
Copula-based piecewise regression

Arturo Erdely

Abstract Most common parametric families of copulas are totally ordered, and in
many cases they are also positively or negatively regression dependent and therefore
they lead to monotone regression functions, which makes them not suitable for de-
pendence relationships that imply or suggest a non-monotone regression function. A
gluing copula approach is proposed to decompose the underlying copula into totally
ordered copulas that combined may lead to a non-monotone regression function.

1 Introduction

Given a bivariate random vector (X ,Y ) with joint probability distribution func-
tion FX ,Y (x,y) = P(X ≤ x,Y ≤ y) it is possible to assess uncertainty about one
of the random variables conditioning on certain values of the other, for example
through the univariate conditional probability distribution of Y given X = x, that is
FY |X (y |x) = P(Y ≤ y |X = x). As a point estimate for a future value of Y given X = x
we may calculate central tendency measures with FY |X such as the mean (whenever
it exists) or the median (which always exists in the continuous case) which will de-
pend on the conditioning value x and therefore such point estimates depending on x
may be denoted by µ(x) and are called regression function for Y given X = x.

As a consequence of Sklar’s Theorem [9] for continuous random variables
there exists a unique copula C such that the joint probability distribution function
FX ,Y (x,y) =C(FX (x),FY (y)) where FX (x) = P(X ≤ x) and FY (y) = P(Y ≤ y) are the
marginal probability distribution functions of X and Y, respectively. As explained in
[5], the conditional distribution of Y given X = x can be obtained by
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FY |X (y |x) =
∂C(u,v)

∂u

∣∣∣
u=FX (x) ,v=FY (y)

(1)

and therefore to find the median regression function for Y given X = x whenever
FY |X is a continuous distribution function, we proceed as follows:

Algorithm 1

1. Set ∂C(u,v)/∂u = 1/2;
2. solve for the regression function of V =FY (Y ) given U =FX (X) = u, and obtain

v = ψ(u) ;
3. replace u by FX (x) and v for FY (y) ;
4. solve for the regression function of Y given X = x :

y = µ(x) = F(−1)
Y (ψ(FX (x))). (2)

It is worth to notice that since FX and FY only explain the individual (marginal)
probabilistic behavior of the continuous random variables X and Y, respectively,
then the information about their dependence for regression purposes is contained in
ψ. A survey of copula-based regression models may be found in [3] and estima-
tion/inference procedures for such purpose in [6].

2 Piecewise monotone regression

In [1] it is argued that when the regression function is non-monotone, copula-based
regression estimates do not reproduce the qualitative features of the regression func-
tion under commonly used parametric copula families. This occurs because very of-
ten such parametric copulas lead to monotone regression functions, but in case there
is evidence that the underlying regression function is non-monotone a piecewise re-
gression approach may be applied in order to break up a non-monotone relationship
into a piecewise monotonic one, and then seek for the best copula fit for each piece.

Piecewise (or segmented) monotone regression for Y given X = x is defined by
partitioning the support of X into a finite number of intervals such that restricted
to each one it is possible to obtain a monotone regression function. For example,
instead of (1) we may obtain something like

FY |X (y |x) =


∂

∂uC1(u,v)
∣∣∣
u=FX |X≤b(x) ,v=FY (y)

, if x≤ b,

∂

∂uC2(u,v)
∣∣∣
u=FX |X>b(x) ,v=FY (y)

, if x > b,
(3)

with C1 and C2 two different copulas, b is called a break-point for explanatory vari-
able X , and where FX |X≤b and FX |X>b are the conditional distribution functions of
X given X ≤ b and X > b, respectively. This may be justified in terms of the gluing
copula technique [8] as explained in [2] for the particular case of vertical section
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gluing and bivariate copulas. Specifically, given two bivariate copulas C1 and C2,
and a fixed value 0 < θ < 1 (gluing point), we may scale C1 to [0,θ ]× [0,1] and C2
to [θ ,1]× [0,1] and glue them into a single copula

C1,2,θ (u,v) =

{
θC1(

u
θ
,v), 0≤ u≤ θ ,

(1−θ)C2(
u−θ

1−θ
,v)+θv, θ ≤ u≤ 1.

(4)

Then
∂

∂u
C1,2,θ (u,v) =

{
∂

∂uC1(
u
θ
,v), 0≤ u≤ θ ,

∂

∂uC2(
u−θ

1−θ
,v), θ ≤ u≤ 1,

(5)

and by (1)

FY |X (y |x) =
∂C1,2,θ (u,v)

∂u

∣∣∣∣
u=FX (x) ,v=FY (y)

=

{
∂

∂uC1(
FX (x)

θ
,FY (y)), 0≤ FX (x)≤ θ ,

∂

∂uC2(
FX (x)−θ

1−θ
,FY (y)), θ ≤ FX (x)≤ 1,

=


∂

∂uC1(u,v)
∣∣∣
u=FX |X≤b(x) ,v=FY (y)

, x≤ F(−1)
X (θ) = b,

∂

∂uC2(u,v)
∣∣∣
u=FX |X>b(x) ,v=FY (y)

, x > F(−1)
X (θ) = b,

(6)

since FX |X≤b(x) = P(X ≤ x |X ≤ b) = P(X ≤ x)/P(X ≤ b) = FX (x)/θ and
FX |X>b(x) = P(b < X ≤ x)/P(X > b) = (FX (x)− θ)/(1− θ). The result obtained
in (6) leads to a regression function of the form

µ(x) =

{
µ1(x), if x≤ b,
µ2(x), if x > b,

(7)

where, for example, if µ1(x) is an increasing function and µ2(x) a decreasing one,
then µ(x) is non-monotone.

Example 1. From example 3.3 in [5] if a probability mass 0 < θ < 1 is uniformly
distributed on the line segment joining (0,0) to (θ ,1), and a probability mass 1−θ

is uniformly distributed on the line segment joining (θ ,1) to (1,0), see Fig. 1, the
underlying copula for a random vector (X ,Y ) of continuous Uniform(0,1) random
variables with such non-monotone dependence is given by

Cθ (u,v) =


u, 0≤ u≤ θv≤ θ ,

θv, 0≤ θv < u < 1− (1−θ)v,
u+ v−1, θ ≤ 1− (1−θ)v≤ u≤ 1.

(8)

By construction we have that P(Y = x
θ
|X = x) = 1 whenever 0 ≤ x ≤ θ and

P(Y = 1−x
1−θ
|X = x) = 1 whenever θ ≤ x ≤ 1, which implies that the regression

function of Y given X = x is
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Fig. 1 Example 1. Left: (X ,Y ) dependence. Right: underlying copula (8).

µ(x) =

{
x
θ
, 0≤ x≤ θ ,

1−x
1−θ

, θ ≤ x≤ 1,
(9)

clearly a non-monotone function: linearly increasing for 0≤ x≤ θ and linearly de-
creasing for θ ≤ x≤ 1, which suggests in this case that the underlying dependence
might be split by means of the gluing copula technique in terms of two copulas,
with θ as gluing point. Indeed, let C1(u,v) = min{u,v} (the Fréchet-Hoeffding up-
per bound that represents the case when one variable is almost surely an increasing
function of the other) and C2(u,v) =max{u+v−1,0} (the Fréchet-Hoeffding lower
bound that represents the case when one variable is almost surely a decreasing func-
tion of the other), then applying (4) it is straightforward to verify that the resulting
gluing copula C1,2,θ is equal to (8).

Therefore, the same regression function obtained in (9) could be obtained in two
pieces: the first one in terms of the random vector (X1,Y ) with underlying copula
C1 and where the distribution of X1 is the conditional distribution of X given X ≤ θ ,
which turns to be uniform(0,θ), and the second one in terms of the random vector
(X2,Y ) with underlying copula C2 and where the distribution of X2 is the conditional
distribution of X given X > θ , which turns to be uniform(θ ,1). Applying (1) to the
first piece we obtain the following:

FY |X1(y |x) =
∂

∂u
C1(u,v)

∣∣∣
u= x

θ
,v=y

=

{
1, if y≥ x

θ
,

0, if y < x
θ

(10)

from which we get µ1(x) = x
θ

whenever 0 ≤ x ≤ θ , and similarly from FY |X2(y |x)
we obtain µ2(x) = 1−x

1−θ
whenever θ ≤ x≤ 1, as expected. �
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For simplicity’s sake, the case for a single break-point has been analyzed, but the
analogous idea may be applied for finitely many break-points. For each interval I
induced in the support of the explanatory variable, the conditional distribution of Y
given X = x is obtained by

FY |X (y |x) =
∂

∂u
CI(u,v)

∣∣∣
u=FX |X∈ I(x) ,v=FY (y)

(11)

and with it the regression function µ(x) for x ∈ I may be calculated.

3 Dependence and regression

In this section the concepts of quadrant and regression dependence by [4] are re-
called.

Definition 1. A bivariate random vector (X ,Y ) or its joint distribution function FX ,Y
is positively quadrant dependent and abbreviated as PQD(X ,Y ) if

P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) , for all x and y, (12)

and negatively quadrant dependent NQD(X ,Y ) if (12) holds with the inequality sign
reversed.

In the particular case where both X and Y are continuous random variables with
underlying copula C, as an immediate consequence of Sklar’s Theorem [9] we have
that PQD(X ,Y ) is equivalent to C(u,v) ≥ uv for all u,v in [0,1], and NQD(X ,Y )
with this last inequality sign reversed. From [5] we have the following:

Definition 2. If C1 and C2 are copulas, we say that C1 is smaller than C2 (or C2 is
larger than C1), and write C1 ≺C2 (or C2 �C1) if C1(u,v) ≤C2(u,v) for all u,v in
[0,1].

This point-wise partial ordering of the set of copulas is called concordance or-
dering. It is a partial order rather than a total order because not every pair of copulas
is comparable. However, there are families of copulas that are totally ordered. We
will call a totally ordered parametric family {Cθ} of copulas positively ordered if
Cα ≺ Cβ whenever α ≤ β ; and negatively ordered if Cα � Cβ whenever α ≤ β .
Many of well known one-parameter families of copulas are totally ordered and in-
clude Π(u,v) = uv, and hence have subfamilies of PQD and NQD copulas.

As mentioned in [5] one form to calculate Spearman’s concordance measure is

ρC = 12
∫∫

[0,1]2

[
C(u,v)−uv

]
dudv = 12

∫∫
[0,1]2

C(u,v)dudv − 3 , (13)

and hence ρC/12 can be interpreted as a measure of “average” quadrant dependence
(both positive and negative) for continuous random variables whose copula is C.
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Closely related to (13) is the L1 distance between C and the (sometimes called) in-
dependence copula Π(u,v) = uv known as Schweizer-Wolff’s dependence measure
[7] defined as

σC = 12
∫∫

[0,1]2

∣∣C(u,v)−uv
∣∣dudv . (14)

Two main differences (among others) are that −1≤ ρC ≤ 1 in contrast to 0≤ σC ≤
1, and that σC = 0 if and only X and Y are independent (that is C = Π ) while ρC = 0
does not necessarily imply independence. Moreover, as explained in [5]:

Of course, it is immediate that if X and Y are PQD, then σX ,Y = ρX ,Y ; and that if X and Y
are NQD, then σX ,Y = −ρX ,Y . Hence for many of the totally ordered families of copulas
presented in earlier chapters (e.g., Plackett, Farlie-Gumbel-Morgenstern, and many families
of Archimedean copulas), σX ,Y = |ρX ,Y |. But for random variables X and Y that are neither
PQD nor NQD, i.e., random variables whose copulas are neither larger nor smaller than Π ,
σ is often a better measure than ρ [. . . ]

Definition 3. A random variable Y is positively regression dependent on a random
variable X and abbreviated as PRD(Y |X) if

FY |X (y |x) = P(Y ≤ y |X = x) is non-increasing in x, (15)

and negatively regression dependent NRD(Y |X) if (15) is non-decreasing in x.

From theorems 5.2.4 and 5.2.12 in [5] or from Lemma 4 in [4] we have the
following:

Corollary 1. Given (X ,Y ) a bivariate random vector:

a) If PRD(Y |X) then PQD(X ,Y ).
b) If NRD(Y |X) then NQD(X ,Y ).

By arguments explained in [5] the reverse implications in Corollary 1 do not neces-
sarily hold.

Corollary 2. If (X ,Y ) are continuous random variables with underlying copula C
then:

a) PRD(Y |X) if and only if for any v in [0,1] and for almost all u, ∂C(u,v)/∂u is
non-increasing in u;

b) NRD(Y |X) if and only if for any v in [0,1] and for almost all u, ∂C(u,v)/∂u is
non-decreasing in u.

In case the conditional expectation exists it is possible to obtain a mean regres-
sion function

µ(x) = E(Y |X = x) =
∫

∞

0
[1−FY |X (y |x)]dy −

∫ 0

−∞

FY |X (y |x)dy , (16)

and in case FY |X (y |x) is a continuous function of y then it is possible to obtain a
median regression function
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µ(x) = median(Y |X = x) = F(−1)
Y |X (0.5 |x) . (17)

Proposition 1. Let µ(x) be a mean or median regression function:

a) If PRD(Y |X) then µ(x) is non-decreasing.
b) If NRD(Y |X) then µ(x) is non-increasing.

Proof. If PRD(Y |X) then for all x1 < x2

−FY |X (y |x1) ≤ −FY |X (y |x2) , (18)
1−FY |X (y |x1) ≤ 1−FY |X (y |x2) . (19)

Integration of (18) on ]−∞,0] and of (19) on [0,∞[ , and adding the results according
to the inequalities it is obtained µ(x1) = E(Y |X = x1)≤ E(Y |X = x2) = µ(x2), as
required. Now from (18) we have FY |X (y |x1) ≥ FY |X (y |x2), and since FY |X (y |x)
is non-decreasing in y for any x so is F(−1)

Y |X (u |x) as a function of u and therefore

F(−1)
Y |X (u |x1) ≤ F(−1)

Y |X (u |x2), hence µ(x1) = median(Y |X = x1) =F(−1)
Y |X (0.5 |x1) ≤

F(−1)
Y |X (0.5 |x2) =median(Y |X = x2) = µ(x2), as required. �

But the reverse implications in this last proposition do not necessarily hold, as it
can be easily verified by similar arguments.

Example 2. Continuing with Example 1, applying formulas (13) and (14) it is
straightforward to verify that Spearman’s ρθ = 2θ − 1 and Schweizer-Wolff’s
σθ = θ 2 +(θ − 1)2, and since 0 < θ < 1 then |ρθ | < σθ and therefore neither we
have PQD nor NQD, and neither PRD nor NRD. Moreover, if θ = 1

2 then ρ1/2 = 0
but this does not imply independence since σ1/2 =

1
2 (its minimum possible value,

by the way). See Fig. 2 (left). �

4 Change-point detection

The ideas explained in the previous sections may be useful in tackling the concerns
raised by [1] when the dependence relationship between random variables implies
a non-monotone regression function, considering that the most common families of
parametric copulas lead to monotone regression functions, and a possible solution
might be to break up such dependence into pieces such that within each one the
dependence implies a piecewise monotone regression function, and possibly one
of the common families of parametric copulas may have an acceptable fit for each
piece. In pursuing this objective, when dealing with data from which the dependence
has to be estimated, a methodology to find break-point candidates, that is change-
point detection, becomes necessary.
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Definition 4. The diagonal section of a copula C is a function δC : [0,1]→ [0,1]
given by δC(t) =C(t, t).

Since every copula C is bounded by the Fréchet-Hoeffding bounds max{u+ v−
1,0} ≤ C(u,v) ≤ min{u,v} then max{2t − 1,0} ≤ δC(t) ≤ t. If C = Π (indepen-
dence copula) then δΠ (t) = t2. If (X ,Y ) is a random vector of continuous random
variables with underlying copula C and PQD(X ,Y ) or NQD(X ,Y ) then C(u,v)≥ uv
or C(u,v) ≤ uv, respectively, for all (u,v) in [0,1]2, and therefore δC(t) ≥ t2 or
δC(t) ≤ t2, respectively, for all t in [0,1]. Hence, if there exist t1, t2 in [0,1] such
that δC(t1) < t2

1 and δC(t2) > t2
2 then neither PQD(X ,Y ) nor NQD(X ,Y ), and con-

sequently this would imply that neither PRD(Y |X) nor NRD(Y |X). In case of this
last scenario, this would not necessarily imply that a mean or median regression
function µ(x) is non-monotone since Proposition 1 is a one-way implication, but at
least raises the question and leads to propose and analyze break-point candidates.
The following result is straightforward:

Proposition 2. Let C1 and C2 be two copulas such that C1(u,v)≥ uv and C2(u,v)≤
uv for all (u,v)∈ [0,1]2, and let 0< θ < 1. Then the diagonal section of the resulting
gluing copula C1,2,θ as in (4) satisfies

δ1,2,θ (t)


≥ t2, if 0≤ t ≤ θ ,

= θ 2, if t = θ ,

≤ t2, if θ ≤ t ≤ 1.
(20)

Since the diagonal section δC of any copula C is a continuous function, see [5],
we may choose and analyze as possible break-point candidates those where cross-
ings between δC and δΠ take place.

Example 3. Continuing with Example 1, from formula (8) the corresponding diago-
nal section is:

δθ (t) = Cθ (t, t) =

{
θ t , t ≤ 1

2−θ
,

2t−1 , t ≥ 1
2−θ

.
(21)

If 0 < t ≤ 1
2−θ

then δθ (t)≥ t2 if and only if t ≤ θ . If 1
2−θ
≤ t < 1 then δθ (t)≤ t2.

Since 0 < θ < 1 then θ < 1
2−θ

and therefore we conclude that δθ (t)≥ t2 if and only
if t ≤ θ , and δθ (t) ≤ t2 if and only if t ≥ θ . Hence, we would propose t = θ as
break-point candidate, as expected. See Fig. 2 (right). �

Example 4. This is one of the examples used in [1] to raise concerns about the use of
copulas when the dependence relationship between random variables implies a non-
monotone regression function. Let ε be a Normal(0,1) random variable, a constant
k2 = 0.01, and X a Uniform(0,1) random variable independent from ε. Now define
the random variable:

Y = (X − 0.5)2 + kε . (22)



Copula-based piecewise regression 9

0 1
0

1

θ

de
pe

nd
en

ce

0 1
0

1

t

δ θ
(t)

θ

Fig. 2 Left: |ρθ | (dashed line) and σθ (continuous line) in Example 2. Right: δθ (thick line) and
δΠ (thin line) in Example 3.

Then the conditional distribution of Y given X = x is Normal
(
(x− 0.5)2,k2

)
and

therefore the corresponding mean regression function is given by:

µ(x) = E(Y |X = x) = (x − 0.5)2 , 0≤ x≤ 1, (23)

clearly a non-monotone regression function (decreasing when x ≤ 0.5, increasing
when x≥ 0.5). Since the joint probability density of (X ,Y ) is given by fX ,Y (x,y) =
fX (x) fY |X (y |x) then:

FX ,Y (x,y) =
∫ x

−∞

fX (r)
∫ y

−∞

fY |X (s |x)dsdr =
∫ x

−∞

fX (r)FY |X (y |r)dr

=


0 , if x≤ 0,∫ x

0
Φ

(y− (r−0.5)2

k

)
dr , if 0 < x < 1,∫ 1

0
Φ

(y− (r−0.5)2

k

)
dr , if x≥ 1,

(24)

where Φ is the distribution function for a Normal(0,1) random variable. From (24)
it is possible obtain the following expression for the marginal distribution function
of Y :

FY (y) = FX ,Y (+∞,y) =
∫ 1

0
Φ

(y− (r−0.5)2

k

)
dr. (25)

Hence, by Sklar’s Corollary 2.3.7 in [5] it is possible to obtain the following expres-
sion for the underlying copula of (X ,Y ) :

C(u,v) = FX ,Y
(
F(−1)

X (u),F(−1)
Y (v)

)
=
∫ u

0
Φ

(F−1
Y (v)− (r−0.5)2

k

)
dr , (26)

and consequently the diagonal section of such copula is given by:
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Fig. 3 Example 4. Left: Level curves (thick style) of copula (26) versus level curves (thin style)
of product (or independence) copula. Right: Diagonal section (thick style) of copula (26) versus
diagonal section (thin style) of product (or independence) copula.

δC(t) = C(t, t) =
∫ t

0
Φ

(F−1
Y (t)− (r−0.5)2

k

)
dr. (27)

In Fig. 3 (left) we may notice crossings between copula (26) level curves (thick
style) and the product (or independence) copula Π(u,v) = uv level curves (thin
style), with the following interpretation: thick curve below thin curve implies
C(u,v) ≥ Π(u,v) and thick curve above thin curve implies C(u,v) ≤ Π(u,v). In
Fig. 3 (right) the graph of the diagonal section (27) is compared to the graph of the
diagonal section of Π from where we get as gluing point candidate u = θ = 1/2.

Then we proceed to a gluing copula decomposition by means of (4) where C1,2,θ =
C. For 0≤ u≤ θ we get θC1(

u
θ
,v) =C(u,v), and if we let u∗ = u

θ
∈ [0,1] then:

C1(u∗,v) =
1
θ

C(θu∗,v) = 2
∫ u∗/2

0
Φ

(F−1
Y (v)− (r−0.5)2

k

)
dr , (28)

and therefore:

∂

∂u∗
C1(u∗,v) = Φ

(F−1
Y (v)−0.25(1−u∗)2

k

)
, (29)

where clearly (29) is a non-decreasing function of u∗ which by Corollary 2 implies
NRD for copula C1, and consequently NQD by Corollary 1. Also, by Proposition
1 we get that a regression function µ1(x) based on C1 will lead to a non-increasing
function of x. See Fig. 4 (left) for the level curves of C1 (thick style) versus the level
curves (thin lines) of Π(u,v) = uv, where all the level curves of C1 are above the
corresponding ones to Π implying that C1(u,v)≤Π(u,v), as expected.

Similarly, for θ ≤ u ≤ 1 we get (1− θ)C2(
u−θ

1−θ
,v) + θv = C(u,v) and if we let

u∗ = u−θ

1−θ
∈ [0,1] then:
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Fig. 4 Example 4. Left: Level curves (thick style) of copula (28) versus level curves (thin style)
of product (or independence) copula. Right: Level curves (thick style) of copula (4) versus level
curves (thin style) of product (or independence) copula.

C2(u∗,v) =
C((1−θ)u∗+θ ,v)−θv

1−θ

= 2
∫ (u∗+1)/2

0
Φ

(F−1
Y (v)− (r−0.5)2

k

)
dr − v , (30)

and therefore:
∂

∂u∗
C2(u∗,v) = Φ

(F−1
Y (v)−0.25u2

∗)

k

)
, (31)

where clearly (31) is a non-increasing function of u∗ which by Corollary 2 implies
PRD for copula C2, and consequently PQD by Corollary 1. Also, by Proposition 1
we get that a regression function µ2(x) based on C2 will lead to a non-decreasing
function of x. See Fig. 4 (right) for the level curves of C2 (thick style) versus the
level curves (thin lines) of Π(u,v) = uv, where all the level curves of C2 are below
the corresponding ones to Π implying that C2(u,v)≥Π(u,v), as expected.

In summary, the dependence between X and Y induced by (22), which by construc-
tion has a regression function µ(x) that is non-monotone, has an underlying copula
C given by (26) with a diagonal section δC given by (27) that gives as gluing point
candidate θ = 1/2, leading to a gluing copula decomposition as in (4) where C1 is
NQD and NRD and therefore leads to a non-increasing regression function µ1(x),
and where C2 is PQD and PRD and therefore leads to a non-decreasing regression
function µ2(x), that is:

µ(x) =

{
µ1(x) ↓ , u = FX (x) = x≤ θ = 1/2 ,
µ2(x) ↑ , u = FX (x) = x≥ θ = 1/2.

(32)

In this example it was possible to obtain a gluing copula decomposition as in (4) of
the underlying copula C into C1 and C2 being these last two copulas NQD and PQD,
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respectively, and therefore candidates to be approximated by well known totally
ordered families of copulas. �

5 Final remarks

If (X ,Y ) is a bivariate random vector of continuous random variables with an under-
lying copula C such that |ρC| < σC then C is neither PQD nor NQD and therefore
neither PRD nor NRD. Many of well known parametric families of copulas are to-
tally ordered (that is, PQD and/or NQD) and in such case they have to be discarded
as admissible copulas for (X ,Y ). To face this challenge, in the present work it has
been proposed a gluing copula decomposition of C into totally ordered copulas that
combined may lead to a non-monotone regression function.
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References

1. Dette, H., Van Hecke, R., Volgushev, S.: Some comments on copula-based regression. J. Amer.
Statist. Assoc. 109(507), 1319–1324 (2014)

2. Erdely, A., Diaz-Viera, M.: Nonparametric and semiparametric bivariate modeling of petro-
physical porosity-permeability dependence from well log data. In: P. Jaworski, F. Durante,
W. Härdle, T. Rychlik (eds.) Copula Theory and Its Applications, pp. 267–278. Springer, Berlin
(2010)

3. Kolev, N., Paiva, D.: Copula-based regression models: A survey. J. Statist. Plan. Inference 139,
3847–3856 (2009)

4. Lehmann, E.: Some concepts of dependence. Ann. Math. Statist. 37, 1137–1153 (1966)
5. Nelsen, R.B.: An Introduction to Copulas, second edn. Springer Series in Statistics. Springer,

New York (2006)
6. Noh, H., El Ghouch, A., Bouezmarni, T.: Copula-based regression estimation and inference. J.

Amer. Statist. Assoc. 108(502), 676–688 (2013)
7. Schweizer, B., Wolff, E.: On nonparametric measures of dependence for random variables.

Ann. Statist. 9, 879–885 (1981)
8. Siburg, K., Stoimenov, P.: Gluing copulas. Commun. Statist. Theory Methods 37(19), 3124–

3134 (2008)
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