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Mismatch Negativity (MMN), an electrophysiological component that represents sensory memory processing,
has been proposed as a potential vulnerability marker for psychosis. Some studies have reported a more evident
MMN amplitude reduction in the left cortical regions in patients with schizophrenia. Little is known about this
asymmetric pattern in patients in their first episode of psychosis (FEP) and individuals at ultra-high risk for
psychosis (UHR). The aim of this study was to explore the scalp distribution of MMN in 20 FEP patients,
20 UHR subjects and 23 healthy controls. Both clinical groups were antipsychotic naïve. MMN was obtained
during a passive auditory paradigm with duration deviant tones and analyzed from 15 frontocentral electrodes.
Therewas a significant group effect inMMNamplitude (F=3.4, p= 0.04), showing a decrement in both FEP and
UHR compared to controls (FEP mean difference (MD) = −0.48, p = 0.02; UHR MD = −0.44, p = 0.04),
and this amplitude decrement was more evident in the left middle regions for both clinical groups (p b 0.01).
In conclusion, we found a clear amplitude reduction of duration MMN in FEP patients and UHR individuals,
especially in the left cortical regions. The observed pattern in both clinical samples supports the notion that
MMN could be a vulnerability marker for psychosis. We propose to continue the study of this MMN laterality
effect in future longitudinal studies.
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1. Introduction

Schizophrenia is one of the psychiatric disorders for which the
search of vulnerabilitymarkers has become especially relevant in recent
years (Ruhrmann et al., 2012). The aim of this research has been to
facilitate early diagnosis and treatment, consequently improving quality
of life in this clinical population (Yung et al., 1998).

Oneof themost studied potential vulnerabilitymarkers for psychosis
is Mismatch Negativity (MMN), an event related potential (ERP) that
represents the automatic ability to detect deviations in the auditory
context. MMN constitutes the most sensitive, and probably the unique
measure for the neurophysiological correlates of sensory memory
(Näätänen et al., 2007). The selection of MMN as a potential vulnerabil-
ity marker was derived fromwide evidence showing a MMN amplitude
reduction in chronic schizophrenia and first-episode psychosis (FEP)
patients (Shelley et al., 1991; Salisbury et al., 2002; Light and Braff,
2005; Umbricht et al., 2006; Todd et al., 2008). Additionally, certain de-
viant related features have been associated with clinical and functional
aspects of the disease: while frequency deviantMMN abnormalities are
associated with illness chronicity, duration deviant MMN changes are
observed even in the early stages of the disease (Umbricht et al., 2003).

In the last decade, several studies have reported a decrement of
MMN amplitude in individuals identified as being at ultra high-risk for
psychosis (UHR) (Brockhaus-Dumke et al., 2005; Bodatsch et al.,
2010; Atkinson et al., 2012; Jahshan et al., 2012; Shaikh et al., 2012).
UHR corresponds to a prepsychotic or ‘prodromal’ phase in which sub-
threshold psychotic symptoms and cognitive decline are observed
(Yung and McGorry, 1996). Moreover, Bodatsch et al. (2010), Shaikh
et al. (2012) and Perez et al. (2013) reported that those UHR individuals
who later made the transition to psychosis displayed smaller MMN
amplitudes than those who did not. However, there are still some
MMN features that have not been explored in this clinical population.
Specifically, to our knowledge, there are no reports of the scalp
distribution of MMN in UHR subjects. MMN amplitude reduction in
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schizophrenia patients shows an asymmetric pattern corresponding
to lower amplitudes in the left cortical regions (Javitt et al., 1993;
Hirayasu et al., 1998; Kreitschmann-Andermahr et al., 1999; Pekkonen
et al., 2002; Youn et al., 2003). Therefore, our aim was to explore the
scalp distribution of MMN in antipsychotic naïve FEP patients and
UHR subjects.

2. Materials and methods

2.1. Participants

Twenty patients in their first non-affective psychosis episode,
assessed by the Structured Clinical Interview for DSM-IV (First et al.,
1997) and 20 participants identified as UHR using the Structured
Interview for Prodromal Syndromes (SIPS) (Miller et al., 2003) were
recruited from the inpatient psychiatric service, the emergency
department, and the Adolescent Program of Neuropsychiatric and
Imaging Study (PIENSA) of the National Institute of Neurology and
Neurosurgery (INNN) of Mexico. Both groups were antipsychotic
naïve. General exclusion criteria were: presence of any concomitant
medical or neurological illness, current substance abuse or history of
substance dependence (excluding nicotine), comorbidity of any
other axis I disorders or psychomotor agitation. FEP patients were
deemed eligible if they had less than two years of psychotic symp-
toms. Twenty three right-handed similar in age and gender healthy
controls were recruited from schools and by Internet social network
advertisements. Additional exclusion criteria for the healthy control
group were having a history of psychiatric illness and positive
familiar history for schizophrenia. All participants were screened
for drugs of abuse (e.g., cannabis, cocaine, heroin, opioids and
benzodiazepines) at the time of study inclusion.

The study was approved by the Ethics and Scientific Committees of
the INNN and subjects signed an informed consent if they agreed to
voluntarily participate in the study. Written consent from both parents
and assent for subjects younger than 18 years of age (the age of consent
in Mexico) was obtained from all subjects prior to participation. All
the procedures of the study were in accordance with the Declaration
of Helsinki.

2.2. Experimental paradigm

MMN was obtained with a passive auditory paradigm using the
STIM 2 software (Neuroscan Inc., Charlotte, North Carolina). Frequent
tones (100 ms/1000 Hz) mixed with deviant tones (250 ms/1000 Hz)
were presented in an established order (9 frequent, 1 deviant), with
an interstimulus interval of 300 ms, according to Umbricht et al.
(2003). A total of 1517 tones (1365 frequents, 152 deviants) were
presented in a single block. During the 10 minute recording session,
reading material was given to the participants.

2.3. Electrophysiological recording

A 0.5 to 30 Hz digital monopolar EEG was continuously recorded
with SCAN 4.3.1 software (Neuroscan Inc., Charlotte, North Carolina)
with a sampling rate of 1000 Hz, using a NuAmps digital amplifier
(Neuroscan Inc., Charlotte, North Carolina) and with the tip of the
nose as reference. We used 19 tin electrodes (10–20 International
System (Jasper, 1958)) attached to an elastic cap (ElectroCap Inc.,
Eaton, Ohio). Blinks and ocular activity were reduced from the EEG
using an algorithm of SCAN 4.3.1 Edit software based on the recording
of two electrodes on the external and superior orbital canthus of the
right eye. EEG segments showing ±50 μV artifacts in any electrode
were excluded from the analyses. After an additional off-line filter
with a bandwidth of 1–30 Hz, EEG epochs of 400 ms were generated
with a pre-stimulus interval of 100 ms. Baseline correction and linear
detrend were applied to all epochs. Averaged potentials were obtained
separately for frequent and deviant tones with the same number of
epochs (100) for each electrode in all participants. To obtain MMN,
the grand average of the electrical response to the frequent tones was
subtracted from the grand average of the corresponding response to
deviant tones for each participant.

2.4. Data and statistical analysis

MMN was defined as the most negative wave between 150 and
300 ms after stimuli onset. Mean amplitudes in the 50 ms surrounding
the identified peaks in Fz were obtained for all electrodes. Latencies
were calculated from the onset of the tones to the MMN peak in the
Fz electrode.

Analysis of variance (ANOVA) was used to compare MMN latencies
as well as demographic characteristics among control, FEP and UHR
groups. Nominal variables were analyzed using χ2 tests.

To compare MMN amplitudes between groups, repeated-measures
ANOVA (RMA) was applied. Two within-subject factors for electrodes
were included: laterality (5 levels: left (F7, T3, T5), left-middle
(F3, C3, P3), middle (Fz, Cz, Pz), right-middle (F4, C4, P4) and right
(F8, T4, T6)) and frontality (3 levels: anterior (F7, F3, Fz, F4, F8), central
(T3, C3, Cz, C4, T4) and posterior (T5, P3, Pz, P4, T6)). The group (UHR,
FEP and controls) was the between-subject factor. The Greenhouse-
Geisser correction was applied to all the RMA analyses. Post hoc
comparisons were made using the Least Significant Difference test.

In order to explore the symmetry pattern of MMN in our samples,
Spearman rank correlations were performed using the amplitude in
each group across homologue sites. Finally, additional Spearman rank
correlations were done between all MMN amplitudes and general
scores of symptomatology (SIPS scale for the UHR group and Positive
and Negative Syndrome Scale (PANSS) (Kay et al., 1987) for the FEP
group) and functional status (Global Assessment Functioning (GAF))
in both clinical groups. Statistical significance was set at p b 0.05
for all analyses. Statistical analyses were performed using SPSS v16.0
software (SPSS, Chicago, Illinois).

3. Results

3.1. Demographic data

Table 1 shows the sample demographic data. The DSM-IV diagnoses
of the patients with FEP included in the study were as follows: brief
psychotic disorder (n = 6), schizophreniform disorder (n = 5), and
schizophrenia (n= 9). No differences were found in years of school ed-
ucation, gender and civil status among groups. However, UHR subjects
were younger than FEP patients (F(2,62) = 4.5, p = 0.015, mean differ-
ence (MD) = −4.64, p = 0.04) and both clinical samples reported a
significant lower percentage of employment relative to the control
group (χ2 = 17.8, df = 6, p = 0.007).

3.2. MMN results

The RMA analysis showed a higher MMN amplitude in middle
regions for all groups (lateral effect: F(2.2, 133.5) = 95.6, p b 0.001,
Fig. 1). Although MMN amplitudes were higher in anterior regions for
all groups (frontal effect: F(1.2, 73.2) = 54.4, p b 0.001), both clinical
groups showed a clear anterior reduction compared to posterior regions
(group × frontality effect: F(2.4, 73.2) = 5.6, p = 0.003).

The overall group effect was significant (F(2, 60) = 3.4, p = 0.04).
Post hoc analysis showed lower amplitudes in both clinical groups
compared to the control group (FEP MD = −0.48, p = 0.02; UHR
MD = −0.44, p = 0.04). No differences between FEP and UHR groups
were found (MD = 0.04, p = 0.85, Table 2).

The group × laterality effect showed that MMN amplitude reduc-
tions were more evident in the left, left-middle and middle regions for
both clinical groups, especially for the UHR group. In the right-middle



Table 1
Sample demographic data.

Mean (SD) p

UHR FEP Control

Age, mean (SD) 20.8 (5.3) 26.1 (7.2) 22 (4.9) 0.01a

Years of education, mean (SD) 11.7 (2.5) 12.3 (6.8) 13.7 (3.1) 0.33a

Gender (male/female) 13/7 13/7 10/13 0.80b

Civil status (single/married) 19/1 18/2 23/0 0.31b

Occupation (student/employee/student & employee/no occupation) 10/4/1/5 3/7/0/10 15/5/2/1 0.01b

PANSS positive symptoms 22.9 (5.4)
PANSS negative symptoms 15.6 (5.3)
PANSS general symptoms 44.8 (10.5)
SIPS positive symptoms 11.1 (4.4)
SIPS negative symptoms 15.6 (5.4)
SIPS disorganization symptoms 8.1 (2.9)
SIPS general symptoms 7.3 (3.3)
GAF 59.8 (11.2) 36.2 (19.9) b0.001c

UHR: Ultra high-risk group; FEP: First episode psychosis group.
a ANOVA.
b Chi square.
c T-test.
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regions this effect was only evident for the FEP group. No significant
differences were observed for the right regions across groups
(Table 2, Fig. 2).

The Spearman correlation analysis showed a clear symmetry of
MMN amplitudes in the control group, but this was not the case for
both clinical groups, in which non-significant correlations were found
between inferior frontal (F7–F8) and anterior temporal (T3–T4) regions
(Table 3). No significant correlations were found between GAF and
clinical scores and MMN amplitudes in either group.

4. Discussion

This study analyzed the scalp distribution of the well-known
durationMMN decrease in FEP patients and UHR for psychosis subjects.
The main finding was significantly lower MMN amplitudes in the left
but not right regions in both clinical groups. Our results are consistent
with previous reports that have shown a stronger left-than-right
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Fig. 1. Grand averages of MMN from the thre
MMN amplitude effect in schizophrenia patients. Some of these
reports have associated this lateralized effect with the left anatomical
abnormalities reported in this population (Javitt et al., 1993; Hirayasu
et al., 1998; Kreitschmann-Andermahr et al., 1999; Pekkonen et al.,
2002; Youn et al., 2003). Nevertheless, this lateralization effect has
not been a consistent finding (Salisbury et al., 2002; Umbricht et al.,
2003, 2006).

In this study, UHR subjects showed a similar pattern of MMN
amplitude reduction compared to FEP patients. To our knowledge, this
is the first report demonstrating that both clinical populations share
lower left-than-right MMN amplitudes. Other studies that reported
the consistent MMN reduction in FEP and UHR with wide arrays
or only midline frontocentral electrodes have not described this asym-
metric pattern (Brockhaus-Dumke et al., 2005; Bodatsch et al., 2010;
Atkinson et al., 2012; Shaikh et al., 2012; Perez et al., 2013). These
studies have described that this significant reduction is deeper in frontal
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Table 2
Differences in MMN amplitudes between groups for each frontal and lateral factor levels.

Factor/level Control group compared to Mean difference p

Frontal factor
Anterior UHR −0.79 b0.001

FEP −0.80 b0.001
Central UHR −0.57 0.02

FEP −0.58 0.02
Posterior UHR 0.05 0.8

FEP −0.06 0.8
Lateral factor

Left UHR −0.52 0.03
FEP −0.39 0.09

Left-middle UHR −0.66 b0.01
FEP −0.63 b0.01

Middle UHR −0.52 0.04
FEP −0.63 0.02

Right-middle UHR −0.41 0.1
FEP −0.58 0.02

Right UHR −0.8 0.7
FEP −0.16 0.5

UHR: Ultra high-risk group; FEP: First episode psychosis group.

Table 3
Correlation analysis of MMN amplitudes between homologue areas for the three groups.

Channel pair Control
r value

UHR
r value

FEP
r value

F3–F4 0.89⁎⁎ 0.78⁎⁎ 0.66⁎

C3–C4 0.80⁎⁎ 0.89⁎⁎ 0.75⁎⁎

P3–P4 0.89⁎⁎ 0.82⁎⁎ 0.93⁎⁎

F7–F8 0.68⁎⁎ −0.05 0.17
T3–T4 0.55⁎ 0.26 0.46
T5–T6 0.74⁎⁎ 0.85⁎⁎ 0.82⁎⁎

UHR: Ultra high-risk group; FEP: First episode psychosis group.
⁎ p b 0.01.
⁎⁎ p b 0.001.
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MMN profile in terms of scalp distribution between FEP and UHR
supports the well-established proposal of this ERP as a reliable
vulnerability marker for psychosis.

Since MMN seems to be generated in the primary auditory and
frontal cortex (Näätänen et al., 2012) our findings may be consistent
with studies reporting the left temporal lobe structural abnormalities
in FEP and chronic schizophrenia (Hirayasu et al., 1998; Youn et al.,
2003). Moreover, it has been reported that these structural abnormali-
ties are associated with MMN amplitude reduction in patients with
schizophrenia (Salisbury et al., 2007; Rasser et al., 2011). It must be
noted that those results correspond to MMN amplitude reductions for
frequency deviants of recently diagnosed and chronic medicated
patients. To our knowledge, there are no reports showing such associa-
tions in antipsychotic naïve FEP patients and UHR subjects for duration
deviant MMN amplitudes.

MMN amplitude reductions for duration deviants may indicate a
deficit in the integration of the temporal features of the stimulus,
Left        Left middle      Middle       Right middle     Right
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Fig. 2. Means and standard errors of MMN amplitudes in each laterality factor from the
three groups.
which has already been described byMichie (2001) as one of the possi-
ble initial perceptual disturbances in psychosis. Since the left temporal
lobe seems to be preferentially engaged in the analysis of the timing
and sequential properties of the auditory context (Zatorre and Belin,
2001; Zatorre et al., 2002), the early neuroanatomical abnormalities in
this area reported in psychosis may affect this process. Nevertheless,
it must be considered that our experimental task consisted of a fixed
sequence of stimuli with highly predictable deviance occurrence. The
left temporal lobe is also specialized in the identification of stable
changes in auditory sequences, so our results regarding asymmetry of
MMN could reflect a particular deficit in psychotic patients and UHR
subjects when the task demands preferentially left processing for
auditory stimuli. The asymmetric pattern for MMN that we report
here should be compared to others obtained during tasks in which the
deviant stimuli are randomized or unpredictable, since this would
require a higher active participation from the right hemisphere,
which is widely known for novelty detection sensitivity (Martin, 1999;
Mulert et al., 2004; Ribolsi et al., 2009).

Other studies have reported asymmetry in the amplitude decrement
of other ERPs such as P3a (Mondragón-Maya et al., 2013) and P3b
(Salisbury et al., 1998; Salisbury et al., 1999; Frommann et al., 2008)
in FEP and UHR individuals. In the case of the P3a, this asymmetry effect
seems to continue along the illness progression (Cortiñas et al., 2008).
Moreover, in the case of P3b, its amplitude reduction has been associat-
ed to corresponding asymmetric neuroanatomical abnormalities in
schizophrenia (Ford, 1999; Ribolsi et al., 2009). The left temporal lobe
structural changes have been consistently reported from different
imaging studies (Kasai et al., 2003; Zhou et al., 2003; Kawasaki et al.,
2008) and such abnormalities correspond to specific structures like
the left Heschl gyrus (Kasai et al., 2003), which is known to be linked
to MMN generation (Näätänen and Kähkönen, 2009).

No significant associations were found between GAF scores and
MMN in both clinical groups. In the case of UHR, our results coincide
with other reports (Shin et al., 2009; Jahshan et al., 2012). Nevertheless,
significant associations have been reported between MMN amplitudes
and GAF scores in patients with chronic schizophrenia (Light and
Braff, 2005; Jahshan et al., 2012). The fact that our FEP group did not
show such association raises the need for future studies to explore the
moment along the illness course at which both measures become
linked, as this could be informative in terms of both neurocognitive
and psychosocial functioning decrease. Additionally, future cross-
sectional and longitudinal studies in larger samples are needed
to address the heterogeneity of functional outcomes in the UHR
population (Addington et al., 2011), prediction of conversion to
full-blown psychosis (Cannon et al., 2008; Ruhrmann et al., 2010;
de la Fuente-Sandoval et al., 2013), and the effect of psychotropic
medication on this population.

The small sample size of this study represents a limitation.
Nevertheless, it must be noted that the careful recruitment of the
participants and their antipsychotic naïve condition make this a
unique population. Since this is a cross-sectional study, a follow-up
is needed for the clinical samples in order not only to know the
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MMN prediction capacity for psychosis as other studies have done
(Bodatsch et al., 2010; Shaikh et al., 2012; Perez et al., 2013) but
also to assess the scalp topographic pattern of this ERP before and
after psychosis onset, as well as under treatment response. This
would provide insight into the electrophysiological changes during
the illness progression. Additionally, these changes could be linked
to the connectivity and gray matter reduction previously described
for UHR and FEP (Ribolsi et al., 2009).

In conclusion, we found a clear amplitude reduction of duration
MMN in antipsychotic naïve FEP patients and UHR individuals. Such
decrements were more pronounced in the left cortical regions of both
clinical samples, which support the notion that MMN is a promising
vulnerability marker for psychosis.
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