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Abstract. We obtain a topological and weakly equivariant classification of closed three-

dimensional Alexandrov spaces with an effective, isometric circle action. As an applica-

tion, we prove a version of the Borel conjecture for closed three-dimensional Alexandrov

spaces with circle symmetry.

1. Introduction and results

Alexandrov spaces (of curvature bounded below) appear naturally as generalizations of

Riemannian manifolds of sectional curvature bounded below. Many results for Riemann-

ian manifolds admit suitable generalizations to the Alexandrov setting and this class of

metric spaces has been studied from several angles, including recently the use of transfor-

mation groups [8, 9, 13].

Considering spaces with non-trivial isometry groups has been a fruitful avenue of re-

search in Riemannian geometry [11, 17, 27]. In Alexandrov geometry, this point of view

has provided information on the structure of Alexandrov spaces. In [1], Berestovskǐı

showed that finite dimensional homogeneous metric spaces with a lower curvature bound

are Riemannian manifolds. Galaz-Garcia and Searle studied in [9] Alexandrov spaces of

cohomogeneity one (i.e. those with an effective isometric action of a compact Lie group

whose orbit space is one-dimensional) and classified them in dimensions at most 4. In this

paper, we classify the effective, isometric circle actions on closed, connected Alexandrov

3-spaces, thus completing the classification of closed Alexandrov spaces, of dimension at

most three, admitting an isometric action of a compact, connected Lie Group.

In the topological category, Raymond obtained an equivariant classification of the ef-

fective actions of the circle on any closed, connected topological 3-manifold [26]. The

orbit space of such an action is a topological 2-manifold, possibly with boundary. Ray-

mond proved that there is a complete set of invariants that determines each equivariant

homeomorphism type:
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Theorem 1.1 (Raymond [26]). The set of all inequivalent (up to weakly equivariant

homeomorphism) effective, isometric circle actions on a closed, connected topological 3-

manifold is in one-to-one correspondence with the set of unordered tuples

(b; (ε, g, f, t), {(α1, β1), . . . , (αn, βn)}).

Here, b is the obstruction for the principal stratum of the action to be a trivial principal

S1-bundle. The symbol ε takes two possible values, corresponding to the orientability of

the orbit space. The genus of the orbit space is denoted by g. The number of connected

components of the fixed point set is denoted by f , while t is the number of Z2-isotropy

connected components. The pairs {(αi, βi)}ni=1 are the Seifert invariants associated to the

exceptional orbits of the action, if any.

Raymond also proved that the invariants in Theorem 1.1 determine the manifold’s

prime decomposition when f > 0. The topological classification without the restriction

that f > 0 was obtained by Orlik and Raymond in [23] (see also [22]).

The classification presented herein is an extension of the work of Orlik and Raymond

to the class of closed, connected Alexandrov 3-spaces. As opposed to a closed 3-manifold,

a closed Alexandrov 3-space X may have topologically singular points, i.e. points whose

space of directions is homeomorphic to the real projective plane RP 2 (see Section 3). By

Perelman’s work [24], the set of such points is discrete, and by compactness, finite. To

account for these points, we add an additional set of invariants to those of Raymond: an

unordered s-tuple (r1, r2, . . . , rs) of even positive integers. The integer s corresponds to

the number of boundary components in the orbit space that contain orbits of topologically

singular points. The integers ri correspond to the number of topologically singular points

in the ith boundary component of the orbit space with orbits of topological singularities.

If there are no topologically singular points we consider this s-tuple to be empty. With

these definitions in hand, we may now state our main result. We let Susp(RP 2) denote

the suspension of RP 2.

Theorem 1.2. Let S1 act effectively and isometrically on a closed, connected Alexan-

drov 3-space X. Assume that X has 2r topologically singular points, r ≥ 0. Then the

following hold:

(1) The set of inequivalent (up to weakly equivariant homeomorphism) effective, iso-

metric circle actions on X is in one-to-one correspondence with the set of un-

ordered tuples

(b; (ε, g, f, t); {(αi, βi)}ni=1; (r1, r2, . . . , rs))

where the permissible values for b, ε, g, f , t and {(αi, βi)}ni=1, are the same as in

Theorem 1.1 and (r1, r2, . . . , rs) is an unordered s-tuple of even positive integers

ri such that r1 + . . .+ rs = 2r.



THREE-DIMENSIONAL ALEXANDROV SPACES 3

(2) X is weakly equivariantly homeomorphic to

M# Susp(RP 2)# . . .# Susp(RP 2)︸ ︷︷ ︸
r

where M is the closed 3-manifold given by the set of invariants

(b; (ε, g, f + s, t); {(αi, βi)}ni=1)

in Theorem 1.1.

The circle actions on the spaces M# Susp(RP 2)# . . .# Susp(RP 2) in Theorem 1.2 are

given in terms of an equivariant connected sum, which we construct in Section 3.1. It will

follow from the construction that the actions are isometric with respect to some invariant

Alexandrov metric. We point out that in the case that X has no topologically singular

points, i.e. r = 0, X is a topological manifold and Theorem 1.2 follows from the work of

Raymond [26].

We also count the number of inequivalent effective, isometric circle actions on a closed,

connected Alexandrov 3-space X, by using that of the manifold M appearing in (2) of

Theorem 1.2 (see Remark 5.4).

We point out as well that the only simply-connected, closed Alexandrov 3-spaces with

an effective, isometric circle action are the 3-sphere and connected sums of finitely many

copies of Susp(RP 2). On the other hand, Galaz-Garcia and Guijarro showed in [7],

without any symmetry assumptions, that there are examples of simply-connected, closed

Alexandrov 3-spaces with topologically singular points which are not homeomorphic to

connected sums of copies of Susp(RP 2).

Finally, we remark that closed Alexandrov 3-spaces with an effective, isometric circle

action fall within the class of collapsed Alexandrov 3-spaces, considered by Mitsuishi and

Yamaguchi in [19]. In our case, the collapse occurs along the orbits of the action and

we obtain a more refined topological classification than the one in Section 5 of [19] by

harnessing the presence of the circle action.

Our paper is organized as follows. In Section 2 we recall some basic results on the

geometry of isometric actions of compact Lie groups on Alexandrov spaces. In Section 3

we give the topological structure of the orbit space of a closed, connected Alexandrov 3-

space with an effective, isometric circle action. We assign weights to the orbit space with

isotropy information. Section 4 contains the topological and equivariant classifications of

effective, isometric S1 actions on non-manifold closed, connected Alexandrov 3-spaces, in

the special case where there are no exceptional orbits and the orbit space is homeomorphic

to a 2-disk. In Section 5, we prove Theorem 1.2, obtaining the topological and equivariant

classifications without any restrictions. In Section 6, as an application of Theorem 1.2,

we give a proof of the Borel conjecture for closed, connected Alexandrov 3-spaces with

circle symmetry.
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2. Equivariant Alexandrov geometry

Let X be a finite-dimensional Alexandrov space. We assume that the reader is familiar

with the basic theory of compact transformation groups as well as that of Alexandrov

spaces. Basic references for these subjects are [2] and [3, 4] respectively.

Fukaya and Yamaguchi showed in [6] that, as in the Riemannian case, the group of

isometries of X is a Lie group. If X is compact then its isometry group is also compact

(see [5]). The isometry group of an Alexandrov space has been further investigated in

[8]. We consider isometric actions G×X → X of a compact Lie group G on X. We will

denote the orbit of a point x ∈ X by G(x) ∼= G/Gx, where Gx = {g ∈ G : gx = x}
is the isotropy subgroup of x in G. The closed subgroup of G given by ∩x∈XGx is called

the ineffective kernel of the action. If the ineffective kernel is trivial, we will say that

the action is effective. From now on, we will suppose that all the actions we consider

are effective. Given a subset A ⊂ X we denote its image under the canonical projection

π : X → X/G by A∗. In particular, X∗ = X/G. It was proved in [4] that the orbit space

X∗ is an Alexandrov space with the same lower curvature bound as X.

We will denote the space of directions of X at a point x by ΣxX. Given A ⊂ ΣxX, we

define the set of normal directions to A as

A⊥ = {v ∈ ΣxX : d(v, w) = diam(ΣxX)/2 for all w ∈ A}.

Let Sx denote the tangent unit space to the orbit G/Gx. Galaz-Garcia and Searle proved

in [9] that, if dim(G/Gx) > 0 then the set S⊥x is a compact, totally geodesic Alexandrov

subspace of ΣxX with curvature bounded below by 1. Moreover, they showed that ΣxX is

isometric to the join Sx∗S⊥x with the standard join metric and that either S⊥x is connected

or it contains exactly two points at distance π.

We now recall the Slice Theorem for isometric actions on Alexandrov spaces (see Harvey

and Searle [13]). For a subset A ⊂ X, the metric ball of radius ε centered on A is denoted

by Bε(A). The cone of an Alexandrov space Y of Curv ≥ 1 is denoted by K(Y ) and it is

assumed to have the standard cone metric.

Theorem 2.1 (Slice Theorem). Let a compact Lie group G act isometrically on an

Alexandrov space X. Then for all x ∈ X, there is some ε0 > 0 such that for all ε < ε0
there is an equivariant homeomorphism

G×Gx K(S⊥x )→ Bε(G(x)).
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As a consequence of the Slice Theorem, a slice at x is equivariantly homeomorphic to

K(S⊥x ). It follows that Σx∗X
∗, the space of directions at x∗ in X∗, is isometric to S⊥x /Gx.

Alexandrov versions of Kleiner’s isotropy Lemma and the principal orbit Theorem were

proved by Galaz-Garcia and Guijarro in [8].

Let G act isometrically on two Alexandrov spaces X and Y . We will say that a map-

ping ϕ : X → Y is weakly equivariant if for every x ∈ X and g ∈ G there exists an

automorphism f of G such that ϕ(gx) = f(g)ϕ(x). We will say that two actions on X

are equivalent if there exists a weakly equivariant homeomorphism ϕ : X → X.

Let (Susp(RP 2), d0) denote the spherical suspension of the unit round RP 2. We will now

give an example of an effective, isometric circle action on Susp(RP 2). It will play a central

role in our examination of S1-actions on closed, connected Alexandrov 3-spaces. We will

show in Section 4 that this is the only circle action that can occur on (Susp(RP 2), d0) up

to equivalence.

Example 2.2. We will say that the suspension of the standard cohomogeneity one

circle action on the unit round RP 2 is the standard circle action on Susp(RP 2). We will

describe this action explicitly. Let D2 be the unit disk in the plane with polar coordinates

(r, θ). We identify the points of the form (1, θ) with (1, θ + π). Then each point in RP 2

is an equivalence class [r, θ] where (r, θ) ∈ D2. Therefore, the points of Susp(RP 2) are

equivalence classes [[r, θ], t] with [r, θ] ∈ RP 2 and 0 ≤ t ≤ 1. Now, for every 0 ≤ ϕ ≤ 2π

the standard action is given by ϕ · [[r, θ], t] := [[r, θ + ϕ], t].

3. Orbit types and orbit space

Let X be a closed, connected Alexandrov 3-space with an effective, isometric S1-action.

In this section we will determine the topological structure of the orbit space X∗. We will

also assign weights to its points with isotropy information.

We call a point x in X topologically regular if ΣxX is homeomorphic to S2 and topologi-

cally singular if ΣxX is homeomorphic to RP 2. Let SF be the set of topologically singular

points of X. Observe that, since the action is isometric, singular points are mapped to

singular points by the elements of S1. By a theorem of Perelman (Theorem 0.2 in [24]),

the codimension of the set of topologically singular points is at least 3. The compactness

of X then implies that SF is a finite set.

We have different orbit types according to the possible isotropy groups of the action.

These groups are the trivial subgroup {e}, the cyclic subgroups Zk, k ≥ 2 and S1 itself.

Therefore, orbits in X are either 0-dimensional or 1-dimensional. This observation and

the finiteness of SF imply that topologically singular points are fixed by the action. We

let F be the set of fixed points of the action and RF = F \SF . The points whose isotropy

is not S1 are topologically regular, therefore we can talk about a local orientation. We

will say that an orbit with isotropy Zk acting without reversing the local orientation is

exceptional ; we will denote the set of points on exceptional orbits by E. An orbit with
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isotropy Z2 that acts reversing the local orientation will be called special exceptional and

the set of points on such orbits will be denoted by SE. The orbits with trivial isotropy

will be called principal.

We now investigate the topological structure of X∗. A small neighborhood of x∗ ∈ X∗

is homeomorphic to Bε(x)∗. By the conical neighborhood theorem of Perelman (Theo-

rem 0.1 in [24], see also Theorem 6.8 in [16]), Bε(x)∗ is homeomorphic to K(Σx∗X
∗). Then,

Theorem 2.1 implies that Bε(x)∗ is homeomorphic to K(S⊥x /Gx). For a point x∗ ∈ SF ∗

this means that Bε(x)∗ is homeomorphic to K(RP 2/S1). An action by homeomorphisms

on RP 2 is equivalent to a linear action [20, 21], therefore RP 2/S1 is a closed interval

with principal isotropy in the interior, Z2-isotropy at one endpoint and S1-isotropy at the

other endpoint. It follows that x∗ is the common endpoint of two arcs contained in the

boundary of X∗. One of these arcs is contained in SE∗ and the other is contained in F ∗.

The topological structure of X∗ near topologically regular points is given in Lemma 1 of

[26].

The orbit space X∗ is weighted with isotropy information, which we detail now. Let C∗

be a boundary component of X∗. We have the following three possibilities: C∗ ⊆ RF ∗,

C∗ ⊆ SE∗, or C∗ ∩ SF ∗ 6= ∅. The last possibility implies that C∗ ⊆ F ∗ ∪ SE∗ and

that C∗ intersects F ∗ and SE∗ non-trivially. The interior of X∗ is composed of principal

orbits and E∗. A generic orbit space is shown in Figure 1. We summarize the previous

discussion in the following proposition.

Proposition 3.1. Let S1 act effectively and isometrically on a closed, connected Alexan-

drov 3-space X. Then the following hold:

(1) The orbit space X∗ is a 2-manifold with boundary.

(2) The interior of X∗ consists of principal orbits except for a finite number of excep-

tional orbits.

(3) For each boundary component C∗ of X∗, one of the following possibilities holds:

C∗ ⊂ RF ∗, C∗ ⊂ SE∗ or C∗ ∩ SF ∗ 6= ∅.
(4) If C∗ ∩ SF ∗ 6= ∅, then C∗ \ SF ∗ is a finite union of r ≥ 2 open intervals {Ik}rk=2,

with each Ik contained either in RF ∗ or SE∗.

(5) If Ik ⊂ RF ∗, then Ik+1 ⊂ SE∗ and if Ik ⊂ SE∗, then Ik+1 ⊂ RF ∗.

We also have the following lemma.

Lemma 3.2. Let S1 act effectively and isometrically on a closed, connected Alexandrov

3-space X. Then X has an even number of topologically singular points.

Proof. If X is a topological manifold, then it has 0 topologically singular points and

the result follows trivially. Therefore, we assume that the set of topologically singular

points of X is non-empty.

Let C∗ be a boundary component of X∗, identified with the interval [0, 2π]. Let Pr =

{0 = t1 < t2 < . . . < tr = 2π} be a partition of C∗ such that [ti, ti+1] ⊆ F ∗ or [ti, ti+1] ⊆
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Figure 1. Example of an orbit space of an isometric circle action on a

closed Alexandrov 3-space.

SE∗ for each i = 1, . . . , r. Let Pr̃ be a minimal partition satisfying the conditions. Then

r̃ > 1 if and only if C∗ ∩ SF ∗ 6= ∅. In this case it is clear that ti ∈ SF ∗. We claim that

r̃ is an even integer. Suppose Pr̃ has an odd number of points. Observe that adjacent

intervals in Pr̃ cannot be contained both in F ∗ or in SE∗ since that would make their

common point superfluous, contradicting the minimality condition on Pr̃. �

We remark that the conclusion of the previous Lemma holds even without the assump-

tion of symmetry, as is observed in [19].

We will group the topological and equivariant information of X∗ into a set of invariants

which we list now. Let b be the obstruction for the principal part of the action to be

a trivial principal S1-bundle. The symbol ε, with possible values o or n, will stand for

orientable and non-orientable X∗ respectively. The genus of X∗ will be denoted by an

integer g ≥ 0. We let f ≥ 0 designate the number of boundary components of X∗ that are

contained in RF ∗. Similarly, t ≥ 0 will stand for the number of boundary components of

X∗ contained in SE∗. We associate Seifert invariants (αi, βi) to each exceptional orbit as

in [26], (see also [22]). Let C∗1 , . . . , C
∗
s be the boundary components of X∗ that intersect

SF ∗. We define ri to be the cardinality of C∗i ∩ SF ∗ for each i = 1, . . . , s. Note that ri is

an even integer by Lemma 3.2. In summary, we associate the following set of invariants

to X∗:

(b; (ε, g, f, t); {(αi, βi)}ni=1; (r1, r2, . . . , rs)) .

In the case where X is a manifold, ri = 0 for all i. The set of invariants in this case

coincides with the one defined by Raymond in [26]. The definition of this set of invariants

of X∗ suggests the following notion of equivalence between orbit spaces.

Definition 3.3. Let S1 act effectively and isometrically on two closed, connected

Alexandrov 3-spaces X and Y . We will say that their orbit spaces are isomorphic if there
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is a weight-preserving homeomorphism X∗ → Y ∗. If X∗ and Y ∗ are oriented, we also

require the homeomorphism to be orientation-preserving.

We have the following straightforward result.

Proposition 3.4. Let S1 act effectively and isometrically on two closed, connected

Alexandrov 3-spaces X and Y . If X and Y are equivariantly homeomorphic, then X∗ and

Y ∗ are isomorphic.

4. Topological and equivariant classification when X∗ is a disk, E = ∅
and s ≥ 1

We will first focus our attention on the case that X∗ is homeomorphic to a 2-disk

without exceptional orbits and at least two orbits of topologically singular points. This

is the simplest orbit space that can arise from a non-manifold Alexandrov space. We will

construct a cross-section to the orbit map and use it to obtain a topological decomposition

of X. The existence of this cross-section will also yield a weakly equivariant classification

of the effective, isometric S1-actions on X, as is shown in Corollary 4.2. When dealing

with arbitrary permissible values for the invariants defined in the last section, the simpler

case considered here will play a fundamental role. Throughout this and the next section

the term cross-section will be used to refer to both a map X∗ → X and its image on X.

Theorem 4.1. Let S1 act effectively and isometrically on a closed, connected Alexan-

drov 3-space X that is not a manifold. Assume that there are no exceptional orbits and

that X∗ is homeomorphic to a 2-disk. Then there exists a cross-section to the orbit map.

Proof. Let 2r be the number of topologically singular points of X. We will proceed

by induction on r.

We will first assume that r = 1 and denote the topological singularities by x+ and

x−. We will construct a cross-section X∗ → X by decomposing X into subsets admitting

cross-sections. By Proposition 3.1 the boundary of X∗ is the union of two arcs I1 ⊂ F ∗

and I2 ⊂ SE∗ such that I1 ∩ I2 = {(x+)∗, (x−)∗}. Let ε > 0 be small enough so that

Bε(x
+) and Bε(x

−) are conical [24]. By Theorem 2.1 we may assume that a tubular

neighborhood U of F ∪ SE of radius ε is invariant. Then, U \ (Bε(x
+) ∪Bε(x

−)) is an

invariant subset of X consisting of two disjoint components. Let URF and USE be said

components, so that, U∗RF and U∗SE intersect I1 and I2 respectively. Figure 2 depicts the

induced decomposition on X∗. Let U be the closure of U . Observe that P := X \ U
is contained in the principal stratum of X. Furthermore, P ∗ is contractible since it is

homeomorphic to an open 2-disk. Therefore, the restriction of the orbit map to P is a

trivial principal S1-bundle. Thus, we have a cross-section hP : P ∗ → P . We will now

show that this cross-section can be extended to U∗.

We extend hP to U∗RF first. By Theorem 2.1, URF is equivariantly homeomorphic to

a solid tube D2 × I with an action by rotations around its axis {0} × I. The common
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P ∗

(x+)∗

(x−)∗
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B∗ε (x
+)

B∗ε (x
+)

Figure 2. Decomposition of X∗ into neighborhoods with cross-sections.

boundary of P and URF is a cylinder C := S1 × I. We have a continuous curve m on

C defined as hP (P ∗) ∩ ∂URF , where ∂URF denotes the boundary of URF . Since m is the

restriction of hP to C, (D2 × {t}) ∩ m consists of exactly one point mt for each t ∈ I.

Now, we connect mt with (0, t) by a line segment. The resulting subset of D2 × I is a

cross-section hRF : U∗RF → URF . We observe that the restrictions of hRF and hP to C

coincide.

We extend hP to U∗SE similarly. By Theorem 2.1 a small neighborhood of an orbit in SE

is equivariantly homeomorphic to S1×Z2 D
2, the non-trivial D2-bundle over S1. Consider

RP 2 parametrized as in Example 2.2 with the same circle action. Let D2
δ ⊂ RP 2 be the

disk of radius δ < 1 centered at [0, θ]. Then S1 ×Z2 D
2 is equivariantly homeomorphic

to (RP 2 \ D2
δ) × I where the action on I is trivial. Consequently, USE is equivariantly

homeomorphic to (RP 2×I)\(D2
δ×I). The common boundary between USE and P is again

a cylinder C. As before, hP (P ∗) ∩ ∂USE determines a continuous curve l on C. Observe

that each point lt of l determines a unique point ([1, θt], t) ∈ (RP 2×I)\(D2
δ×I). Therefore,

by joining lt with the corresponding point ([1, θt], t), a cross-section hSE : U∗SE → USE is

obtained. The restrictions of hSE and hP to C coincide.

So far, we have a cross-section h0 : P ∗ ∪ U∗RF ∪ U∗SE −→ P ∪ URF ∪ USE. We will

extend h0 to Bε(x
+). Recall that we assumed that Bε(x

+) is conical. Then by Theorem

2.1, Bε(x
+) is equivariantly homeomorphic to K(RP 2) equipped with the standard circle

action. Let w be the curve given by h0(P ∗ ∪ U∗RF ∪ U∗SE) ∩ ∂Bε(x
+). A cross-section to

the action on Bε(x
+)∗ is obtained by repeating the curve w on each level RP 2 × {t} of

Bε(x
+). We extend h0 to Bε(x

−)∗ analogously. This concludes the proof of the theorem

for r = 1.

Suppose now that r = k + 1. We assume that every effective, isometric circle action

on a closed, connected 3-space, with 2k topologically singular points, has a cross-section.

Take two edges in RF ∗ that are separated by a single edge in SE∗ and let γ be a geodesic

that connects them by arbitrary points. This separates X∗ into two subsets. Let X∗2 be
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the subset of X∗ with two points in SF ∗ and X∗2k, the subset with 2k points in SF ∗.

Let π : X → X∗ be the canonical projection. Then, π−1(γ) is an invariant 2-sphere

in X. The invariant subspaces X2 = π−1(X∗2 ) and X2k = π−1(X∗2k) of X, share π−1(γ)

as boundary. Observe that the restriction of the action to π−1(γ) is equivalent to an

orthogonal action [20]. Let B be a closed 3-ball with the orthogonal S1-action and let B∗

be its orbit space. The weights on B∗ are as follows. The interior of B∗ corresponds to

principal isotropy. Its boundary is composed of two arcs, one of principal isotropy and

the other one of fixed points. Denote the boundary arc of principal isotropy by γ̃. Let

F : π−1(γ) → ∂B be an equivariant homeomorphism and f : γ → γ̃ a homeomorphism.

The spaces X̃2 := X2 ∪F B and X̃2k := X2k ∪F B are naturally endowed with effective,

isometric S1-actions. Furthermore, their orbit spaces are isomorphic to the topological

surfaces X̃∗2 := X∗2 ∪f B∗ and X̃∗2k := X∗2k ∪f B∗ respectively. We note that X̃2 and X̃2k

have 2 and 2k topologically singular points respectively. By our induction hypothesis and

the case r = 1, there exist cross-sections h̃2 : X̃∗2 → X̃2 and h̃2k : X̃∗2k → X̃2k. We restrict

h̃2 and h̃2k to obtain cross-sections h2 : X∗2 → X2 and h2k : X∗2k → X2k. We make h2 and

h2k coincide on π−1(γ) by means of an equivariant homeomorphism π−1(γ) → π−1(γ) to

obtain a global cross-section h : X∗ → X. �

We obtain the following Corollary to Theorem 4.1.

Corollary 4.2. Let S1 act effectively and isometrically on two closed, connected

Alexandrov 3-spaces X and Y that are not manifolds. Assume that the actions have

no exceptional orbits and that the orbit spaces X∗ and Y ∗ are homeomorphic to 2-disks.

Then X is weakly equivariantly homeomorphic to Y if and only if X∗ is isomorphic to

Y ∗.

Proof. Let πX : X → X∗ and πY : Y → Y ∗ be the canonical projections. By Theorem

4.1, there exist cross-sections hX : X∗ → X and hY : Y ∗ → Y . We let Ψ : X∗ → Y ∗ be

an isomorphism and define Ψ̃ = hY ◦Ψ ◦ πX . The function Ψ̃ takes hX(X∗) onto hY (Y ∗)

homeomorphically. The equivariance of Ψ̃ follows from the injectivity of Ψ̃−1, noting that

Ψ̃−1(Ψ̃(gx)) = Ψ̃−1(f(g)Ψ̃(x)) for every g ∈ S1, x ∈ X and every automorphism f of S1.

We construct a weakly equivariant homeomorphism Φ : X → Y in the following manner.

For each x ∈ X there is a unique representation of the form ghX(x∗0). Thus, Φ(ghX(x∗0)) :=

f(g)Ψ̃(hX(x∗0)) is a weakly equivariant homeomorphism. Its inverse is obtained similarly

by noting that Ψ−1(ghY (y∗0)) = f−1(g)Ψ̃−1(hY (y∗0)). �

4.1. Equivariant connected sums. Let S1 act effectively and isometrically on two

closed, connected Alexandrov 3-spaces X1 and X2 such that there are topologically regular

fixed points. We want to define an equivariant connected sum X1#X2. In order to do so we

consider invariant open 3-balls Bi ⊂ Xi that do not contain topologically singular points

and with axes consisting solely of topologically regular fixed points. We let X̃i := Xi \Bi.
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The boundaries ∂X̃i of X̃i are homeomorphic to 2-spheres. Therefore, the restricted S1-

actions on ∂X̃i are equivalent to orthogonal actions [20]. Then, we glue X̃i along the

∂X̃i by means of an equivariant homeomorphism, obtaining a topological space X1#X2

carrying an effective S1-action by homeomorphisms. The equivariant homeomorphism

is required to be orientation reversing if the Xi are orientable. This construction can

be iterated to obtain an equivariant connected sum of any finite number of connected

summands.

Let X1, . . . , Xn be closed, connected Alexandrov 3-spaces on which S1 acts effectively,

isometrically with topologically regular fixed points. We now indicate how to equip X :=

X1# . . .#Xn with an Alexandrov metric such that the S1-action on X, induced by each

Xi, is isometric. If X is a topological manifold, then by Theorem 6 of [26] there is

a differentiable structure on X such that the S1-action is equivalent to an action by

diffeomorphisms. Since X is compact, the circle action on X induced by the Xi is proper.

Therefore, there is a Riemannian metric g on X such that the elements of S1 are isometries

with respect to g. The metric on X induced by g is an Alexandrov metric since X is

compact.

Now, assume that X is not a topological manifold. We consider the ramified orientable

double cover X̃ of X. In order to keep the presentation self-contained, we will describe

X̃ by means of elementary tools. However, we refer the reader to [13, Theorem 2.4] for

a more general construction. We proceed with the description of X̃. We remove from

X disjoint, open conical neighborhoods of each topologically singular point, obtaining

a non-orientable topological 3-manifold X0 with boundary an even number of copies of

RP 2. The orientable double cover X̃0 of X0 is an orientable, topological 3-manifold with

boundary. By Theorem 9.1 in [2] we can lift the S1-action on X0 to obtain an effective

S1-action by homeomorphisms on X̃0. We also note that the S1 acting on X̃0 is a 2-fold

covering of the S1 acting on X0. We let ξ : S1 → S1 be said covering. We need some

technical facts. Let ι be the natural involution on X̃0 and ρ : X̃0 → X̃0/ι, the canonical

projection. First we observe that, since ρ is 2-sheeted, then Aut(ρ), the group of deck

transformations of ρ, is isomorphic to Z2. We also observe that ι is an element of Aut(ρ).

By Theorem 9.1 in [2], the kernel of ξ is a subgroup of Aut(ρ). Therefore ι coincides

with the function {eπ}× X̃0 → X̃0, the restriction of the S1 action. Since each boundary

component of X̃0 is a 2-sphere, the restriction of the S1-action is orthogonal [20]. Then

we can extend ι and the S1 action to 3-balls to obtain a closed topological 3-manifold X̃.

Note that X̃/ι is homeomorphic to X. Now, we apply Theorem 6 of [26] to conclude that

the circle action on X̃ is equivalent to an action by diffeomorphisms. This also implies

that the action of ι on X̃ is equivalent to an action by diffeomorphisms. Furthermore, the

smoothed actions of ι and S1 commute. Now we let g̃ be a Riemannian metric on X̃ such

that the S1 and ι actions are isometric. Then, (X̃, g̃)/ι is a Riemannian orbifold with an

effective, isometric S1-action equivalent to that induced by the Xi.
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In particular, we have the following observation. Let S2 be the unit round 2-sphere and

consider S3 = Susp(S2) with the standard spherical suspension metric. Let ι : S3 → S3

be given by the antipodal map on each level of the suspension. Then (Susp(RP 2), d0) is

isometric to the quotient of the unit round S3 by ι. Therefore, (Susp(RP 2), d0) has the

structure of a Riemannian orbifold with curvature bounded below and has an effective,

isometric S1-action. Thus, the connected sum of finitely many copies of Susp(RP 2) has

an Alexandrov metric and the S1-action determined by taking the standard action on

every summand is effective and isometric. Thus, we obtain the following corollary.

Corollary 4.3. Let S1 act effectively and isometrically on a closed, connected Alexan-

drov 3-space X with 2r topologically singular points, r ≥ 1. If there are no exceptional

orbits and X∗ is homeomorphic to a 2-disk, then X is weakly equivariantly homeomorphic

to the equivariant connected sum of r copies of Susp(RP 2) equipped with the standard

circle action. Consequently, the only effective, isometric circle action on Susp(RP 2) is

the standard action, up to weakly equivariant homeomorphism.

Remark 4.4. We can avoid the use of the Slice Theorem for Alexandrov spaces (Theo-

rem 2.1) in our present setting as follows. Observe that an invariant conical neighborhood

of x ∈ SF is homeomorphic to K(RP 2) [24]. There exists a topological involution ι of

the 3-ball B, such that B/ι is homeomorphic to K(RP 2). By results of Hirsch and Smale

[15] and Livesay [18], the action of the involution must be orthogonal. Hence this action

is the cone of the action induced by the antipodal map on S2. On the other hand, the

action of S1 on B is equivalent to an orthogonal action [20]. Since these actions on B

commute, we have that the action of S1 on K(RP 2) is the cone of the standard action

on RP 2. For a more general instance of this construction in Alexandrov geometry, see for

example, Section 2 of [12], Section 2 of [13] or Lemmas 1.6 and 1.7 of [7].

5. Topological and equivariant classification in the general case

In this section we will prove Theorem 1.2. To this end we will consider effective,

isometric circle actions on X without any restrictions on the orbit space. The proof will

follow along the lines of the proof in the manifold case (see [22, 23, 26]). It consists of

first obtaining a cross-section to the action everywhere except for a tubular neighborhood

of E and then noting that one can define a global weakly equivariant homeomorphism

between spaces with isomorphic orbit spaces. This cross-section will be constructed by

using the more restrictive case considered in the previous section. Here one must use

the fact that, just as in the manifold case, there is essentially a unique way to glue a

tubular neighborhood of an exceptional orbit once the restriction of a cross-section to the

boundary and the Seifert invariants of the orbit are given.
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Proposition 5.1. Let S1 act effectively and isometrically on a closed, connected Alexan-

drov 3-space X. If there are no exceptional orbits, then there exists a cross-section to the

action unless F = ∅.

Proof. Let (b; (ε, g, f, t); (r1, r2, . . . , rs)) be the invariants of the action. If X has no

topologically singular points then X is a topological manifold, and the result is Lemma

2 in [26]. Thus, we first assume that s = 1 and denote r1 = r. Consider the topological

surface M∗ weighted by the tuple (b; (ε, g, f + 1, t)). By Theorem 4 in [26], there is

an effective, isometric S1-action on a closed 3-manifold M with M∗ as the orbit space.

Furthermore, M is unique up to weakly equivariant homeomorphism. Since f + 1 > 0,

there is at least one circle C of fixed points on M . Consider an arc I contained in C.

Let U be a small tubular neighborhood of I. Now, let X̃ be the equivariant connected

sum of r/2 copies of Susp(RP 2). Take an edge of fixed points in X̃ that has topologically

singular points as endpoints and let Ĩ be a subarc of said edge consisting of topologically

regular points only. Consider a small tubular neighborhood Ũ of Ĩ. By Theorem 2.1

the restricted actions on U and Ũ are equivalent to an action by rotations with respect

to I and Ĩ respectively. Thus, there is an equivariant homeomorphism ϕ : Ũ → U .

We now take the equivariant connected sum M#X̃ = M ∪ϕ X̃. We then have that

(M#X̃)∗ is isomorphic to M∗ ∪ X̃∗, gluing along Ũ∗ and U∗. Observe that (M#X̃)∗ is

also isomorphic to X∗. The subsets π−1(M∗) and π−1(X̃∗) are invariant in X. Moreover,

π−1(M∗)∩SF = ∅, and therefore, π−1(M∗) is a topological 3-manifold. We conclude that

M is weakly equivariantly homeomorphic to π−1(M∗).

By Lemma 2 in [26] and Theorem 4.1, we have cross-sections h1 : M∗ → M and

h2 : X̃∗ → X̃. As mentioned in the preceding paragraph, the restricted actions on Ũ and

U are equivalent to an orthogonal action on a 3-ball B. This action has a canonical cross-

section J ⊂ B3. We take equivariant homeomorphisms ϕ1 : U → B and ϕ2 : B → Ũ such

that ϕ1 and ϕ2 take h1(M
∗) and J homeomorphically onto J and h2(X̃

∗), respectively.

Therefore, the equivariant homeomorphism ϕ2 ◦ ϕ1 makes h1 and h2 agree. Then, we

obtain a global cross-section h : X∗ → X. This concludes the proof of the Proposition

for s = 1.

For the general case, we let M∗ be weighted by (b; (ε, g, f + s, t)). We use Theorem 4 in

[26] again to obtain the unique closed 3-manifold M . In this case, M has at least s circles

of fixed points. We let X̃i be the equivariant connected sum of ri/2 copies of Susp(RP 2),

for each i = 1, 2, . . . , s. Then X∗ is isomorphic to M∗ ∪
(
∪si=1X̃

∗
i

)
, where the unions are

taken along adequate invariant neighborhoods of the fixed point components. Applying

the procedure made in the case s = 1 for each circle of fixed points, we get cross-sections

M∗ → M and X̃i
∗ → X̃i. We glue these cross-sections to obtain a global cross-section

X∗ → X. �
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Proof of Theorem 1.2. If X has no topologically singular points, then the result reduces

to Corollaries 2a, 2b and Theorems 1 and 4 in [26]. Therefore we now assume that X has

topologically singular points.

We will prove (2) first. Let X0 denote the complement in X of a sufficiently small

tubular neighborhood of E, so that X∗0 is homeomorphic to X∗ with n disks removed.

By Proposition 5.1 there is a cross-section X∗0 → X0. Let Y be a closed, connected

Alexandrov 3-space with an effective, isometric S1-action such that X∗0 and Y ∗0 are iso-

morphic. By replicating the argument in Corollary 4.2, we obtain a weakly equivariant

homeomorphism X0 → Y0. In the notation of Proposition 5.1, X∗0 is isomorphic to

the orbit space M∗
0 ∪

(
∪si=1X̃

∗
i

)
, where M0 has no exceptional orbits and has n torus

boundary components. Therefore, there exists a weakly equivariant homeomorphism

ϕ : X0 →M0# Susp(RP 2)# . . .# Susp(RP 2), where the connected sum has s summands

equal to Susp(RP 2). We now observe that Lemma 6 and Theorems 2a and 2b in [26] ad-

mit straightforward generalizations to the Alexandrov setting by using our Theorem 4.1.

Hence, as in the manifold case, ϕ can be extended to a weakly equivariant homeomorphism

between X and Y .

We now prove (1). The restriction of the action to the manifold M0 appearing on the

previous decomposition of X is uniquely determined, up to weakly equivariant home-

omorphism, by Theorem 4 in [26]. On the other hand, the restriction of the action to

Susp(RP 2)# . . .# Susp(RP 2) is an equivariant connected sum of standard actions. There-

fore, the action is determined by the number of pairs of topologically singular points on

each boundary component of X∗. �

Remark 5.2. Recall that s is the number of boundary components of X∗ which in-

tersect SF ∗. The set of invariants (b; (ε, g, f, t); {αi, βi}ni=1; s) provides enough informa-

tion to obtain the topological decomposition of X. However, by excluding the s-tuple

(r1, r2, . . . , rs), the remaining invariants are incapable of detecting some inequivalent ac-

tions on X if the number of topologically singular points is greater than 2, as the following

example shows.

Example 5.3. Let M = S2 × S1, regarding S2 as a subset of C × R. Consider the

S1-action on M that sends each (z, t, w) ∈ S2 × S1 to (gz, t, w), where g ∈ S1 and gz

is the complex multiplication. Let X1 and X2 denote two copies of Susp(RP 2) equipped

with the standard circle action. The equivariant connected sum X = M#X1#X2 is

realized by choosing small tubular neighborhoods of subarcs of the components of fixed

points of the connected summands. Observe that M has two circles of fixed points,

namely, C1 = {(0, 1)} × S1 and C2 = {(0,−1)} × S1. Note that each Xi has one fixed

point component, which we will denote by F1 and F2, respectively. Therefore the choices

involved in the construction of the equivariant connected sum can be done in two ways.

On the one hand, we can glue Fi to subarcs of C1, obtaining an orbit space X∗ with
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C∗2 ∩ SF ∗ = ∅. On the other hand, we can glue F1 with a subarc in C1, and F2 with a

subarc in C2. In the resulting orbit space, Ci ∩ SF ∗ 6= ∅. These actions on X cannot be

equivalent since their orbit spaces are not isomorphic.

Remark 5.4. Example 5.3 illustrates how we count the number of inequivalent effective,

isometric circle actions on X. By Theorem 1.2, X is weakly equivariantly homeomorphic

to M#Y , where Y is an equivariant connected sum of s copies of Susp(RP 2) and M is

a closed 3-manifold. Since Y can only contribute standard circle actions, we only have

to choose how to arrange s pairs of topologically singular points along the boundary

components of mixed isotropy in X∗. Following the notation of Theorem 1.2, if s > 0,

then there are
(
r
s

)
inequivalent effective, isometric circle actions for each effective, isometric

circle action on M .

6. Borel conjecture for Alexandrov spaces with circle symmetry

The simplest examples of Alexandrov spaces which are not manifolds occur within the

class of closed Alexandrov 3-spaces, since they are topological manifolds except for a finite

number of isolated points. This property suggests that some results for closed 3-manifolds

may have suitable generalizations to Alexandrov 3-spaces.

Recall that a topological space X is said to be aspherical if its homotopy groups πq(X)

are trivial for q > 1. One result concerning the class of aspherical n-manifolds is the Borel

conjecture. It asserts that if two closed, aspherical n-manifolds, are homotopy equivalent,

then they are homeomorphic. The proof of this conjecture in the 3-dimensional case is a

consequence of Perelman’s proof of Thurston’s Geometrization Conjecture (see [25]). It

is natural to ask if this conjecture still holds for closed, connected Alexandrov 3-spaces,

particularly for those with symmetry. The explicit topological decomposition in Theorem

1.2 allows us to investigate the homotopy groups of these spaces and to prove the following

analog of the Borel conjecture.

Theorem 6.1 (Borel conjecture for Alexandrov spaces with circle symmetry). If two

aspherical, closed, connected Alexandrov 3-spaces on which S1 acts effectively and isomet-

rically are homotopy equivalent, then they are homeomorphic.

Proof. Our proof will consist of showing that the only aspherical, closed, connected

Alexandrov 3-spaces admitting an effective, isometric S1-action are topological manifolds.

As pointed out before, the Borel Conjecture holds for closed, aspherical 3-manifolds [25].

We begin by noting that Susp(RP 2) is not aspherical: a combination of the suspension

isomorphism and the Hurewicz Theorem yields that π2(Susp(RP 2)) ∼= Z2. We will now

prove that a connected sum of suspensions of RP 2 is not aspherical. We use homology

with Z coefficients. Let X = Susp(RP 2)# Susp(RP 2) and B ⊂ Susp(RP 2) be an invariant

3-ball used for the construction of the equivariant connected sum. By the Seifert-Van

Kampen Theorem, X is simply-connected. Therefore, by the Hurewicz Theorem, π2(X) ∼=
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H2(X). Observe that ∂B ∼= S2 is a deformation retract of a neighborhood in X. Hence, by

Proposition 19.36 of [10], H2(X, S2) ∼= H2(Susp(RP 2) ∨ Susp(RP 2)). Also note that the

distinguished point in Susp(RP 2)∨ Susp(RP 2) is a deformation retract of neighborhoods

U1 in the first Susp(RP 2) and U2 in the second Susp(RP 2). Then, by applying the Mayer-

Vietoris sequence to the decomposition (Susp(RP 2)∪U2, U1∪Susp(RP 2)), we obtain that

H2(Susp(RP 2) ∨ Susp(RP 2)) ∼= Z2 ⊕ Z2. Hence, the exact sequence of the pair (X, S2)

takes the following form

H2(X)→ H2(Susp(RP 2) ∨ Susp(RP 2))→ H1(S2).

Therefore, we have a surjection H2(X) → Z2 ⊕ Z2. It follows that H2(X) 6= 0 and, by

induction, that no connected sum of finitely many suspensions of RP 2 is aspherical.

Let Y be an aspherical, closed, connected Alexandrov 3-space on which S1 acts effec-

tively and isometrically. By Theorem 1.2, Y is homeomorphic to M#X, where X is a

connected sum of finitely many copies of Susp(RP 2) and M is a closed 3-manifold. Let

ϕ : M#X →M ∨X be the function that collapses the S2 used to construct the connected

sum to a point. The pair (M#X, S2) is 0-connected, therefore by Proposition 4.28 in

[14], ϕ is 2-connected. Now, we lift ϕ to the universal covers to get a 2-connected map

ϕ̃ : M̃#X → M̃ ∨X. Since we assumed Y to be aspherical, πk(M#X) = 0 for k > 1.

Therefore, πk(M̃#X) = 0 for k ≥ 1. The map ϕ̃ and the Hurewicz Theorem yield that

π2(M̃ ∨X) = H2(M̃ ∨X) = 0.

Denote the projection of the universal cover of M ∨ X by p. Observe that p−1(M) ∩
p−1(X) = p−1({pt}) is a discrete set and that p−1(M) ∪ p−1(X) = M̃ ∨X. Using the

Mayer-Vietoris sequence for this decomposition we obtain thatH2(p
−1(M))⊕H2(p

−1(X)) ∼=
0. The preimage of X is a disjoint union of copies of the universal cover of X. Since X

is simply-connected, p−1(X) is a disjoint union of copies of X. This is a contradiction,

since we proved that H2(X) 6= 0. �
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