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Abstract
Mangrove forests provide important ecosystem services that support the maintenance of coastal socio-ecological systems. 
Strategies such as the establishment of Natural Protected Areas (NPAs) have been encouraged worldwide to promote their 
conservation. However, mangroves are still being lost as a consequence of anthropogenic disturbance and environmental 
variation. In here, we determine the change rate in mangrove cover, between 2005–2015, in eight coastal NPAs and the cor-
responding four km adjacent transition area in the Yucatan Peninsula (YP), and assess the relationship with location (inside 
or outside the protected area), their time since establishment and distance to roads. In general, we observed higher positive 
rates of change in mangrove cover inside the protected areas than in the adjacent transition zones (p < 0.05). Change was 
related to both the distance to roads and the time since establishment of the NPAs (p < 0.05). Higher (positive and negative) 
mangrove rates of change were observed in areas closer to roads, and more stable areas were detected as the distance to the 
roads increased. The positive rate of change also increased with the age of the protected area. These patterns were more evi-
dent inside the NPAs. The continuous monitoring of mangrove change dynamics in protected areas in this important region 
and their drivers, is necessary to establish effective management strategies considering the spatial and temporal variability 
of environmental and anthropogenic disturbances.

Keywords  Mangrove cover · Change rates · Natural protected areas effect

Los bosques de manglar proporcionan importantes servicios ecosistémicos que contribuyen al mantenimiento de los sistemas 
socioecológicos costeros. Para promover su conservación, se utilizan estrategias como el establecimiento de Áreas Naturales 
Protegidas (ANP). Sin embargo, los manglares siguen perdiéndose como consecuencia de las perturbaciones antropogénicas 
y la variación ambiental. En este estudio determinamos la tasa de cambio en la cobertura de manglar, entre 2005-2015, en 
ocho ANP costeras y su área adyacente de 4 km, en la Península de Yucatán (PY), y evaluamos su relación con la ubicación 
(dentro o fuera del área protegida), el tiempo de establecimiento de el ANP y la distancia de los manglares a las carreteras. 
En general, observamos mayores tasas positivas de cambio en la cobertura de manglar dentro de las áreas protegidas que 
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en las zonas adyacentes (p < 0.05). El cambio se relaciona 
tanto con la distancia a las carreteras como con el tiempo 
transcurrido desde el establecimiento de las ANP (p < 0.05). 
Se observaron tasas de cambio del manglar más altas (posi-
tivas y negativas) en las zonas más cercanas a las carreteras, 
y se detectaron zonas más estables a medida que aumentaba 
la distancia a éstas. Las tasas de cambio positivas también 
incrementaron con la edad del área protegida. Estos patrones 
fueron más evidentes dentro de las ANP. El monitoreo con-
tinuo de la dinámica de cambio de los manglares en las áreas 
protegidas de esta importante región y de las variables que 
la determinan, es necesario para establecer estrategias de 
manejo efectivas considerando la variabilidad espacial y 
temporal de las perturbaciones ambientales y antropogénicas.
Palabras clave: cobertura de manglar, tasas de cambio, 
efecto de las áreas naturales protegidas

Introduction

Mangrove forests are one of the most biologically important 
ecosystems in coastal areas (Aburto-Oropeza et al 2008). 
These ecosystems are located in intertidal zones of tropical 
and subtropical regions, and can thrive in fresh and hypersa-
line water (Romañach et al 2018). Mangrove forests provide 
important ecosystem services, such as coastal protection (Giri 
et al 2011; Lee et al 2014, 2021; Veettil et al 2018) and blue 
carbon areas (Mace et al 2012; Lee et al 2014; Kelleway et al 
2017), provision of breeding and nursing grounds for ecologi-
cally and commercially important wildlife species (Giri et al 
2011; Kelleway et al 2017; Lee et al 2021), sources of food 
and wood for local communities (Alongi 2008; Mace et al 
2012; Veettil et al 2018; Lee et al 2021; Velázquez-Salazar 
et al. 2021), climate regulation and waste bioremediation 
(Lee et al 2021), recreational and cultural uses (Kelleway 
et al 2017), and water purification and regulation (Mace 
et al 2012), among others. The cover of mangrove forests is 
affected by natural disturbances such as storms and hurricanes 
(Liao et al 2019; Goldberg et al 2020; Lee et al 2021), anthro-
pogenic activities including population migration toward 
coastal areas, infrastructure construction, and agricultural 
development (Rioja-Nieto et al 2017; Friess et al 2019), and 
rising sea levels and increasing hurricane intensity and fre-
quency (Feller et al 2017; Liao et al 2019; Cinco-Castro and 
Herrera-Silveira 2020; Pakmehr et al 2020). These have led 
to a worldwide reduction of mangrove cover (Mandal and 
Bar 2013). According to Giri et al., (2011), globally, man-
grove forests occupy a total area of c.a. 137 760 km2, with an 
annual deforestation rate of c.a. 0.13% (Goldberg et al 2020). 
In America, a 3.6% annual deforestation rate was estimated 
for the period 1980–1997. However, a decrease between 
0.16–0.22%, which seems to be related to more accurate 

systematic assessments and good biological conservation 
practices, was recently estimated (Bryan-Brown et al 2020). 
Mexico is home to 5.4% of the world’s mangroves, ranking 
fourth worldwide, based on mangrove cover (Giri et al 2011). 
The Yucatan Peninsula (YP) contains c.a. 55% (544,169 ha) 
of the mangrove cover in Mexico (Velázquez-Salazar et al. 
2021), of which approximately 82% is located within a pro-
tected area (Rodríguez-Zúñiga et al 2013).

Protected Areas are considered the primary tool for maintain-
ing ecological integrity and the conservation of ecosystems (Teh 
et al 2012; Rodrigues and Cazalis 2020), sustaining ecosystem 
services and the livelihoods of local communities (Kelleway 
et al 2017; Lee et al 2021). According to the World Database 
on Protected Areas (WDPA), approximately 15% of land areas 
have a conservation scheme (269, 643 NPAs) (UNEP 2022). 
Despite their importance for the conservation of biodiversity, 
NPAs are affected by human activities such as land-cover and 
use change, pollution, overexploitation of hydric resources, and 
fragmentation, which can cause severe ecosystem disruption 
(Carey et al 2000; Figueroa et al 2009). The approaches used to 
assess the effect of protected areas effectiveness are diverse, but 
in general evaluate ecological and governance indicators (Cruz-
Vázquez et al. 2019). Local spatially explicit studies on effects 
of protected areas containing mangrove forests are still limited, 
and consider different spatial extents for analysis, ranging from 
a few km to several ha (Rioja-Nieto et al 2015; Jayanthi et al. 
2018; Guerra‐Martínez et al. 2019; Hua et al 2022).

Considering the importance of mangrove forests for the 
environmental services they provide, their extension in the 
region and the importance of NPAs for their conservation, in 
this study we determined the change rate in mangrove cover 
in coastal areas of the Yucatan Peninsula from 2005 to 2015, 
and assessed the relation with NPAs’, their time since estab-
lishment, and distance of mangrove areas to roads. The later 
are characteristics that have been recognized as important 
for successful protected areas.

Materials and Methods

Study Area and Research Approach

The YP is located in southeastern Mexico between 18º and 
21º30’ North latitude, and includes the states of Campeche, 
Yucatán and Quintana Roo (Fig. 1). Based on its environmental 
characteristics, it is classified as the PY physiographic province, 
a region with a flat relief and altitudes below 400 m above sea 
level. In fact, most of the region have an altitude below 50 m 
above sea level (Vidal-Zepeda 2005; Bautista and Palacio 2012).

In the YP, economic activities are related to the oil indus-
try, tourism, fishing, and urban development (Herrera-Silveira 
2006; Rioja-Nieto et al 2015; Cinco-Castro and Herrera-Silveira 
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2020), which have caused eutrophication, loss of habitats and 
pollution (Herrera-Silveira 2006). The region has been devel-
oping since the early 1970s with limited regulations, affecting 
coastal ecosystems such as mangrove forests and reef systems 
(De la Lanza Espino et al. 2017; Rioja-Nieto et al 2019). Main 
tourism activities occur in Cancun and the Riviera Maya region, 
in the mexican Caribbean. Oil industry activities are mainly 
localized in the southwest of the YP, in Campeche.

This study was conducted considering eight of the 
10 federal NPAs in the YP (states of Yucatan, Campeche 
and Quintana Roo), and the adjacent surrounding or tran-
sition area that contain mangrove forests (Fig. 1). Four of 
the considered NPAs (the year of establishment and size 
is indicated between parenthesis) are Biosphere Reserves 
(BR): Los Petenes (1999; 280,247 ha), Ría Celestún (2000; 
80,707 ha), Ría Lagartos (1999; 59,807 ha), and Sian Ka’an 
(1986; 525,051 ha); and four area Areas of Flora and Fauna 
Protection (AFFP): Uaymil (1994; 88,753 ha), Yum Balam 
(1994; 152,685 ha), Manglares de Nichupté (2008; 4,222 ha), 
and Laguna de Términos (1994; 703,803 ha). The BR Pan-
tanos de Centla and Tulum National Park, also located in the 
YP, were excluded from analysis as their mangrove cover 
is too small for analysis. The NPAs are part of the national 

protected areas system managed by the National Commission 
of Natural Protected Areas (CONANP) — the main govern-
ment agency responsible for the management and conserva-
tion of ecosystems in Mexico.

Mangrove Cover 2005–2015

Mangrove cover was estimated from land-use and vegetation 
maps of the coastal zone issued by the National Commission 
for the Use and Knowledge of Biodiversity (CONABIO, for 
its acronym in Spanish). We used 1:50.000-scale maps cor-
responding to the mangrove coverage for 2005, 2010 and 
2015. The 2005 mangrove map (90.5% overall accuracy) was 
constructed from SPOT 5 images corresponding to the years 
2005 and 2006; the 2010 map (81.8% overall accuracy), 
from SPOT 5 satellite images from 2010; and the 2015 map 
(75.6% overall accuracy), from SPOT 5 images from 2015 
(and last quarter of 2014), and RapidEye imagery. (CONA-
BIO 2013a, 2013b, 2016). We did not consider CONABIO’s 
mangrove cover maps from 2020 as the criteria to classify 
mangrove areas in the Sian ka’an and Uaymil region changed 
from previous assessments, resulting in an increase related to 
the method of assessment > 80,000 ha of mangrove.
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Fig. 1   Yucatan Peninsula, Mexico. The study area considered eight federal NPAs and an adjacent four-kilometer transition zone in the states of 
Yucatan, Campeche, and Quintana Roo
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Considering the mangrove cover in 2005 and the extent of 
protected areas administered by the federal government in the 
YP (SEMARNAT-CONANP 2020), a grid with 4 × 4 km cells 
was generated for the processing of cover change and data col-
lection. This choice of cell size considered the spatial hetero-
geneity of the AOI (mangroves are closer to the coast), and it 
is similar to the spatial extent used in other studies evaluating 
protected area effects in forests (Guerra‐Martínez et al. 2019; 
Hua et al 2022). The analysis included cells where mangroves 
were located inside the NPAs and outside the protected areas. 
For the later a surrounding area of four km adjacent to the 
polygon of the NPAs was considered. This area is hereafter 
referred to as the transition zone. The polygons of the NPAs 
were downloaded in shapefile format from the CONABIO 
website (http://​www.​conab​io.​gob.​mx/​infor​macion/​gis/).

The rate of change of mangrove cover for each cell in 
the grid of analysis was calculated using a linear regres-
sion (Eq. 1) by the least-squares method using the mangrove 
cover data for 2005, 2010 and 2015 (Rioja-Nieto et al. 2017).

where y is the mangrove cover for a given year, a is the 
y-intercept, b is the slope (rate of change), and x is time. 
Linear regressions were performed with the stat package in 
R version 4.0.5 (R Core Team 2021).

The time since the NPA establishment (hereafter referred 
to as NPA age) was obtained from the Mexican federal pro-
tected areas database in the CONABIO website. The dis-
tance to roads was obtained from the geographic information 
layer of the National Road Network, 1:50.000 scale, for the 
year 2018 (INEGI 2018). This was calculated as the Euclid-
ean distance to the nearest major road from each cell in the 
study area. The editing of shapefiles, the generation of the 
grid, and the calculation of the distance to roads analysis 
were performed with the ArcMap 10.4.1 program.

Statistical Analysis

To spatially associate the variables inside NPAs, transi-
tion zone (outside the protected area), NPA age, and dis-
tance to roads with the cover change rate layer, we used the 
point-intersect function between the mangrove cover lay-
ers for 2005, 2010, and 2015 and the independent variables 
considered, using the centroids of each cell in the grid. A 
multiple linear regression was first performed to evaluate 
the effect of the NPA (inside/transition zone the protected 
area), NPA age, and distance to roads in the change rate of 
mangrove cover. However, the visual assessment of residu-
als showed a non-homogeneous variance. Consequently, a 
Generalized Least Square (GLS) model was used, which is 
essentially a weighted linear regression. The GLS allows 
for variance heterogeneity as this can be modeled. In this 

(1)y = a + bx

sense, we evaluated different variance structures to fit the 
model and evaluate the effect of the explanatory variables. 
Seven GLSs were conducted (see supplementary informa-
tion), and we selected the model with the lowest value of the 
Akaike Information Criterion according to the protocol sug-
gested by Zuur et al (2009). The assumptions of the selected 
model were evaluated visually using the standardized resi-
dues. GLSs were fitted with the nlme package (Pinheiro et al 
2022) and the a-posteriori tests were carried out with the 
rstatix package (Kassambara 2020) in R version 4.0.5 (R 
Core Team 2021).

Results

 Mangrove Cover Change Rate 

In 2005, we identified 301,692.9 ha covered with man-
grove forests in the area of interest (AOI), equivalent to 
approximately 72.05% of the total mangrove cover reported 
for the YP by CONABIO in the same year. About 87.7% 
(264,470.04 ha) of the AOI was located within the protected 
areas, and 12.3% (37,222.83 ha) in the transition zones.

The AOI was composed by 662 cells of 4 × 4 km asso-
ciated with the eight federal NPAs and their respective 
transition areas (Fig.  2). Of these cells, 37.6% showed 
negative rates of change of mangrove cover, with slopes 
between -12 and -0.01, where only 2.56% of cells showed 
slopes < -5 ha year−1. Around 24.6% of the cells showed no 
change of mangrove cover for the period of study (rates of 
change of 0 ha*year−1). On the other hand, around 37.6% 
of cells showed positive rates of change, of which 10.4% 
were > 5 ha*year−1. The positive rates of change were com-
mon for the regions of Yum Balam and Laguna de Términos. 
However, for the later several areas also showed high rates 
of mangrove cover loss. Cells with no change and a small 
increases in mangrove cover dominated in the Sian Ka’an, 
Uaymil, Manglares de Nichupté, Ría Lagartos and Celestún 
regions. Cells with mangrove loss were mainly observed in 
the region of Los Petenes and as previously mentioned, some 
areas of Laguna de Términos (Fig. 2).

Drivers of Mangrove Cover Change

In general, between 2005–2015, we observed higher positive 
rates of change in mangrove cover inside protected areas than in 
the adjacent transition zones (W = 45,470, p < 0.0406) (Fig. 3).

The GLS with the lowest AIC value (2414.5), considered 
a combined variance structure where residuals were allowed 
to scatter according to the distance to roads depending on 
the zone (within NPA/transition zone) and according to the 
NPA age depending on the zone.

http://www.conabio.gob.mx/informacion/gis/
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The GLS model selected showed significant interactions 
(p < 0.05) between location (inside the protected area or transi-
tion zone), distance to roads and time since the establishment 

of the protected area with the rate of mangrove cover change. 
This implies that at shorter distances to roads, there are higher 
rates of mangrove cover change and as the distance increases, 
the effect is reduced for both the protected areas and the tran-
sition zones (Fig. 4a and 4b). Higher positive rates of man-
grove cover are observed inside the protected areas. In older 
protected areas, the positive rate of mangrove cover change 
increases both inside and in the transition zones, with more 
evident changes inside the protected areas (Fig. 5a and 5b).

Discussion

Mangrove cover in the NPAs and transition areas in the 
Yucatan Peninsula increased by approximately 3,120 ha 
between 2005 and 2015. Positive rates were observed inside 
the protected areas and to a lesser degree in the adjacent 
transition zones. This seems to indicate that the protected 
areas administered by CONANP, and to some extent in their 
area of influence, are having a positive effect on the cover 
of mangrove forests in the region. The spatial heterogeneity 
on mangrove cover change observed inside the protected 
areas and the adjacent transition zones can be related to sev-
eral attributes such as environmental characteristics, type 
of anthropogenic disturbance, differences in management 
capacity and enforcement of regulations, the protected areas 
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size and isolation, edge effect between the protected areas 
and the transition zones, among others.

Air temperature and annual precipitation are known to be 
important drivers for mangrove cover change in the region 
(Rioja-Nieto et al. 2017), where the South of Quintana Roo and 
Campeche have higher mean annual precipitation values than the 
North of Yucatán (Daniel et al 2020). The level and frequency 
of inundation and salinity are also important (Krauss et al 2008). 
Given the karst characteristics of the YP, this is mainly controlled 
by groundwater discharge (Enriquez et al 2010).

A greater distance from urban populations and infrastruc-
ture (Ervin 2003), and a bigger size of the protected area (the 

smallest NPA analysed contains 4222 ha), favour isolation 
and support the conservation and recovery of ecosystems 
(Mora et al 2006; Joppa and Pfaff 2009). This has been previ-
ously observed in mangrove forests and tropical dry forests 
(Sánchez-Azofeifa et al 2009). Furthermore, anthropogenic 
driven ecosystem degradation in protected areas with a buffer 
zone surrounding the core zone (such as in Los Petenes, Ría 
Celestún, Ría Lagartos and Sian Kaan), is known to be low or 
non-existent (Ohayon et al 2021), well administered protected 
areas with effective enforcement of regulations are known to 
reduce deforestation rates (Ferraro et al 2013), and changes in 
forest cover are lower within protected areas (Hu et al 2021). 

Fig. 4   Effect of distance to 
roads on the rate of mangrove 
cover change (2005–2015) 
inside the protected areas (a) 
and the adjacent transition 
zones (b) in the YP
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relation to the time since estab-
lishment of the protected area

)b()a(

enoz noitisnarTAPN

15 20 25 30 35 15 20 25 30 35

−5

0

5

10

Decree time (Years)

R
at

e 
of

 m
an

gr
ov

e 
co

ve
r c

ha
ng

e 
(h

a/
ye

ar
)



Wetlands           (2023) 43:52 	

1 3

Page 7 of 10     52 

However, it is important to consider that in the early twenty-
first century, the area in the country under protection that is 
administered by CONANP has increased considerably, but 
funding and personnel in charge of enforcing regulations have 
decreased (Rioja-Nieto et al 2019). Therefore, the federal gov-
ernment capability to enforce regulations is limited, and the 
positive effect of the protected areas that we observed in here 
over the period of time assessed, might have been affected.

The lower rates of change observed in the transition zones 
could be related to the effect that the protected areas have in 
their surroundings, and the anthropogenic pressure occurring 
outside. In tropical forests,  effects on successional stages 
are strongly related to forest coverage within a 4 km radius 
(Arroyo et al. 2023). Also, positive edge effects of protected 
areas on vegetation cover and other characteristics such as 
vegetation greenness and productivity, have been previously 
reported (Hua et al 2022). On the other hand, in mangrove for-
ests, the negative edge effect of human activity has resulted in 
mangrove areas closer to the edge showing less development in 
structure and diversity, as well as higher mortality and reduced 
tree diameter and height. In the transition zones, human land 
uses are increasingly expanding and intensifying, producing 
changes in ecological functioning and biodiversity. The zones 
considered here as transition zones are defined as an area of 
influence in the mexican legislation, whose objective, accord-
ing to Hansen and DeFries (2007), is to minimize the impact 
of adverse influences at the borders of NPAs. Our data suggest 
that in general, this is happening in the borders of the protected 
areas in the YP, considering the lower but positive rates of 
mangrove cover change observed in the transition zones.

For both, inside the protected areas and the transition 
zones, we observed higher (positive and negative) mangrove 
rates of change in areas closer to roads, and more stable areas 
as the distance to the roads increased. Several studies have 
associated roads with negative effects, as they facilitate for-
est access and disturbance (Hirales-Cota et al 2010; Jaramillo 
et al 2018; Hayashi et al 2019; Liu et al 2022). Road construc-
tion restrains tidal exchange in wetlands, reduces the supply 
of fresh water, and increases the influence of salt water, all 
of which impact mangrove productivity and increase forest 
degradation (Aljahdali et al 2021; Keat-Chuan Ng and Cyril 
Ong 2022). However, higher positive mangrove cover change 
rates were also observed in areas closer to roads. This might 
relate to the cofounding effect of management in the protected 
areas (i.e., limiting mangrove deforestation), their influence on 
the transition zones, and adequate environmental conditions in 
the YP that favor mangrove growth. Our results also showed a 
positive increase on the rate of mangrove cover change related 
to the maturity (age) of the NPA. In tropical forests, age of the 
protected area seem to have no effect on cover dynamics such 
as deforestation (Van Der Hoek 2017; Zhao et al 2019; Castillo 
et al 2021). However, in temperate forests, results are con-
trasting, where in some regions older protected areas perform 

better, but in other regions younger areas are more effective 
(Geldmann et al 2014; Butsic et al 2017). It is well known that 
by removing anthropogenic disturbances, ecosystems tend to 
recover (e.g. Newbold et al. 2015; Moreno-Mateos et al. 2017). 
Therefore, our observations indicate that the longer anthropo-
genic disturbances cease or are reduced within protected areas, 
mangrove positive rates of change increase.

A clear spatial pattern on the rate of mangrove coverage 
changes in relation to the main anthropogenic activities and their 
differentiated capability to affect mangroves, was not observed 
in the region. Since the early 1970s, the oil industry in the south-
west (Romo 2015) and tourism in the east (Rioja-Nieto et al 
2019) of the YP, have been the main economic activities. In the 
North of the study area, fishing and urban development are the 
main activities (Cinco-Castro and Herrera-Silveira 2020).

Monitoring mangrove cover in different regions is important 
because the temporal dynamics of losses and gains in a given 
site vary, even within NPAs (Castillo et al 2021). Similarly, 
human expansion and infrastructure construction, particularly 
in coastal zones, involves changing pressures on mangrove for-
ests which impact their spatial dynamics (Osland et al 2018; 
Keat-Chuan Ng and Cyril Ong 2022). Therefore, large scale 
studies on mangrove dynamics within protected areas, which are 
the main strategy for their conservation, need to be continuous.

Conclusions

Our study provides evidence on the positive effects that NPAs, 
on a spatially explicit context, have on mangrove dynamics in 
the Yucatan Peninsula. In general, mangrove coverage in the 
area of study and over the period of time (2005–2015) evaluated 
increased, which corresponds with previous assessments (e.g. 
CONABIO). Inside protected areas, higher positive rates were 
observed, a pattern that was maintained when evaluating the 
relation to roads and the age of the NPA. Considering that in 
the adjacent transition zones, positive rates dominated but with 
lower values, suggest that the protected areas also seem to have 
a positive edge effect on these areas. This supports the evidence 
that links the amount of coverage of surrounding forest with 
succession trajectories at a landscape scale. However, further 
studies considering greater distances from the protected areas 
need to be performed. Age is considered a key feature for suc-
cessful marine protected areas (Edgar et al. 2014). This seems to 
be also the case on protected areas containing mangroves. The 
continuous assessment of NPAs effects is necessary, consider-
ing the spatial and temporal variability of environmental and 
anthropogenic disturbances, the limitations that NPAs enforce 
on human activities, and the difficulties to maintain their fund-
ing. It is important to keep and if possible, improve the function-
ing (e.g. increase of funding) of protected areas in the region, in 
order to keep them effective for the conservation of mangrove 
forests.
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