY ⊆ I 2 and
range a subset of I which at least includes 0 and 1. As an immediate consequence of (1)
we obtain:

a) 0 = FX,Y (−∞, y) = S(FX(−∞), FY (y)) = S(0, v) where v ∈ Ran FY , and analo-
gously S(u, 0) = 0 for u ∈ Ran FX .

b) FY (y) = FX,Y (+∞, y) = S(FX(+∞), FY (y)) = S(1, v) where v = FY (y), and
analogously S(u, 1) = u where u = FX(x) for some x ∈ R.

c) 0 ≤ P (x1 < X ≤ x2 , y1 < Y ≤ y2) = FX,Y (x2, y2)−FX,Y (x2, y1)−FX,Y (x1, y2)+
FX,Y (x1, y1) and therefore by (1) we have that S(u2, v2)− S(u2, v1)− S(u1, v2) +
S(u1, v1) ≥ 0 where ui = FX(xi) and vi = FY (yi) for i = 1, 2.
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Definition 1.1. A bivariate subcopula (or 2-subcopula) is a function S : D1 ×D2 → I,
where {0, 1} ⊆ Di ⊆ I (i = 1, 2), such that:

a) S(u, 0) = 0 = S(0, v);

b) S(u, 1) = u and S(1, v) = v ;

c) S(u2, v2)− S(u2, v1)− S(u1, v2) + S(u1, v1) ≥ 0 where u1 ≤ u2 and v1 ≤ v2 .

Therefore the unique functional relationship S in (1) is a subcopula. In the particular
case when the domain of a bivariate subcopula is D1×D2 = I 2 then it is called bivariate
copula (or 2-copula). This will be the case when both X and Y are continuous random
variables, but in any other case D1 ×D2 will be a proper subset of I 2. Any subcopula
which is not a copula may be extended to a copula in a non-unique way, see for example
Lemma 2.3.5 in Nelsen [10]. Every subcopula S is bounded by the Fréchet–Hoeffding
bounds:

W (u, v) ≤ S(u, v) ≤M(u, v) (2)

where W (u, v) = max{u + v − 1, 0} and M(u, v) = min{u, v} are copulas which may
be restricted to subcopulas with the same domain as subcopula S, denoted by WS and
MS , respectively. Recalling that X and Y are independent random variables (of any
kind) if and only if FX,Y (x, y) = FX(x)FY (y), the unique underlying subcopula for such
random vector (X,Y ) according to (1) would be S(u, v) = uv where the domain of S
would be Ran FX × Ran FY . It is common to use the notation Π(u, v) = uv which is a
copula that may also be restricted to any subcopula domain, for example ΠS as in the
notation introduced before. As an immediate consequence of Theorems 2.5.4 and 2.5.5
in Nelsen [10] we obtain the following:

Corollary 1.2. Let (X,Y ) be a random vector such that Y = g(X) for some function
g, and let S be its unique underlying subcopula according to (1).

a) S = MS if and only if g is almost surely nondecreasing on RanX.

b) S = WS if and only if g is almost surely nonincreasing on RanX.

In the particular case X and Y are continuous random variables, as explained in
Nelsen [10]:

When X and Y are continuous, the support of their joint distribution func-
tion can have no horizontal or vertical segments, and in this case it is common
to say that “Y is almost surely [a strictly] increasing function of X” if and
only if the copula of X and Y is M ; and “Y is almost surely a [strictly]
decreasing function of X” if and only if the copula of X and Y is W.

As discussed in Nešlehová [11] and Genest and Nešlehová [5] for continuous random
variables many dependence concepts and measures of association can be expressed in
terms of the unique underlying copula only and thus independently from the marginal
distributions. This interrelationship fails as soon as there are discontinuities in the
marginal distribution functions: the possibility of ties that results from atoms in the
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probability distributions invalidates various familiar relations that lie at the root of
copula theory in the continuous case, and so neither the axiomatic definition for a
concordance measure by Scarsini [13] nor the use of the concordance function is clear.
Moreover, as stated in Nešlehová [11]:

The fact that marginal distributions functions take influence upon the depen-
dence structure is characteristic for non-continuous distributions. In the case
of concordance measures, this “nuissance” causes difficulties: the measures
typically do not reach the bounds ±1 for countermonotonic and comonotonic
marginals.

The probabilistic definitions of popular concordance measures (such as Kendall or Spear-
man) do not account for ties, so modified versions of their theoretical and empirical
definitions are needed, see [2, 6, 11], but the way to define them is non-unique since they
are based on non-unique extensions of subcopulas to copulas. The main contribution of
the present work is to propose a dependence measure based directly on the unique un-
derlying subcopula, regardless of the random variable types in a bivariate random vector
(X,Y ). Since a copula C is a particular case of subcopula, such proposal turns out to be
a concordance measure for a pair of continuous random variables that is related to the
L∞ distance between C and Π in an similar way as Spearman’s concordance measure
is related to the L1 distance between C and Π known as Schweizer-Wolff’s dependence
measure [14].

2. A MONOTONE DEPENDENCE MEASURE

Let S : D1 × D2 → I be the unique underlying subcopula for a random vector (X,Y )
of arbitrary type random variables accordingly to (1), where {0, 1}2 ⊆ D1 × D2 =
Ran FX × Ran FY ⊆ I 2.

Definition 2.1. (Adapted from Lehmann [8] and Nelsen [10]) Two random variables X
and Y will be called positively quadrant dependent (PQD) if P (X ≤ x , Y ≤ y) ≥ P (X ≤
x)P (Y ≤ y), which by (1) is equivalent to S(u, v) ≥ ΠS(u, v) for all (u, v) ∈ D1 ×D2.
Negative quadrant dependence (NQD) is defined analogously by reversing the sense of
the inequalities, that is S(u, v) ≤ ΠS(u, v) for all (u, v) ∈ D1 ×D2.

Proposition 2.2. Let A be the set of all bivariate subcopulas. The function d : A → R
defined by

d(S) := sup
DomS

{S −ΠS} − sup
DomS

{ΠS − S} , S ∈ A (3)

has the following properties:

a) d(ΠS) = 0 ;

b) − 1
4 ≤ d(WS) ≤ 0 ≤ d(MS) ≤ 1

4 ;

c) d(WS) ≤ d(S) ≤ d(MS) ;

d) |d(S)| = 1
4 attainable only if ( 1

2 ,
1
2 ) ∈ DomS ;
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e) if X and Y are PQD (respectively NQD) then d(S) ≥ 0 (respectively d(S) ≤ 0) ;

f) if S1, S2 ∈ A such that DomS1 = D = DomS2 and S1 � S2 then d(S1) ≤ d(S2).

P r o o f .

a) It follows immediately from the definition.

b) Elementary calculations can show that for a function h : I 2 → R defined by
h(u, v) := M(u, v)−uv ≥ 0 we have that maxh = 1

4 = h( 1
2 ,

1
2 ) and h(u, v) < 1

4 for
(u, v) 6= ( 1

2 ,
1
2 ) , and therefore

0
by (2)

≤ d(MS) = sup
DomS

{MS −ΠS} − 0

 = 1
4 if ( 1

2 ,
1
2 ) ∈ DomS

< 1
4 if ( 1

2 ,
1
2 ) /∈ DomS

and an analogous result follows using g(u, v) := W (u, v) − uv ≤ 0 since min g =
− 1

4 = g( 1
2 ,

1
2 ) and g(u, v) > − 1

4 for (u, v) 6= ( 1
2 ,

1
2 ) .

c) From (2) we get S −ΠS �MS −ΠS and then

d(S) ≤ sup
DomS

{S −ΠS} ≤ sup
DomS

{MS −ΠS} − 0

= sup
DomS

{MS −ΠS} − sup
DomS

{ΠS −MS}

= d(MS)

and an analogous reasoning leads to d(WS) ≤ d(S).

d) It follows immediately from the arguments to prove b) and c).

e) If X and Y are PQD then their underlying unique subcopula S � ΠS and therefore
supDomS{ΠS − S} = 0 so we conclude from the definition that d(S) ≥ 0. Case
NQD is analogous.

f) If S1 � S2 then supD{S2 − ΠD} ≥ supD{S1 − ΠD} and − supD{ΠD − S2} ≥
− supD{ΠD − S1} , and by adding left and right sides of these two inequalities we
obtain d(S2) ≥ d(S1).

�

Definition 2.3. The monotone dependence measure for arbitrary type random vari-
ables X and Y with underlying subcopula S will be denoted and defined as:

µX,Y ≡ µ(S) :=

 d(S)/d(MS) if d(S) ≥ 0 and MS 6= ΠS ,
−d(S)/d(WS) if d(S) ≤ 0 and WS 6= ΠS ,

0 if WS = ΠS = MS .

Notice that WS = ΠS = MS will occur if and only if DomS = {0, 1} × {0, 1}, and that
would be the case of a pair of constant random variables, so in what follows we will not
consider this trivial case. The expression monotone dependence measure is not new, it
is being used in a similar way as in [1].
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Theorem 2.4. The monotone dependence measure satisfies the following properties:

a) µX,Y is defined for every pair of arbitrary type random variables;

b) −1 ≤ µX,Y ≤ +1 , µX,X = +1 , and µX,−X = −1 ;

c) µX,Y = µY,X ;

d) if X,Y are independent then µX,Y = 0 ;

e) if µX,Y 6= 0 then µX,Y has opposite sign to µX,−Y and µ−X,Y ;

f) if S1, S2 are subcopulas such that DomS1 = D = DomS2 and S1 � S2 then
µ(S1) ≤ µ(S2) ;

g) if P [Y = ϕ(X)] = 1 with ϕ a nonconstant nondecreasing (respectively nonincreas-
ing) then µX,Y = +1 (respectively µX,Y = −1) ;

h) if X and Y are PQD (respectively NQD) then µX,Y ≥ 0 (respectively µX,Y ≤ 0).

P r o o f .

a) An immediate consequence of Sklar’s theorem (1) since µX,Y is defined in terms
of the unique underlying subcopula S.

b) If d(S) ≥ 0 then by Definition 2.3 we have that µX,Y = d(S)/d(MS) and apply-
ing Proposition 2.2 c) we get µX,Y ≤ +1. Similarly, if d(S) ≤ 0 then µX,Y =
−d(S)/d(WS) and by Proposition 2.2 b) and c) we now get µX,Y ≥ −1. Now by
Corollary 1.2 using Y = X we have that the underlying subcopula for (X,X)
is S = MS so d(S) = d(MS) ≥ 0 and therefore µX,X = d(MS)/d(MS) = +1.
Similarly, using Y = −X we have that the underlying subcopula for (X,−X) is
S = WS so d(S) = d(WS) ≤ 0 and therefore µX,−X = −d(WS)/d(WS) = −1.

c) Straightforward by applying Sklar’s theorem (1) to the fact that FX,Y (x, y) =
P ({X ≤ x} ∩ {Y ≤ y}) = P ({Y ≤ y} ∩ {X ≤ x}) = FY,X(y, x).

d) If X and Y are independent then FX,Y (x, y) = FX(x)FY (y) and by Sklar’s theorem
their unique underlying subcopula is S = ΠS so by Proposition 2.2 a) we have
d(S) = 0 and therefore µX,Y = 0.

e) It will suffice to prove that d(SX,−Y ) = −d(SX,Y ) where SX,Y and SX,−Y are the
unique underlying copulas for (X,Y ) and (X,−Y ), respectively.

F−Y (y) = P (−Y ≤ y) = P (Y ≥ −y) = 1− FY (−y) + P (Y = −y)
= 1− FY ((−y)−) (4)

where FY ((−y)−) = limz→(−y)− FY (z) is a left-hand limit at −y, and so

RanF−Y = {F−Y (y) : y ∈ R} = {1− FY (y−) : y ∈ R} . (5)
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Let SX,Y : RanFX ×RanFY → I be the unique underlying subcopula for (X,Y ),
and also let SX,−Y : RanFX × RanF−Y → I be the unique underlying subcopula
for (X,−Y ). Then:

SX,−Y
(
FX(x), F−Y (y)

) Sklar= FX,−Y (x, y)
= P (X ≤ x,−Y ≤ y) = P (X ≤ x, Y ≥ −y)
= P (X ≤ x)− lim

z→(−y)−
P (X ≤ x, Y ≤ z)

= FX(x)− FX,Y
(
x, (−y)−

)
Sklar= FX(x)− SX,Y

(
FX(x), FY ((−y)−)

)
(4)
= FX(x)− SX,Y

(
FX(x), 1− F−Y (y)

)
.

If we define u := FX(x) and v := F−Y (y) in this last result we get:

SX,−Y (u, v) = u − SX,Y (u, 1− v) (6)

where u ∈ RanFX and v must satisfy:

v ∈ RanF−Y and 1− v ∈ RanFY , (7)

which implies that v ∈ RanF−Y = {1 − FY (y−) : y ∈ R} and that v ∈ Ran(1 −
FY ) := {1−FY (y) : y ∈ R}, where RanF−Y = Ran(1−FY ) = I if Y is a continuous
random variable, otherwise the symmetric difference RanF−Y 4Ran(1−FY ) is at
most countable, in which case both sides of (6) can be properly defined over the
domain RanX ×D where the set D is the closure of RanF−Y ∩Ran(1− FY ), by
taking adequate limits. Finally:

d(SX,−Y ) = sup
(u,v)∈D

{SX,−Y (u, v)− uv} − sup
(u,v)∈D

{uv − SX,−Y (u, v)}

(6)
= sup

(u,v)∈D
{u− SX,Y (u, 1− v)− uv} − sup

(u,v)∈D
{uv − u+ SX,Y (u, 1− v)}

= sup
(u,v)∈D

{u(1− v)− SX,Y (u, 1− v)} − sup
(u,v)∈D

{SX,Y (u, 1− v)− u(1− v)}

= −d(SX,Y ).

f) An immediate consequence of Proposition 2.2 f) and Definition 2.3.

g) Applying Corollary 1.2, if ϕ is almost surely nondecreasing (nonconstant) then
the underlying subcopula for (X,Y ) is S = MS so d(S) = d(MS) ≥ 0 and
therefore µX,Y = d(MS)/d(MS) = +1. Similarly, if ϕ is almost surely nonin-
creasing (nonconstant) then the underlying subcopula for (X,Y ) is S = WS so
d(S) = d(WS) ≤ 0 and therefore µX,Y = −d(WS)/d(WS) = −1.

h) An immediate consequence of Proposition 2.2 e) and Definition 2.3.

�



A subcopula based dependence measure 237

Corollary 2.5. If X and Y are continuous random variables with unique underlying
copula C then:

a) µX,Y ≡ µ(C) = 4
(

max I 2{C −Π} − max I 2{Π− C}
)

;

b) µ is a measure of concordance.

P r o o f .

a) An immediate consequence from Proposition 2.2 and Definition 2.3 since d(M) =
1
4 = d(W ), and the fact that C is a continuous function with domain the compact
set I 2.

b) Theorem 2.4 includes all the properties for a measure of concordance required by
Definition 5.1.7 in Nelsen [10] except the following one: if {(Xn, Yn)} is a sequence
of continuous random variables with copulas Cn, and if {Cn} converges pointwise
to C, then limn→∞ µ(Cn) = µ(C), but this is straightforward to prove since all
copulas are continuous with domain the compact set I 2, and so we may exchange
maximum and limit.

�

From [10], in the particular case of copulas the L∞ distance between C and Π is given
by

Λ(C) = 4 sup
I2

∣∣C − Π
∣∣, (8)

and therefore if C is a member of a totally ordered (with respect to the concordance
ordering �) copula family that includes Π then Λ(C) = |µ(C)|, in a similar way as
σ(C) = |ρ(C)| where σ is Schweizer-Wolff’s dependence measure [14] and ρ is Spearman’s
concordance measure:

σ(C) = 12
∫∫

I 2
|C(u, v)− uv|dudv , ρ(C) = 12

∫∫
I 2

[C(u, v)− uv] dudv . (9)

3. EXAMPLES

Let (X,Y ) be a random vector of arbitrary type random variables with joint distribution
function

FXY (x, y |α, θ1, θ2) = Sα
(
FX(x | θ1) , FY (y | θ2)

)
(10)

where (α, θ1, θ2) belongs to some parametric space, and where accordingly to (1) we have
that the function Sα : RanFX × RanFY → I is the unique underlying subcopula with
parameter α ; and θ1 and θ2 are marginal parameters of X and Y, respectively. If both X
and Y are continuous random variables then RanFX = I = RanFY , which implies that
the domain of Sα is I 2 and therefore Sα would be, in fact, a copula. In this particular
case, the value of µX,Y will be only a function of the subcopula parameter α. In case
one of the random variables is non-continuous, say X, then RanFX is a proper subset
of I which depends on the marginal parameter θ1 and therefore µX,Y will be a function
of α and (possibly) θ1. And of course if both random variables are non-continuous the
value of µX,Y will be a function of α and (possibly) of θ1 and/or θ2.
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Example 3.1. Consider a bivariate random vector (X,Y ) where X and Y are Bernoulli
random variables with parameters 0 < θ1 < 1 and 0 < θ2 < 1, respectively, and
dependence parameter α = P (X = 1, Y = 1). We may summarize its joint probability
mass function P (X = x, Y = y) as:

P (X = x, Y = y) Y = 0 Y = 1 P (X = x)
X = 0 1 + α− θ1 − θ2 θ2 − α 1− θ1
X = 1 θ1 − α α θ1

P (Y = y) 1− θ2 θ2

(11)

where by Fréchet–Hoeffding bounds max{θ1 + θ2 − 1, 0} ≤ α ≤ min{θ1, θ2}, X and
Y are independent if and only if α = θ1θ2, and PQD/NQD if α ≥ θ1θ2 or α ≤ θ1θ2,
respectively. In this case the unique underlying subcopula S : D1×D2 → I is determined
by D1 = {0, 1−θ1, 1}, D2 = {0, 1−θ2, 1}, and S(1−θ1, 1−θ2) = 1+α−θ1−θ2 since the
other 8 subcopula values are determined by boundary conditions a) and b) in Definition
1.1:

S(u, v) v = 0 v = 1− θ2 v = 1
u = 0 0 0 0
u = 1− θ1 0 1 + α− θ1 − θ2 1− θ1
u = 1 0 1− θ2 1

(12)

Then d(S) = α− θ1θ2 and

d(MS) =

 θ2(1− θ1) , θ1 ≥ θ2

θ1(1− θ2) , θ1 ≤ θ2
(13)

− d(WS) =

 θ1θ2 , θ2 ≤ 1− θ1

(1− θ1)(1− θ2) , θ2 ≥ 1− θ1.
(14)

Therefore applying Definition 2.3:

µX,Y =


(α− θ1θ2)/θ2(1− θ1) , θ2 ≤ θ1 , α ≥ θ1θ2
(α− θ1θ2)/θ1(1− θ2) , θ2 ≥ θ1 , α ≥ θ1θ2
(α− θ1θ2)/θ1θ2 , θ2 ≤ 1− θ1 , α ≤ θ1θ2
(α− θ1θ2)/(1− θ1)(1− θ2) , θ2 ≥ 1− θ1 , α ≤ θ1θ2.

(15)

It is straightforward to obtain Cov(X,Y ) = α − θ1θ2 = d(S), and therefore Pearson’s
correlation coefficient rX,Y = (α−θ1θ2)/

√
θ1(1− θ1)θ2(1− θ2). In Table 1 it is compared

µX,Y versus rX,Y under extreme values of α and independence.

Example 3.2. Let (X,Y ) be a random vector with joint probability distribution func-
tion:

FX,Y (x, y |α, θ) = αmin{1−x−1, 1−(1−θ)byc}+(1−α)(1−x−1)[1−(1−θ)byc] , (16)

when x > 1, y ≥ 1 and equal to 0 otherwise, with parameters 0 ≤ α ≤ 1 and 0 < θ < 1,
and where byc stands for the maximum integer less than or equal to y. By marginalization
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α condition interpretation µX,Y rX,Y
min{θ1, θ2} θ1 6= θ2 P (Y ≥ X) = 1 +1 < +1
min{θ1, θ2} θ1 = θ2 P (Y = X) = 1 +1 +1

θ1θ2 none X and Y independent 0 0
max{θ1 + θ2 − 1, 0} θ2 > 1− θ1 P (Y ≥ 1−X) = 1 −1 > −1
max{θ1 + θ2 − 1, 0} θ2 < 1− θ1 P (Y ≤ 1−X) = 1 −1 > −1
max{θ1 + θ2 − 1, 0} θ2 = 1− θ1 P (Y = 1−X) = 1 −1 −1

Tab. 1. Comparing monotone dependence measure versus Pearson’s

correlation in Example 3.1.

it is straighforward to verify that X is a continuous random variable Pareto(1, 1) and
Y is a discrete Geometric(θ) random variable since FX(x) = FX,Y (x,+∞) = 1 − x−1,
x > 1, and FY (y | θ) = FX,Y (+∞, y) = 1− (1− θ)byc, y ≥ 1, and by (10) it is obtained:

FX,Y (x, y |α, θ) = Sα
(
FX(x) , FY (y | θ)

)
, x > 1, y ≥ 1 (17)

with underlying subcopula Sα : RanFX × RanFY → I 2, where RanFX = I and
RanFY = {1− (1− θ)k : k = 0, 1, . . .} ∪ {1} ⊂ I, given by:

Sα(u, v) = αmin{u, v} + (1− α)uv = αM(u, v) + (1− α)Π(u, v) , (18)

that is, subcopula Sα is a convex linear combination of copulas M and Π restricted to
RanFX ×RanFY , where S0 = Π and S1 = M. Recalling (2) we have that Π �M which
in this example implies Sα � Π and therefore:

d(Sα) = sup
DomSα

{Sα(u, v) − ΠSα(u, v) } − 0

= sup
DomSα

{α [M(u, v)−Π(u, v) ] } = α sup
DomSα

{M(u, v)−Π(u, v) }

= αd(MSα)

and consequently µX,Y = d(Sα)/d(MSα) = α. It should be noticed that despite Y is a
discrete random variable its parameter θ does not have an influence on µX,Y in this case.
In this example it is not possible to calculate Pearson’s correlation since first moment
of X does not exist.

Example 3.3. Let (X,Y ) be a random vector of continuous random variables. In this
case the unique underlying subcopula in (10) is, in fact, a copula, and therefore the value
µX,Y will only depend on it, independently of the marginal distributions of X and Y.
For continuous random variables, copula based concordance measures such as Kendall’s
τX,Y and Spearman’s ρX,Y are uniquely determined by:

τX,Y = 4
∫∫

I 2
Cθ(u, v) dCθ(u, v)− 1 , ρX,Y = 12

∫∫
I 2
Cθ(u, v) dudv − 3 ,
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and will be compared to the proposed monotone dependence µX,Y under the Clayton
family of copulas:

Cθ(u, v) =
[

max(u−θ + v−θ − 1, 0)
]−1/θ

, θ ∈ [−1,+∞[ \{0}

where C−1 = W, C0 = Π and C∞ = M. For Clayton copula with parameter θ it is
possible to obtain explicitly τX,Y = θ/(θ + 2), but for ρX,Y a numerical approximation
is required, which in this example is done by the copula R package by Hofert et al. [7].
There is no explicit expression for µX,Y in this case, so to calculate it as in Corollary
2.5 a numerical maximization is performed applying the nlm function by the R Core
Team [12]. See Figure 1.
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Fig. 1. Monotone dependence µX,Y (solid line), Kendall’s τX,Y

(dashed line), and Spearman’s ρX,Y (dotted line) in Example 3.3.

The Clayton family of copulas was chosen as an example because it is comprehensive
(includes W, Π, and M) and therefore all values in the [−1, 1] interval may be reached
for concordance measures with appropriate values of its parameter θ. As illustrated in
Figure 1 the behavior of µX,Y is similar to τX,Y and ρX,Y .

As a final comment, consider a bivariate random vector (X,Y ) where the random
variables X and Y may be discrete, continuous or mixed type, not necessarily both of
the same kind. Let {(x1, y1), . . . , (xn, yn)} denote a size n sample of observations from
(X,Y ). Since there may be repeated values among {x1, . . . , xn} let {r1, . . . , rm1} be the
set of distinct observed values of X in the sample such that r1 < · · · < rm1 , where
m1 ≤ n, and analogously let {s1, . . . , sm2} be the ordered set of distinct observed values
among {y1, . . . , yn}, where m2 ≤ n.
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Let p1i be the proportion of the observed values of X that are equal to ri and p2j

the proportion of the observed values of Y that are equal to sj , that is:

p1i :=
1
n

n∑
k= 1

1{xk = ri}, i ∈ {1, . . . ,m1} ,

p2j :=
1
n

n∑
k= 1

1{yk = sj}, j ∈ {1, . . . ,m2} , (19)

where clearly p1i > 0 and p2j > 0, and also
∑m1
i=1 p1i = 1 and

∑m2
j=1 p2j = 1. Now define

the sets D1 = {q10, q11, . . . , q1m1} and D2 = {q20, q21, . . . , q2m2} where q10 = 0 = q20
and

q1i :=
i∑

k= 1

p1k , i ∈ {1, . . . ,m1} , q2j :=
j∑

k= 1

p2k , j ∈ {1, . . . ,m2} , (20)

where clearly 0 = q10 < q11 < · · · < q1,m1−1 < q1m1 = 1 and 0 = q20 < q21 < · · · <
q2,m2−1 < q2m2 = 1. Then the set D1 × D2 is suitable as domain for a subcopula as
in Definition 1.1. Let the function Sn : D1 ×D2 → I be defined as Sn(q10, q2j) = 0 =
S(q1i, q20) for all i and j, and

Sn(q1i, q2j) :=
1
n

n∑
k= 1

1{xk ≤ ri , yk ≤ sj}, i ∈ {1, . . . ,m1}, j ∈ {1, . . . ,m2}, (21)

then it is straightforward to verify that Sn is a subcopula and therefore we will call it em-
pirical subcopula associated to the observed sample {(x1, y1), . . . , (xn, yn)}. It should be
noticed that the usual empirical joint distribution Fn(ri, sj) = 1

n

∑n
k=1 1{xk ≤ ri , yk ≤

sj} = Sn(q1i, q2j), that is Fn and Sn have the same range, but different domain since
Fn : R2 → I. It is possible then to calculate (3) as:

d(Sn) = max{Sn(q1i, q2j)− q1iq2j : q1i ∈ D1, q2j ∈ D2}
− max{q1iq2j − Sn(q1i, q2j) : q1i ∈ D1, q2j ∈ D2} (22)

and therefore a sample version of the monotone dependence measure would be µ(Sn)
which is calculated accordingly to Definition 2.3 and (22).

In the particular case where X and Y are both continuous random variables, an
observed bivariate sample {(x1, y1), . . . , (xn, yn)} will contain non repeated values, and
then m1 = n = m2, ri = x(i) and sj = y(j) (where x(i) stands for the i-th order
statistic), p1i = 1

n = p2j for all i and j, q1i = i
n and q2j = j

n , and D1 = In = D2 where
In = {0, 1

n , . . . ,
n−1
n , 1}. In this case the empirical subcopula Sn : I 2

n → I defined in (21)
would be equivalent to:

Sn

( i
n
,
j

n

)
=

1
n

n∑
k= 1

1{xk ≤ x(i) , yk ≤ y(j)} (23)

and Sn( in , 0) = 0 = Sn(0, jn ), which agrees with the usual definition of empirical copula
for continuous random variables, see Definition 5.6.1 in Nelsen [10]. The expression
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“empirical copula” is somehow misleading since it is a subcopula with finite support I 2
n,

but not a copula. Of course, empirical subcopula (23) may be extended in a non-unique
way to a copula, for example by bilinear interpolation as in Lemma 2.3.5 in Nelsen [10],
which is also known as checkerboard copula, see Li et al. [9] or Durante and Sempi [3].
Consequently, for observations from a pair of continuous random variables (22) becomes:

d(Sn) = max
{
Sn

( i
n
,
j

n

)
− ij

n2
: i, j ∈ {0, . . . , n}

}
− max

{
ij

n2
− Sn

( i
n
,
j

n

)
: i, j ∈ {0, . . . , n}

}
(24)

and by elementary calculations:

− d(WSn) = d(MSn) =


1
4 if n even,

n2−1
4n2 if n odd,

(25)

therefore by Definition 2.3:

µ(Sn) =


4d(Sn)(−1)1{d(Sn)≤0} if n even,

4n2

n2−1 d(Sn)(−1)1{d(Sn)≤0} if n odd,
(26)

where 1{d(Sn) ≤ 0} is equal to 1 if d(Sn) ≤ 0 and 0 otherwise.

An R package subcopem2D [4] has been developed to perform the above calcula-
tions. subcopem function is for calculation of bivariate empirical subcopula matrix (21),
induced partitions D1 and D2, and µ(Sn) for a given bivariate sample of a pair of
arbitrary type random variables. subcopemc function performs the same but it is specif-
ically for a pair of continuous random variables with the possibility of faster calculations.
dependence function calculates a matrix of pairwise dependence values for several vari-
ables. Examples are provided within the package.

4. CONCLUSION

A monotone dependence measure µX,Y (Definition 2.3) is proposed for arbitrary type
random variables X and Y based on the unique underlying subcopula given by Sklar’s
Theorem (1), and its main properties are summarized in Theorem 2.4. Examples for
discrete-discrete, continuous-discrete, and continuous-continuous pairs of random vari-
ables were analyzed, and in the particular case where both random variables are contin-
uous µX,Y turns out to be a concordance measure (Corollary 2.5), with the advantage
that its definition is still unique in the general context of subcopulas, in contrast with
other concordance measures that depend on non-unique extensions of copulas to subcop-
ulas. Also, a sample version of the proposed dependence measure based on the empirical
subcopula has been provided, for the general case (22) and for the particular case where
both random variables are continuous (26), along with an R package subcopem2D [4] to
perform such calculations.
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[5] C. Genest and J. Nešlehová: A primer on copulas for count data. Astin Bull. 37 (2007),
475–515. DOI:10.2143/ast.37.2.2024077
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