
FORTRAN 90 vs C++ - an educational perspective - by John Prentice 

 

http://www.cts.com.au/compare.html 

 

Below is a note I just sent to the chairman of a physics department which requires 

freshmen to take a programming class offered by the engineering department. That 

course has traditionally taught Fortran77, but there is now a push on from the engineering 

school to switch to teaching C++. As usual, the arguments being mustered revolve around 

criticisms of Fortran 77 by people who are too out of touch to know much of anything 

about Fortran 90. In either case, I was asked by one of the senior physics faculty to 

contribute my two cents worth about what language they should be teaching. The 

appended note is the one I sent and it summarizes our corporate experience with C++ and 

some of our feelings about Fortran 90. Others may find this interesting. 

 

================= my note to the physics department 

 

It was mentioned to me that the Engineering school is considering changing Eng 120 to 

teach C++ instead of Fortran and that you were soliciting comments about this with 

regard to physics students. Even though I am not associated with the university, I wanted 

to contribute my thoughts, which come from a commercial as well as a research 

perspective. 

 

As you know Quetzal Computational Associates specializes in computational science. 

We currently have projects in computational physics, earth sciences, and agriculture for 

clients which include DoE and DoD laboratories as well as commercial clients as diverse 

as hazardous waste companies and grain companies. During the last year, we have 

developed numerical methods and codes based on them for modeling contaminant flow in 

porous media, modeling the structural mechanics of resonant sonic drilling rigs, modeling 

bistatic ground penetration radar propagation in partially saturated soils, modeling solid 

dynamics at high strain rates, modeling the phenological development of corn and soy 

beans, modeling solar insolation in the photosynthetically active spectrum based on first 

principle atmospheric physics, and developed neural networks for the detection of dust 

clouds from satellite imagery. 

 

One of our largest computational physics projects is the development of advanced 

methods for modelling solid dynamics based on first principle physics. This is a multi-

year, multi-million dollar project. This code numerically solves the partial differential 

equations for continuum solid dynamics using a hybrid finite volume/finite element 

technique coupled to advanced equations of state and constitutive models for the solids 

and fluids in the calculation. This code and others we work with are huge number 

crunching codes, a modest 3d simulation will take 100 or more hours of Cray C-90 time 

to complete a single calculation. By any standard, they are amongst the largest 

computational physics simulations being done anywhere in the world. In addition, we are 

on the forefront in the application of parallel computing to these problems. We have 

projects to develop parallel versions of our codes for a diverse collection of computers, 



including networks of UNIX workstations, the IBM SP-2, the Cray T3D and the Intel 

Paragon. 

For all these projects, we employ Fortran 90 as our main language. We do some 

development work in Fortran 77, C and C++, but we are moving away from those 

languages as quickly as possible. There are many reasons for our choice of Fortran 90, 

but first let me say a bit about why we are not enthusiastic about C++. The biggest 

strength of C++ is probably the availability of relatively inexpensive and high quality 

C++ compilers for PCs. But that is a pretty minor consideration in our business and it is 

outweighed by the enormous liabilities we have observed with C++. First we regard C++ 

as the weakest of the object oriented languages. Objective C is a far more solid and well 

designed OOPS language, C++ is really some OOPS capability slapped on top of C. C++ 

is consequently extremely inefficient, inconsistent, overly large, and enormously difficult 

to program in. The experience of our clients mirrors that of our own, and in fact many 

DoE and DoD laboratories are finding that their headlong rush to C++ has been a 

hideously expensive mistake. I know of several C++ scientific coding projects in the DoE 

that consumed millions of dollars and tens of man-years, only to be abandoned because 

the resulting code was enormously inefficient on both traditional serial computers and on 

their large parallel supercomputers. Similar horror stories abound throughout the 

programming community at this point. Bill Gates claimed that his biggest mistake in 

designing their new NT operating system was adopting C++ for the graphics coding, the 

resulting code took years longer to write than it should have and ran terribly slow. While 

OOPS is a solid development in the computer science community, I think it is fair to say 

that C++ is destined to be a passing fad, much like Pascal and Ada before it. 

 

The main reason C++ has attracted the attention it has in the scientific community is 

because Fortran 77 was a terribly outdated language. The many weaknesses of Fortran 77 

were solved with Fortran 90 however. Fortran 90 has every feature in C that is important 

to scientific programming and most of the features of an object oriented language (it 

lacks only inheritance and that is likely going to be added in Fortran 2000). However 

unlike C and C++, Fortran 90 is designed to generate executable codes that are highly 

optimized and thus run extremely fast. An example is pointers. Pointers are integral to C 

and C++ programming and because the compiler cannot determine whether a pointer is 

aliased, it is impossible for it to determine interprocedural dependencies. The result is a 

significant degradation in optimization and extremely slow execution speeds (for most 

scientific codes, C and C++ generally produce code which is commonly an order of 

magnitude slower than Fortran 90 codes, based on the benchmarks we and others have 

done). Fortran 90 pointers are designed to give the functionality of pointers, but with 

restrictions that eliminate issues such as aliasing. From a programming perspective 

however, an even more important point is that Fortran 90 has more natural ways of 

expressing the functionality that C and C++ require pointers to express. Because of this, 

Fortran 90 is a more natural language to program in and the time required for debugging 

codes is a fraction of that required by C and C++ (C++ is much worse that C, provided 

you are really employing an OOPS paradigm, since you find yourself spending a lot of 

debug time going up and down inheritance trees). Another important point is that the time 

required to learn Fortran 90 is much less than the time to learn either C or C++. 

 



Fortran 90 has another major advantage over C or C++. Modern scientific computing, 

and computing in general, is moving toward the use of parallel computers. Even PCs and 

workstations now come with multiple processors, so parallelism is something that 

everyone from an accountant to a physicist is encountering now. A major problem in 

programming parallel computers however is the linear memory model that is inherent to 

all procedural programming languages, with the singular exception of Fortran 90. A 

linear memory model is one that assumes that consecutive elements of an array are 

consecutive in memory. This was a reasonable assumption on traditional computers, but 

it is completely incorrect on a parallel computer. Only Fortran 90 has addressed this 

problem and providing standardized language support for parallelism. This support 

includes array syntax and many intrinsics for doing array operations varying from 

reduction operations such as array sums to matrix operations. With the use of Fortran 90 

operator overloading and polymorphism, one can significantly extend the number of 

operations that avoid any reliance on the linear memory model. The fact that Fortran 90 

moved away from a linear memory model is the main reason that it has become the base 

for so many data parallel languages such as Vienna Fortran, Fortran D, CRAFT, and 

High Performance Fortran. The availability of data parallel dialects of Fortran 90 is an 

especially large factor in favor of Fortran 90. Compilers of High Performance Fortran, for 

example, are now coming on the market for virtually every machine out there (including 

networks of workstations) and writing parallel codes in this language is straightforward. 

Of particular importance is that porting a Fortran 90 code to High Performance Fortran is 

extremely straightforward and codes written in High Performance Fortran can be run 

unaltered on a Fortran 90 compiler (with the exception of one HPF construct, the forall, 

which is being put into Fortran 95). 

 

My own opinion is that scientists today need to know more than one language or 

computing paradigm. And I think it is entirely reasonable that students learn C++ before 

they graduate, though even more important is that they learn how to program MATLAB 

and a computer algebra system such as Maple or Macsyma. But the issue is what 

freshmen should learn as their first language and for that I would recommend Fortran 90 

hands down. It is a better language for scientific programming and is both easier to learn 

and use than the alternatives. It is also much more likely to be the language students will 

be employing in their jobs upon graduation and it is the most promising route currently 

developing for the programming of parallel computers. 

 

Dr. John K Prentice, Quetzal Computational Associates, 3455 Main Ave., Suite 4, 

Durango, CO 81301-0201 

Fax: 970-382-8981 E-mail:john@quetzalcoatl.com. 


