LLDPE with Exclusively Ethyl Branches by Tandem Catalysis with Single-Site $\mathbf{Z r}(\mathbf{I V}) / \mathbf{C o}$ (II) Catalysts

Claudio Bianchini - Giuliano Giambastiani - Andrea Meli - Itzel Guerrero Rios • Alessandro Toti • Elisa Passaglia - Marco Frediani

Published online: 28 March 2008
© Springer Science+Business Media, LLC 2008

Abstract

Semicrystalline linear low density polyethylenes (LLDPEs) with exclusively ethyl branching (from 7 to 56 branches per 1,000 carbon atoms) were prepared from ethylene by homogeneous tandem catalytic systems comprising (imino)pyridine cobalt(II) dichlorides as oligomerization precursors, bis(cyclopentadienyl)zirconium(IV) dichloride as copolymerization precursor and methyaluminoxane as activator. The activity of the tandem systems was evaluated by varying either the molar fraction of the cobalt precursors or the ethylene pressure. The latter parameter was of crucial importance to control both the productivity and the extent of 1 -butene incorporation. In particular, increasing the ethylene pressure from 2 bar to 4 bar changed the "comonomer effect" from positive to negative.

Keywords Tandem catalysis • Cobalt • LLDPE • Zirconium

[^0]
1 Introduction

Tandem copolymerization catalysis, using two or more different single-site catalysts in the same reactor, is a relatively recent technique for the production of branched polyethylene (PE) from ethylene stock [1, 2]. A great variety of combinations of late and early metal catalyst precursors, under different experimental conditions, has been successfully employed in tandem processes to produce materials spanning from linear low-density polyethylene (LLDPE) to elastomeric ultra low-density polyethylene (ULDPE) [1-9]. The copolymerization step involves invariably either early metallocenes, especially of the ansatype, or half-metallocenes such as the constrained geometry complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{SiMe}_{2}(t \mathrm{BuN})\right] \mathrm{TiCl}_{2}$ [9-11]. These copolymerization catalysts are generally very active but not selective. Therefore, when the oligomerization catalyst produces different types of α-olefins, for example with a Schulz-Flory distribution, the LLDPE microstructure, especially in terms of length and distribution of the branches, is hardly reproducible and difficult to control [8, 9]. In order to avoid this problem, the copolymerization catalysts may be flanked by oligomerization catalysts that are able to produce a unique α-olefin [12]. As an alternative to the use of a selective ethylene oligomerization catalyst, one may employ a copolymerization catalyst that exhibits different kinetics of α-olefin incorporation into the growing copolymer chain in function of the α-olefin length as well as the experimental conditions. The first approach of this type has been described by Casagrande who reported the synthesis of LLDPE with almost exclusively ethyl branches by means of a tandem system comprising $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ as copolymerization catalyst, $\mathrm{Tp}^{\mathrm{Ms}} \mathrm{NiCl}\left(\mathrm{Tp}^{\mathrm{Ms}}=\right.$ hydridotris(3-mesitylpyrazol1 -yl)) as oligomerization catalyst and MAO/TMA as activator in toluene at $0{ }^{\circ} \mathrm{C}$ [3]. Notably, $\mathrm{Tp}^{\mathrm{Ms}} \mathrm{NiCl} / \mathrm{MAO}$ is

Fig. 1 (Imino)-pyridine CoCl_{2} complexes ($\mathbf{1 a - c}$) and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ (2) for the tandem copolymerization catalysis
able to convert ethylene into a Schulz-Flory distribution of α-olefins [13] and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} / \mathrm{MAO}$ catalyzes the copolymerization of ethylene also with α-olefins higher than 1-butene, provided a reaction temperature $\geq 60^{\circ} \mathrm{C}$ is used [14]. Thus, the almost selective incorporation of 1-butene (some butyl branches were detected) by the $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} /$ $\mathrm{Tp}^{\mathrm{Ms}} \mathrm{NiCl} / \mathrm{MAO}$ system indicates that the smallest and largely abundant 1 -butene prevails over any other α-olefin for insertion into the growing copolymer chain at the experimental temperature of $0{ }^{\circ} \mathrm{C}$.

Herein are described some new homogeneous tandem systems that allow for the conversion of ethylene into a variety of LLDPEs bearing exclusively ethyl branches with superior productivity and amount of branching as compared to the products obtainable with the $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2} /$ $\mathrm{Tp}^{\mathrm{Ms}} \mathrm{NiCl} / \mathrm{MAO}$ system.

The tandem systems described in this paper comprise CoCl_{2} modified with 6-organyl-2-(imino)pyridine ligands (1a-c) and $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ (2) (Fig. 1). Previous studies have demonstrated that, upon activation by MAO in toluene, 1a oligomerizes ethylene yielding short α-olefins with a productivity as high as $6.6 \times 10^{5} \mathrm{~mol}$ of ethylene converted (mol of Co) ${ }^{-1} \mathrm{~h}^{-1}\left(\mathrm{TOF}_{\mathrm{mol}}\right)$ and a Schulz-Flory α-value of about 0.08 (butenes 92.0%, hexenes 7.4%, octenes 0.6% at $30^{\circ} \mathrm{C}$) [12]. Under comparable experimental conditions, the selective ethylene dimerization to butenes ($>98 \%$) with a TOF $_{\mathrm{mol}}$ of ca. 1.5×10^{5} was achieved with the catalyst precursors 1b and 1c [12a, b].

2 Experimental Part

2.1 General Conditions

Argon ($\geq 99.999 \%$ from Rivoira) was dried through a CaCl_{2} column and deoxygenated with an oxisorb cartridge from Messer Griesheim prior to use. Ethylene N35 (Air Liquide $\geq 99.95 \%$) was deoxygenated and dried through
two columns containing the BASF catalyst R3-11 and activated molecular sieves ($10 \AA$), respectively, prior to use. Anhydrous toluene was obtained by means of a MBraun Solvent Purification Systems. The imino(pyridine) cobalt complexes $\quad \mathrm{CoCl}_{2}\left(\mathrm{~N}_{2}^{2 \mathrm{Th}}\right), \quad \mathrm{CoCl}_{2}\left(\mathrm{~N}_{2}^{3 \mathrm{Th}}\right)$, and $\mathrm{CoCl}_{2}\left(\mathrm{~N}_{2}^{\mathrm{Ph}}\right)$ were synthesized according to a published procedure [12b]. $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ was purchased from SigmaAldrich and used as received. Solid methylaluminoxane (MAO) was prepared by removing toluene and AlMe_{3} under vacuum from a commercially available MAO solution ($10 \mathrm{wt} \%$ solution in toluene, Sigma-Aldrich). The MAO solution was filtered on a D4 funnel and evaporated to dryness at $50{ }^{\circ} \mathrm{C}$ under vacuum. The resulting white residue was heated further to $50^{\circ} \mathrm{C}$ under vacuum overnight. A stock solution of MAO ($100 \mathrm{mg} \mathrm{mL}^{-1}$) was prepared by dissolving solid MAO in toluene. The solution was used within 1 week to avoid self-condensation effects of the MAO. All manipulations of the air- and/or moisturesensitive materials were carried out under a dry argon atmosphere, in a glove box or using standard Schlenk-type techniques.

2.2 Ethylene Polymerization with the Tandem Systems 1a-c/2/MAO

All polymerization reactions were performed in a 750 mL stainless steel reactor, constructed at the ICCOM-CNR (Firenze, Italy), equipped with a magnetic drive stirrer, a Parr 4842 temperature and pressure controller. The reactor was connected to an ethylene reservoir to maintain a constant pressure throughout the catalytic runs. The autoclave was dried under vacuum at $95{ }^{\circ} \mathrm{C}$ for 1 h and then cooled to room temperature under an argon atmosphere. Toluene (195 mL) was transferred into the autoclave under argon. Afterward, 2.4 mL of a stock toluene solution of MAO ($100 \mathrm{mg} \mathrm{mL}^{-1}$) was syringed into the autoclave, which was thermostated to $30^{\circ} \mathrm{C}$ by the way of an external circulating bath and saturated with ethylene at the proper pressure. After complete temperature and pressure equilibration, the solutions/suspensions of the precatalysts in toluene (2.6 mL overall) were injected into the autoclave in rapid sequence (cobalt always first) to start the concurrent ethylene oligomerization and polymerization processes. Generally, the exotherm of the reactions led to a temperature increase of the reaction mixtures of $1{ }^{\circ} \mathrm{C}$ maximum. The catalyst $(\mathrm{Zr}+\mathrm{Co})$ concentration was generally of $6.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ for all polymerizations except for runs conducted with only $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ or at cobalt molar fractions ≤ 0.5. After the proper reaction time, the catalysis was terminated by cooling the reactor to $5^{\circ} \mathrm{C}$, venting off the volatiles, and introducing 2 mL of acidic EtOH (5% $\mathrm{HCl} \mathrm{v} / \mathrm{v}$). The reaction mixture was poured into 200 mL of a solution prepared by mixing hydrochloric acid $(50 \mathrm{~mL})$,
ethanol $(425 \mathrm{~mL})$ and water $(1,450 \mathrm{~mL})$ and stirred overnight. When the polymer precipitated as a rigid solid, it was filtered off, washed with water, ethanol, and dried at $60^{\circ} \mathrm{C}$ under vacuum to constant weight. When the polymer was a rubbery solid, the toluene phase contained the solid was separated from water, washed with a saturated water solution of NaHCO_{3} and then evaporated to dryness at $60^{\circ} \mathrm{C}$ under vacuum.

2.3 Polymer Characterization

The ${ }^{13} \mathrm{C}$ NMR spectra of polymer materials were recorded on a Bruker Avance 300 MHz instrument $(75.5 \mathrm{MHz})$ at $110{ }^{\circ} \mathrm{C}$. Polymer samples of $150-250 \mathrm{mg}$ were dissolved in 2.5 mL of a $30: 70 \mathrm{v} / \mathrm{v}$ mixture of 1,1,2,2-tetrachloroeth-ane- $d_{2}(\delta=74.24 \mathrm{ppm}): 1,2,4$-trichlorobenzene in 10 mm NMR tubes. Pulse width: 30°; pulse delay: 18 s ; acquisition time: 1.41 s ; scansion number: 1024. Melting (T_{m}) temperatures of the polymer materials were determined by differential scanning calorimetry (DSC) with a PerkinElmer DSC-7 instrument equipped with CCA-7 cooling device and calibrated with the melting transition of indium and n-heptane as references (156.1 and $-90.61{ }^{\circ} \mathrm{C}$, respectively). The polymer sample mass was 10 mg and aluminum pans were used. Any thermal history in the polymers was eliminated by the first heating of the specimen at a heating rate of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$ to $200^{\circ} \mathrm{C}$, cooling at $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ to $-100^{\circ} \mathrm{C}$, and then recording the second scan from $-100^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. Thermal gravimetric analyses (TGA) were obtained under nitrogen ($60 \mathrm{~mL} \mathrm{~min}{ }^{-1}$) with a TGA Mettler Toledo instrument at the heating rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ from $50{ }^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$. The molecular weight $\left(M_{w}\right)$ and molecular weight distribution $\left(M_{w} / M_{n}\right)$ of the polymers were evaluated by gel permeation chromatography (GPC) with a Waters GPC 2000 system equipped with a set of three columns Styragel HT6, HT5, and HT3, and refractive index detector. The analyses were performed at $140{ }^{\circ} \mathrm{C}$ using 1,2,4-trichlorobenzene as solvent with an elution time of $1 \mathrm{~mL} \mathrm{~min}^{-1}$ and standard polystyrene as the reference.

3 Results and Discussion

All the catalytic tests were carried out in the presence of mixtures of 1a-c and $\mathbf{2}$ under polymerization/oligomerization conditions that previous studies had shown to be effective for each single-site system, taken separately. The compatibility of the oligomerization and copolymerization catalysts to each other as well as to MAO was preliminary ascertained by independent gas-uptake catalytic experiments: under comparable conditions, the Zr catalyst was more active than the Co catalysts, yet within the same order
of magnitude. Either single-site catalyst showed no induction period and reached the maximum activity within a few minutes, then the consumption of ethylene remained practically constant for more than half an hour.

Table 1 summarizes the experimental conditions applied to the tandem copolymerization processes catalyzed by $\mathbf{1 a}-\mathbf{c} / \mathbf{2} / \mathrm{MAO}$ (Fig. 2) and the relative results. The molar fraction of cobalt $\left(\chi_{\mathrm{Co}}\right)$, ranging from 0 to 0.98 , and the ethylene pressure were the only two experimental variables, while the MAO concentration and the initial temperature were fixed to $2.1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}{ }^{-1}$ and $30^{\circ} \mathrm{C}$, respectively. Except for the reactions performed with only $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ or with cobalt molar fractions ≤ 0.5, the overall metal concentration $(\mathrm{Co}+\mathrm{Ti})$ was fixed to $6.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$.

Irrespective of the oligomerization cobalt catalyst, only 1-butene was incorporated into the PE matrix to give LLDPE with exclusively ethyl branches up to $11.3 \mathrm{~mol} \%$ of incorporated oligomer. No trace of 1-hexene enchainment was detected even at very high $\chi_{\text {Co }}$ values of $\mathbf{1 a}$, while no branching was observed at $\chi_{\text {Co }}<0.5$. An independent ethylene - 1-henexe copolymerization under the experimental conditions of the tandem reaction (entry 2) showed no 1-hexene incorporation, which proves the importance of the reaction temperature to control the migratory insertion of $\mathrm{Zr}($ alkyl $)(\alpha$-olefin) [14]. The exclusive presence of ethyl branches in the LLDPE was unambiguously shown by ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. As an example, Fig. 3 reports the spectrum of the copolymer obtained under the conditions of entry 13 . The ${ }^{13} \mathrm{C}$ NMR chemical shift assignments are reported in Table 2, where the nomenclature adopted for the polymer backbone and branching carbons is that defined according to Randall [15]. The methylene carbons are identified by a pair of greek letters to indicate the distance to branches in either direction, whereas the methyne carbons are identified by "br". The carbon atoms in the ethyl chains are identified by "xB ${ }_{2}$ " where the " x " denotes the carbon number starting with the methyl carbon in position 1.

Both the oligomerization and copolymerization catalysts, taken separately, showed a linear dependence of the activity with the pressure (entries 1 vs. 11 and 3 vs. 12), indicating that the propagation and chain-transfer rates are first-order in ethylene concentration [16, 17] although with different kinetics (Fig. 4).

From a perusal of the data reported in Table 1, one may readily realize the importance of both the ethylene pressure and χ_{Co}, hence of the instantaneous concentration of the oligomers in the reactor, to control the productivity and the characteristics of the LLDPE product.

Irrespective of the oligomerization catalyst, the productivity decreased in going from 2 to 4 bar pressure (see for example entry 13 with a $\mathrm{TOF}_{\mathrm{kg}}$ of $25,400 \mathrm{vs} .7$ with a $\mathrm{TOF}_{\mathrm{kg}}$ of 10,000). A positive "comonomer effect"
Table 1 Ethylene polymerization ${ }^{\text {a }}$

Entry	Prec at.	Co $\mu \mathrm{mol}$	$\begin{aligned} & \mathrm{Zr} \\ & \mu \mathrm{~mol} \end{aligned}$	$\chi_{\text {Co }}^{\text {b }}$	$\mathrm{Al} / \mathrm{Co}$	$\mathrm{Al} / \mathrm{Zr}$	$\begin{aligned} & p\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \\ & (\mathrm{bar}) \end{aligned}$	PE (g)	Time (h)	$\begin{aligned} & \mathrm{PE} \\ & \mathrm{TOF}_{\mathrm{kg}}^{\mathrm{c}} 10^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{PE} \\ & \mathrm{TOF}_{\text {mol }}^{\mathrm{d}} 10^{-3} \end{aligned}$	$\begin{aligned} & \text { Olefin } \\ & \text { TOF }_{\text {mol }}^{e} 10^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{w}} \\ & \left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)^{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{n}} \\ & \left(\mathrm{~kg} \mathrm{~mol}^{-1}\right)^{\mathrm{f}} \end{aligned}$	$\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{m}}^{\mathrm{g}} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\underset{\left(\mathrm{J} \mathrm{~g}^{-1}\right)}{\Delta \mathrm{H}_{\mathrm{m}}}$	$\begin{aligned} & \mathrm{X} \\ & (\%)^{\mathrm{h}} \end{aligned}$	br. ${ }^{\text {i }}$	Butene (mol $\%{ }^{j}$
1	2		0.26			15908	4	2.7	0.5	20.8	740		754	193	3.91	135.7	124.2	46.0		
$2^{\text {k }}$	2		0.26			15908	4	2.6	0.5	20.0	713		688	247	2.79	130.5	124.6	46.2		
3	1a	13.00		1.00	318		4	0.0	0.5			206								
4	1a/2	1.30	1.30	0.50	3182	3182	4	13.4	0.5	20.6	735		370	117	3.16	124.9	132.2	49.0	7.5	1.5
5	1a/2	10.40	2.60	0.80	398	1591	4	7.1	0.5	5.5	195		383	108	3.55	121.2			14.3	2.9
6	1a/2	12.45	0.65	0.95	332	6363	4	2.5	0.5	7.7	274		400	107	3.74	120.4	107.0	39.6	20.5	4.1
7	1a/2	12.74	0.26	0.98	325	15908	4	1.3	0.5	10.0	356		357	108	3.31	119.8	100.4	37.2	28.5	5.7
8	1a/2	12.74	0.26	0.98	325	15908	4	5.3	2.0	10.2	363		401	117	3.43	94.8	94.8	35.1	50.0	10.0
9	1b/2	12.74	0.26	0.98	325	15908	4	1.0	0.5	7.7	274		400	107	3.74	123.5	92.8	34.4	20.0	4.0
10	1c/2	12.74	0.26	0.98	325	15908	4	1.1	0.5	8.5	302		470	143	3.28	119.4	107.8	39.9	24.0	4.8
11	2		0.26			15908	2	1.5	0.5	11.5	411		1758	280	6.28	139.6	112.5	45.4		
12	1a	13.00		1.00	318		2	0.0	0.5			115								
13	1a/2	12.74	0.26	0.98	325	15908	2	3.3	0.5	25.4	905		280	100	2.80	87.8	82.4	30.5	56.5	11.3
14	1b/2	12.74	0.26	0.98	325	15908	2	2.9	0.5	22.3	795		136	64	2.13	102.6	84.1	31.2	40.0	8.0
15	1c/2	12.74	0.26	0.98	325	15908	2	2.8	0.5	21.5	768		320	120	2.67	112.6	97.3	36.0	32.5	6.5

${ }^{a}$ Reactions were performed in a stainless steel reactor (750 mL), conditions: $4,136 \mu \mathrm{~mol}$ MAO, 200 mL toluene, 450 rpm stirring rate, $30{ }^{\circ} \mathrm{C}$ initial temperature ${ }^{\mathrm{b}} \chi_{\mathrm{Co}}=[\mathrm{Co}] /([\mathrm{Co}]+[\mathrm{Zr}])$
${ }^{c}$ Expressed as kg polymer $(\mathrm{mol} \mathrm{Zr})^{-1} \mathrm{~h}^{-1}$
${ }^{d}$ Expressed as $\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~mol} \mathrm{Zr})^{-1} \mathrm{~h}^{-1}$
${ }^{e}$ Expressed as $\mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~mol} \mathrm{Co})^{-1} \mathrm{~h}^{-1}$
${ }^{\mathrm{f}}$ Determined by GPC
${ }^{g}$ Determined by DSC
${ }^{\text {h }}$ Crystallinity calculated as $\left(\Delta H_{f} / \Delta H_{f \alpha}\right) * 100$, where $\Delta H_{f \alpha}$ is $269.9 \mathrm{Jg}^{-1}$. See refs. [14a and 25] ${ }^{\text {i }}$ Number of branches per $1,000 \mathrm{C}$ atoms calculated from the ${ }^{13} \mathrm{C}$ NMR spectra ${ }^{j}$ Butene incorporation calculated from the ${ }^{13} \mathrm{C}$ NMR spectra
${ }^{\mathrm{k}}$ Run in presence of 1.5 g of 1-hexene

Fig. 2 The tandem copolymerization processes

Fig. $3{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the polymer produced by the tandem 1a/2/MAO system under the conditions of entry 13

Table $2{ }^{13} \mathrm{C}$ NMR chemical shifts and assignments for the ethylbranched PE obtained by the tandem $\mathbf{1 a} / \mathbf{2} / \mathrm{MAO}$ system at $\chi_{\text {Co }}$ of 0.98 and 2 bar ethylene $\left(100.6 \mathrm{MHz}, 110^{\circ} \mathrm{C}, 1,1,2,2\right.$-tetrachloroethane- d_{2} : 1,2,4-trichlorobenzene $30: 70 \mathrm{v} / \mathrm{v}$)

Chemical shift (ppm)	Carbon assignment	Sequence assignment
39.61	brB_{2}	EBE
34.50	$\alpha \gamma \mathrm{~B}_{2}$	EBEB+BEBE
34.34	$\alpha \delta \mathrm{~B}_{2}$	EBEE+EEBE
30.47	$\gamma \gamma \mathrm{~B}_{2}$	BEEE+EEEB
29.98	$\delta \delta$	(EEE)n
27.26	$\beta \delta \mathrm{~B}_{2}$	EBEE+EEBE
26.66	$2 \mathrm{~B}_{2}$	EBE
11.16	$1 \mathrm{~B}_{2}$	EBE

occurred at 2 bar (entry 13 vs. 11, a reaction catalyzed by $2 / \mathrm{MAO}$ yielding PE). It is commonly agreed that the "comonomer effect", which features many copolymerization reactions of ethylene with α-olefins by early transition metal catalysts [18-22] as well as tandem catalytic processes $[1,6,9]$, is originated by the improved diffusion of the monomers in the catalytic mixtures. Indeed, the reduced crystallinity caused by the α-olefin incorporation improves the solubility of both polymer and propagating

Fig. $4 \mathrm{TOF}_{\text {mol }}$ at different ethylene pressures: (a) 2/MAO; (b) $\mathbf{1 a}$ / MAO; (c) 1a/2/MAO ($0.98 \chi_{\mathrm{Co}_{\mathrm{o}}}$); (d) 1b/2/MAO (0.98 χ_{Co}); (e) 1c/2/ MAO ($0.98 \chi_{\mathrm{C}_{\mathrm{o}}}$)
metal alkyls [22]. In turn, a negative "comonomer effect" can be observed in copolymerization reactions when the α-olefins compete with ethylene for coordination to the unsaturated metal-alkyl moiety, thus slowing down the propagation rate. In the present reactions under 4 bar ethylene, the huge instantaneous concentration of 1-butene may hamper the regular and continuous ethylene uptake by the copolymerization catalyst (entry 7 with a TOF $_{\mathrm{kg}}$ of 10,000 vs. 1 with a $\mathrm{TOF}_{\mathrm{kg}}$ of 20,800). In these conditions, it is likely that the higher solubility of the branched copolymer does not compensate enough for the negative effect on chain propagation caused by the competitive coordination of the α-olefins.

Besides affecting the productivity, the ethylene pressure has been found to influence the properties of the resulting copolymer (Table 1) as well as its physical appearance. Indeed, as shown in Fig. 5, the copolymer obtained with a $\chi_{\text {Co }}$ of 0.98 under 4 bar ethylene appeared (b) as a semicrystalline, flexible material (entry 7), while a more amorphous, rubbery copolymer (a) was produced at lower ethylene pressure (entry 13).

In addition to the ethylene pressure, the amount of branching in the LLDPE was determined by χ_{C} : increasing this parameter from 0.5 to 0.98 , while decreasing the ethylene pressure from 4 to 2 bar, increased the 1 -butene incorporation from a minimum value of $1.5 \mathrm{~mol} \%$ up to a maximum value of $11.3 \mathrm{~mol} \%$ with the number of branches per 1,000 carbon atoms varying from 7.5 and 56.5 , respectively.

Fig. 5 Polymer materials produced by the tandem 1a/2/ MAO system ($0.98 \chi_{\text {Co }}$) (a) 2 bar ethylene (entry 13), (b) 4 bar ethylene (entry 7)

Fig. 6 DSC curves of the copolymers prepared by the tandem system $\mathbf{1 a}$ /2/MAO at different $\chi_{\text {Co }}$ values and ethylene pressures

Fig. 7 DSC curves of the copolymers prepared by the tandem systems $\mathbf{1 b} \mathbf{2} / \mathrm{MAO}$ and $\mathbf{1 c} / \mathbf{2} / \mathrm{MAO}$ at $\chi_{\mathrm{Co}}=0.98$ and different ethylene pressures

The effects of both $\chi_{\text {Co }}$ and ethylene pressure on the copolymer properties have been also evaluated by means of DSC and GPC (Table 1).

The DSC analysis of the branched PE gave melting points between $125{ }^{\circ} \mathrm{C}$ and $88^{\circ} \mathrm{C}$ which are typical values for semicrystalline LLDPE materials containing increasing branching [23]. The T_{m} value decreased from $139.6^{\circ} \mathrm{C}$ for the PE produced by 2 (entry 11) to $87.8^{\circ} \mathrm{C}$ for the LLDPE produced by the tandem system $\mathbf{1 a} / \mathbf{2} / \mathrm{MAO}$ with $\chi_{\text {Co }}=0.98$ under 2 bar ethylene (entry 13). At the highest $\chi_{\text {Co }}$ investigated, the LLDPE was featured by broad or
multiple melting transitions, suggesting the presence of blocks with different ethyl-branching sequences (Figs. 6 and 7) [3].

The GPC experiments showed smaller molecular weights $\left(M_{n}\right)$ for the copolymers than for the homopolymers, while no significant variation was observed by changing χ_{Co}. In all cases, the GPC curves were consistent with monomodal distributions and polydispersities ranging from 2.13 and 6.28. As expected, the TGA analysis of all copolymers showed a decrease of the thermal stability with increasing branching [24].

4 Conclusions

The new tandem system described in this work allows one to convert ethylene into LLDPE with exclusively ethyl branches, melting temperatures as low as $88^{\circ} \mathrm{C}$ and productivities as high as $25,400 \mathrm{~kg}(\mathrm{~mol} \mathrm{Zr})^{-1} \mathrm{~h}^{-1}$ where Zr is the simple metallocene copolymerization catalyst precursor $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$. Cheap and largely available are also the oligomerization precursors based on CoCl_{2} modified with (imino)pyridine ligands. The excellent branching selectivity is controlled by the metallocene catalyst that, under certain experimental conditions, is unable to copolymerize higher α-olefins than 1-butene. As a matter of fact, replacing $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{SiMe}_{2}(t \mathrm{BuN})\right] \mathrm{TiCl}_{2}$, maintaining (imino)pyridine cobalt(II) dichlorides as oligomerization catalysts, generates tandem systems capable to produce not only semicrystalline LLDPE but also completely amorphous materials with Tg as low as $-60^{\circ} \mathrm{C}$ [9].

Acknowledgments Thanks are due for the financial support provided by the European Commission (NoE IDECAT, NMP3-CT-2005011730; NANOHYBRID, NMP3-CT-2005-516972) and Ministero dell'Istruzione, dell’Università e della Ricerca of Italy (NANOPACK - FIRB project n. RBNE03R78E).

References

1. Bianchini C, Miller H, Ciardelli F (2004) In: Ciardelli F, Penczek S (eds) Modification and blending of synthetic and natural macromolecules. Kluwer Academic Publishers, The Netherlands, pp 15-38
2. Komon ZJA, Bazan GC (2001) Macromol Rapid Commun 22:467
3. (a) Furlan LG, Kunrath FA, Mauler RS, de Souza RF, Casagrande OL Jr (2004) J Mol Catal A: Chem 214:207; (b) Kuhn MCA, da Silva JL, Casagrande ACA, Mauler RS, Casagrande OL Jr (2006) Macromol Chem Phys 207:827
4. Ye Z, AlObaidi F, Zhu S (2004) Macromol Rapid Commun 25:647
5. Sperber O, Kaminsky W (2003) Macromolecules 36:9014
6. Wang H, Ma Z, Ke Y, Hu Y (2003) Polym Int 52:1546
7. (a) Wang J, Li H, Guo N, Li L, Stern CL, Marks TJ (2004) Organometallics 23:5112; (b) Li L, Metz MV, Li H, Chen M-C, Marks TJ, Liable-Sands L, Rheingold AL (2002) J Am Chem Soc 124:12725; (c) Abramo GP, Li L, Marks TJ (2002) J Am Chem Soc 124:13966; (d) Li H, Li L, Schwartz DJ, Metz MV, Marks TJ, Liable-Sands L, Rheingold AL (2005) J Am Chem Soc 127:14756
8. (a) Komon ZJA, Diamond GM, Leclerc MK, Murphy V, Okazaki M, Bazan GC (2002) J Am Chem Soc 124:15280; (b) Galland GB, Quijada R, Rojas R, Bazan G, Komon ZJA (2002) Macromolecules 35:339; (c) Quijada R, Rojas R, Bazan G, Komon ZJA, Mauler RS, Galland GB (2001) Macromolecules 34:2411; (d) Komon ZJA, Bu X, Bazan GC (2000) J Am Chem Soc 122:1830; (e) Barnhart RW, Bazan GC (1998) J Am Chem Soc 120:1082
9. (a) Bianchini C, Frediani M, Giambastiani G, Kaminsky W, Meli A, Passaglia E (2005) Macromol Rapid Commun 26:1218; (b) Frediani M, Piel C, Kaminsky W, Bianchini C, Rosi L (2006) Macromol Symp 236:124; (c) Frediani M, Bianchini C, Kaminsky W (2006) Kinet Catal 47:207
10. McKnight AL, Waymouth RM (1998) Chem Rev 98:2587
11. (a) Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc M, Lund C, Murphy V, Shoemaker JAW, Tracht U, Turner H, Zhang J, Uno T, Rosen RK, Stevens JC (2003) J Am Chem Soc 125:4306; (b) Eur Patent Appl EP 416 815-A2 (1991), Dow Chemical Co., invs.: Stevens JC, Timmers FJ, Wilson DR, Schmidt GF, Nickias PN, Rosen RK, Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc M, Lund C, Murphy V, Shoemaker JAW, Tracht U, Turner H, Zhang J, Uno T, Knight GW, Lai S
12. (a) Bianchini C, Mantovani G, Meli A, Migliacci F, Laschi F (2003) Organometallics 22:2545; (b) Bianchini C, Giambastiani G, Mantovani G, Meli A, Mimeau D (2004) J Organomet Chem 689:1356; (c) Bianchini C, Gatteschi D, Giambastiani G, Guerrero Rios I, Ienco A, Laschi F, Mealli C, Meli A, Sorace L, Toti A, Vizza F (2007) Organometallics 26:726; (d) Bianchini C, Giambastiani G, Guerrero Rios I, Mantovani G, Meli A, Segarra AM (2006) Coord Chem Rev 250:1391
13. Kunrath FA, de Souza RF, Casagrande OL Jr, Brooks NR, Young VG Jr (2003) Organometallics 22:4739
14. (a) Quijada R, Dupont J, Lacerda Miranda MS, Scipioni RB, Galland GB (1995) Macromol Chem Phys 196:3991; (b) Quijada R (1996) Macromol Chem Phys 197:3091
15. Randall JC (1989) J Macromol Sci- Rev Macromol Chem Phys C29:201
16. The ethylene homopolymerization and ethylene/ α-olefins copolymerization by 2 catalysis are first order in ethylene concentration, see (a) Chakravarti S, Harmon Ray W (2001) J Appl Polym Sci 80:1096; (b) di Lena F, Quintanilla E, Chen P (2005) Chem Commun 5757; (c) Ko YS, Woo SI (2003) J Polym Sci Part A: Polym Chem 41:2171
17. The ethylene oligomerization by 1a-c catalysis is first order in ethylene concentration, see reference [12]
18. Chien JCW, Nozaki T (1993) J Polym Sci Part A: Polym Chem 31:227
19. (a) Philipp W, Trinkle S, Lilge D, Friedrich C, Mülhaupt R (2001) Macromol Mater Eng 286:309; (b) Philipp W, Trinkle S, Suhm J, Mäder D, Friedrich C, Mülhaupt R (2000) Macromol Chem Phys 201:604
20. Galland GB, Seferin M, Mauler RS, Dos Santos JHZ (1999) Polym Int 48:660
21. Xu G, Ruckenstein E (1998) Macromolecules 31:4724
22. Shiono T, Moriki Y, Ikeda T (1997) Macromol Chem Phys 198:3229
23. Peacock AJ (2000) Handbook of polyethylene: structures, properties, and applications. Marcel Dekker, New York
24. McCaffrey WC, Cooper DG, Kamal MR (1999) J Appl Polym Sci 73:1415
25. Li Z, Zhu N, Sun W-H, Shao C, Ke Y, Hu Y, He J (2001) Polym Int 50:1275

[^0]: C. Bianchini (\triangle) • G. Giambastiani (\triangle) • A. Meli •
 I. G. Rios - A. Toti

 ICCOM-CNR, Area della Ricerca CNR di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
 e-mail: claudio.bianchini @ iccom.cnr.it
 G. Giambastiani
 e-mail: giuliano.giambastiani@iccom.cnr.it
 E. Passaglia

 ICCOM-CNR, section of Pisa, c/o Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy
 M. Frediani

 Dipartimento di Chimica Organica, Università di Firenze, Polo Scientifico, via della Lastruccia 13, 50019 Sesto Fiorentino, Italy

