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ABSTRACT: We have designed and synthesized two new
cyaninic Nd3+ complexes where the lanthanide emission can be
induced from simultaneous two-photon absorption followed by
energy migration. These complexes correspond to a molecular
design that uses an antenna ligand formed by the functionalization
of a heptamethine dye with 5-ol-phenanthroline or 4-phenyl-
terpyridine derivatives. These complexes employ the important
nonlinear optical properties of symmetric polymethines to sensitize
the lanthanide ion. We verified that simultaneous biphotonic
excitation indirectly induces the 4F3/2 →

4I11/2 Nd
3+ emission using

femtosecond laser pulses tuned below the first electronic transition
of the antenna. The simultaneous two-photon excitation events
initially form the nonlinear-active second excited singlet of the polymethine antenna, which rapidly evolves into its first excited
singlet. This state in turn induces the formation of the emissive Nd3+ states through energy transfer. The role of the first excited
singlet of the antenna as the donor state in this process was verified through time resolution of the antenna’s fluorescence. These
measurements also provided the rates for antenna-lanthanide energy transfer, which indicate that the phenanthroline-type ligand is
approximately five times more efficient for energy transfer than the phenyl-terpyridine derivative due to their relative donor−
acceptor distances. The simultaneous two-photon excitation of this polymethine antenna allows for high spatial localization of the
Nd3+excitation events.

■ INTRODUCTION

Lanthanide ions produce long-lived luminescence that makes
them useful in applications ranging from optoelectronic
devices to biological fluorescent probing.1−8 Lanthanide ions,
however, have extremely small molar absorptivities of the order
of 10 M−1 cm−1. A method to overcome such a low photon
capture efficiency is by coordinating these ions with organic
chromophores with much larger absorption coefficients.9−11

The use of organic chromophores is based on sensitization
schemes that indirectly populate the excited states of
lanthanide ions.1,2,9,10 Energy transfer in these systems can
occur in two ways: through the electronic exchange mechanism
and/or the Coulombic-multipolar mechanism.12−17 From the
distance dependence of these processes, greater efficiency for
the energy migration is achieved if the organic chromophore is
coordinated directly to the lanthanide ion.18−22

Among the chromophores that have been used as molecular
antennas in these applications are cyanine dyes due to their
high molar absorptivities and excellent photochemical proper-
ties.23−26 Cyanines have also been of great interest due to their
nonlinear optical properties, which in turn arise from their
symmetry and extended conjugation.27−32 These dyes are also
frequently used in biological applications, including cell

imaging,33−38 and as antenna groups for light up-conversion
in nanoparticles.39−44 The chemical versatility of cyanines and
other polymethinic systems comes from the fact that they can
be easily functionalized in ways that conserve their electronic
and optical properties.45−49

In this contribution, we present the synthesis and character-
ization of two Nd3+ complexes where the ion can be sensitized
through simultaneous two-photon absorption by a polyme-
thine antenna. Nonlinear activation of emissive or photo-
chemically active systems allows for optical control of
molecules at a variable depth in a sample or tissue through
the use of appropriate focusing optics.50−55 From the intensity
dependence of two-photon absorption, in these systems, the
volume where the excited states are formed can be defined
with a precision of the order of a femtoliter.56−59 Such spatial
control is relevant in cases where the excitation needs to take
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place in a small volume inside a biological sample or when a
photochemical process needs to be initiated below the surface
of a material.60−62

As shown in Figure 1, in this contribution, we studied
antenna-lanthanide complexes, which result from the function-
alization of the IR-780 cyanine with phenanthroline or phenyl-
terpyridine derivatives, which in turn can coordinate with
metallic ions.63−66 This allows for a close interaction between
the ion and the organic antenna. A key aspect of the complexes
in Figure 1 is the fact that the IR-780 antenna has a higher
singlet excited state (S2), which can be populated nonlinearly,
thanks to its large two-photon absorption coefficient of up to
2800 GM at 875 nm.67,68 Such large cross section results from
the symmetry properties of this state and a near coincidence
of: (1) The first cyaninic transition of 1.5 eV and (2) an S1−S2
energy gap of 1.3 eV. With these energy differences, the
polymethine chain can be efficiently excited through
simultaneous two-photon excitation in the 800−900 nm
region. This scheme has been described in previous
publications by our group and used in two-photon antenna
schemes to induce indirect photoisomerization or photo-
dissociation of organic effectors through a nonlinear optical
process.47,48

As shown below, we first demonstrate that the polymethinic
ligands are capable of transferring energy to the Nd3+ ion from
their first excited singlet localized in the cyanic antenna after
regular linear excitation into the intense 780 nm band of the
polymethinic chain.69 This by itself is relevant since it
corresponds to an efficient linear sensitization scheme, which
uses one of the largest absorption coefficients among organic
chromophores (274,000 M−1 cm−1 at 780 nm). The
sensitization of lanthanide emission after excitation into this
band, with energy transfer occurring from the fluorescent
singlet, is in itself noteworthy since in most lanthanide
complexes, the energy transfer takes place from a triplet state.
This kind of sensitization is also frequently set up to occur
through intraligand charge transfer states (1ILCT).70−75 The
present scheme differs from the abovementioned ones as it
involves directly the first singlet excited state of cyanine, which
has an excellent overlap integral for energy transfer with the
4F5/2 ←

4I9/2 transition of the Nd3+ ion (see below).
Cyanine-sensitized lanthanide complexes have been studied

previously. A related system corresponds to the recent
contribution by Golesorkhi et al., who synthesized an Er3+

complex based on a cyanine dye antenna functionalized with a
bis(benzimidazole)pyridine unit with a sulfur bridge. The
authors demonstrated energy up-conversion associated with
the induction of Er3+ emissions at 522 and 542 nm.76 Such
scheme, however, differs from the one in the present
contribution in that, for our scheme, the sensitization is
done through simultaneous two-photon excitation with light
pulses tuning below the first antenna transition rather than the
1 + 1 excitation scheme of Golesorkhi et al., which does not
have the spatial or intensity dependence of simultaneous two-
photon absorption. Other cases that involve the sensitization of
the Er3+ ion with cyanines are the systems formed by ionic
pairs with these dyes. The first of them was reported by
Hyppan̈en, where the authors used the IR-806 cyanine as an
antenna, showing that the Er3+ emission at 510−565 nm was
produced by a similar 1 + 1 up-conversion process.77 Finally,
Yang and Qian demonstrated the NIR luminescence at 1500
nm of the Er3+ ion by energy transfer from the IR-140 cyanine
dye, again, after regular linear excitation.78

For the present contribution, we connected the Nd3+ ion to
the cyanine antenna using phenanthroline (OH-phen) or
phenyl-terpyridine (OH-tpy) fragments as shown in Figure 1.
The phenyl-terpyridine system is similar to the Er3+ complex
by Golesorkhi et al. since it uses a phenyl-terpyridine-type
ligand, but with an oxygen bridge instead of a bis-
(benzimidazole)pyridine ligand with a sulfur bridge. As
shown below, the phenanthroline-type ligand of this
contribution was considered since it can significantly increase
the yield of energy transfer thanks to a smaller donor−acceptor
distance. In addition, the current complexes take into account
the protection of the lanthanide ion through the additional
coordination of 1,3-diphenyl-1,3-propanedione (HDBM)
units. Since lanthanide ions are highly oxyphilic,10 these
ligands contribute to the protection of the Nd3+ ion from the
solvent environment, hence reducing the quenching of the
excited states so that the lanthanide emission can be detected.

■ SYNTHESIS, MATERIALS, AND METHODS

Steady-State, Biphotonic, and Time-Resolved Spec-
troscopies. UV−vis absorption spectra were recorded on a
Cary-50 spectrophotometer (Varian) and the emission and
excitation spectra on a Cary Eclipse fluorometer (Varian). All
spectra were recorded at room temperature (21 °C). The NIR
Nd3+ emission spectra resulting from simultaneous two-photon

Figure 1. Chemical structures of (a) IR-phenNd(DBM)3 and (b) IR-tpyNd(DBM)3.
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absorption were obtained by excitation with a femtosecond
laser centered at 865 nm (energetically below the first cyaninic
transition) for nonlinear optical excitation. The pulse duration
in the beam was of 110 fs. The average power was attenuated
to the order of 1 mW or less with a 1 kHz repetition rate. The
two-photon excitation beam was focused to a 0.5 mm waist
spot at the sample with a microscope objective of 1 cm focal
length (Melles Griot). The complexes were studied in a 1 cm
cell under constant stirring. The emission was collected and
collimated by a 1 cm focal length parabolic mirror and then
refocused into the detection system with a 15 cm focal length
lens. The emission spectra in the 1000−1100 nm region were
acquired using a scanning monochromator (SCIENCETECH
MODEL 9050) and a Si photodiode from THORLABS, model
DET10A (200−1100 nm). A detailed diagram is included in
the Supporting Information, also describing the detection
method.
The excited-state lifetimes of the ligands and the respective

fluorescence anisotropy decays were obtained by the time-
correlated single-photon counting (TCSPC) technique using a
picosecond pulsed laser (LDH-D-C-405, 405 nm) for
excitation.48 The fluorescence was collected through the
same reflective objective of 7.8 mm working distance, filtered
with a dichroic mirror, and focused into an avalanche
photodiode (PD-050-CTE, Micro PhotonDevices) connected
to a TCSPC system (PicoHarp 300, PicoQuant). The
Instrument Response Function (IRF) was obtained by the
method described by Liu et al.79 Briefly, a 100 mM phosphate
buffer (pH = 10) was used to prepare a saturated 12 M NaI
solution. A saturated sodium fluorescein solution was then
prepared by progressively adding the saturated NaI solution

until the fluorescein was completely dissolved. The rapid
decaying emission from this solution was taken as the IRF of
our setup. The TCSPC traces were fitted to exponential decays
convoluted with the IRF using the SymPhoTime software from
PicoQuant.

Synthesis of Nd3+ Complexes. Scheme 1 shows the
general synthetic path to obtain the cyaninic Nd3+ complexes.
Details of the synthesis and characterization are included in the
Supporting Information.

Computational Methods. The ground-state equilibrium
geometries of the polymethinic ligands were obtained through
the DFT method to estimate center-to-center distances
between the antenna section and the Nd3+ ion. For the
calculations, the Gaussian1686 set of programs were used,
considering the PBE0/6-311++G(d,p) level theory using the
polarizable continuum model (PCM) solvation model for
ethanol and acetone.

■ RESULTS AND DISCUSSION

Spectroscopies of the IR-780 Dye and the Nd3+ Ion.
The absorption spectrum of the IR-780 dye extends across the
UV−vis−NIR region as shown in Figure 2. It exhibits a series
of small bands in the 250−500 nm region, which are associated
with higher excited states of polymethine chains.47−49,67,68,87

The most prominent signal is in the 600−850 nm region and
corresponds to the first singlet excited state. This band has a
high molar absorptivity coefficient of 274,000 M−1

cm−1.47−49,67,68 On the other hand, several of the higher
excited states (Sn (n > 1)) are partially prohibited by one-
photon absorption,29,47−49,67,68,87 which results in low
absorption peaks in the region below the first transition

Scheme 1. General Synthesis for Nd3+ Complexes: (A) H2SO4 (90−97%)/H2O, t = 2 h, Reflux, NaOH, pH = 7;80,81 (B) EtOH/
H2O/NH3, t = 24 h at T = 0 °C;82,83 (C) Acetonitrile/Et3N, t = 48 h, Room Temperature;47−49 (D) Nd(NO3)·6H2O, Acetone/
H2O/NH3, t = 15 min, Room Temperature;84,85 and (E) Acetone, t = 36 h, Room Temperature84,85
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wavelength. As mentioned in the introduction, the S2−S1 gap is
1.3 eV in this cyanine. As a result of this large gap, the excited
state S2 is slightly fluorescent and its emission is centered at
525 nm.29,47−49,67,68,87 As a key element of the present design,
several of the Sn, n > 1 states, have important two-photon
absorption cross sections, with a peak of 2800 GM units at 875
nm.67,68 This feature implies that the cyaninic S2 singlet can be
efficiently populated with NIR pulses from an appropriately
tuned Ti:Sapphire laser. This is the basis of the present Nd3+

biphotonic sensitization scheme.29,47,48,67,68,87

To formulate a suitable exciton migration mechanism,
certain conditions must be met for the coupling between the
antenna and the Nd3+ states. As can be seen in Figure 2b, there
is an excellent match between the 4F5/2 ←

4I9/2 band of the ion
and the emission band of the first excited singlet of the cyanine
ligands. Hence, it can be suggested that energy transfer can
occur from the first excited singlet state of the IR-780-type
antenna to the 4F5/2 state of the ion (this was verified by time-
resolving the emission from the antenna section, see below).
Steady-State Spectroscopy of IR-phen and IR-tpy

Ligands. The absorption spectra of IR-phen and IR-tpy
ligands show the characteristic bands of each segment that
form the ligands. The region below 350 nm shows the features
of the phenanthroline and phenyl-terpyridine fragments within
the ligands. The respective absorption, emission, and excitation
spectra of these molecules are shown in the Supporting
Information. The 350−500 nm region shows several of the
smaller bands associated with the higher excited states of the

cyaninic section. Again, the strongest absorption band
corresponds to the S1 excited state of the IR-780 chromophore.
As can be seen, the way the ligands bind to the antenna allow
for each section to retain their locally defined nature and
ordering in the spectrum. This is demonstrated in Figure 3

where we compare the spectra of the ligands with the sum of
the spectra of the individual sections. Here, it is important to
emphasize that the polymethinic sections in the ligands retain
the character and symmetry properties for each state, which is
essential to ensure that the IR-780 fragment maintains its high
two-photon absorption cross section. As we have shown in
previous contributions, this is a central element in these
designs, which is achieved through the ether-type connectivity
between the polymethinic chains and the phenyl-terpyridine or
phenanthroline sections.47−49 Also, the excitation spectra
reproduce the profiles of the absorption spectra of both
sections upon detection of the ligand’s emission, as can be seen
in Figure 4.

Spectroscopy of Nd(DBM)3(H2O)2. Next, we describe the
Nd3+ complex formed only with the HDBM ligands to
differentiate its features from those of the final complexes.
DBM is an auxiliary ligand that can keep the Nd3+ ion
reasonably protected from the O−H solvent oscillators,
allowing for a sufficient excited-state lifetime to detect the

Figure 2. (a) Absorption (red line), emission (blue line, λexc = 730
nm), and excitation (black line) (λem = 800 nm) spectra of the IR-780
dye. Inset: absorption (red line), emission (blue line, λexc = 435 nm),
and excitation (black line, λem = 525 nm) spectra of the higher excited
states. The emission spectrum of the S2 state is centered at 525 nm.
(b) Absorption spectra of Nd3+ nitrate (green line) and Nd-
(DBM)3(H2O)2 (black line) solutions and emission (λexc = 730
nm) from the S1 state of the IR-phen (blue line) and IR-tpy (red line)
ligands. All spectra were obtained at room temperature in high-
performance liquid chromatography (HPLC) ethanol.

Figure 3. (a) UV−vis−NIR absorption spectra of IR-phen (black
line) and sum of the absorption coefficients of OH-phen and the IR-
780 dye (red line). Inset: absorption spectra of OH-phen (blue line)
and the IR-780 dye (green line) in the region below 500 nm. (b)
UV−vis−NIR absorption spectra of IR-tpy (black line) and sum of
the OH-tpy and IR-780 dye spectra (red line) based on their
absorption coefficients. Inset: absorption spectra of OH-tpy (blue
line) and IR-780 dye (green line) in the region below 500 nm. The
spectra were obtained at room temperature in HPLC ethanol.
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Nd3+ luminescence.9,10 The UV−vis spectrum of a HDBM
solution shows a maximum centered at 342 nm, which is
attributed to a π* ← π transition.88 The Nd(DBM)3(H2O)2
sample shows a reduction in the absorption coefficient and a
red shift of this band that is now centered at 354 nm, as shown
in Figure 5. Also, as expected, the Nd(DBM)3(H2O)2 solutions
exhibit the respective intraconfigurational transitions of the
Nd3+ ion. Upon direct excitation at 800 nm (4F5/2 ← 4I9/2
transition), the characteristic emission of the Nd3+ ion was
detected at 1050 nm, indicating the effectiveness of the ligands
to partially protect the emissive 4F3/2 state from quenching by
the solvent. The Nd(DBM)3(H2O)2 sample was excited at 354
nm and it was verified that no antenna effect is induced by the
DBM ligands.
Photophysics of Cyanine−Nd3+ Complexes with

Linear Excitation at 780 nm. The absorption spectra of
the full complexes: IR-phenNd(DBM)3 and IR-tpyNd(DBM)3
are shown in Figure 6 and exhibit the characteristic bands of
each of the molecular units. The regions below 350 nm show
the signals from the phenanthroline and terpyridine sections.
In the 300−400 nm range, the absorption features correspond
to the DBM protecting ligands. The features in the 400−500
nm range correspond to the higher excited states of the IR-780
dye. As projected, the prominent band around 780 nm is
preserved for the first excited state of the polymethine antenna.
We notice that this antenna band decreases its absorptivity (as
in the case of free ligands), most likely due to small changes in
the planarity of the polymethinic chain.87,102 As mentioned
previously, it is important that the symmetry of the excited
states is preserved since this is directly related to their

nonlinear absorption properties.47,48,67,68 These bands remain
present in both IR-phenNd(DBM)3 and IR-tpyNd(DBM)3 in
the region around 440 nm. In Figure 6, we include vertical
arrows to indicate the wavelength of the femtosecond two-
photon excitation pulses for the main experiments (865 nm,
see below). It should be noted that the maximum two-photon
absorbance of the IR-780 chromophore lies at 875 nm;67

however, this wavelength is not within the reach of our
Ti:Sapphire laser system. The two-photon absorption co-
efficient at 865 nm can be interpolated from the data in ref 67
to be ∼965 GM.
The emission spectra of the IR-phenNd(DBM)3 and IR-

tpyNd(DBM)3 complexes were recorded by exciting the
systems in the prominent 780 nm cyanine absorption (regular
linear optical excitation). These Nd3+ complexes exhibit a clear
emission band at 1050 nm. This band is typical of the emission
of this lanthanide ion and is shown in the insets of Figure 7.
For this ion, frequently, three emission bands are observed:
4F3/2 →

4I9/2 at 890 nm, 4F3/2 →
4I11/2 at 1050 nm, and 4F3/2

→ 4I13/2 at 1350 nm.9,10,89−91 We only observe the band
centered at 1050 nm since the first band is masked by the
emission of the antenna, and the third one is not within our
instrumental detection reach.
The excitation spectra for both complexes are shown in

Figure 7 and are obtained by detecting the sensitized
lanthanide emission at 1050 nm. The scaled excitation spectra
have a good match with the absorption profiles of the IR-phen
and IR-tpy ligands. As expected, the band associated with the
DBM ligand is absent. This shows that Nd3+ sensitization is

Figure 4. Absorption (red line), emission (blue line, λexc = 730 nm),
and excitation (black line, λem = 800 nm) spectra of (a) IR-phen and
(b) IR-tpy. Insets: Absorption (red line) and excitation (black line)
spectra in the 250−550 nm region showing the features of the higher
excited states of the polymethinic chain. The spectra were obtained at
room temperature in HPLC ethanol.

Figure 5. (a) Absorption spectra of HDBM (black line) and
Nd(DBM)3(H2O)2 (red line). (b) UV−vis−NIR absorption spec-
trum of a Nd(DBM)3(H2O)2 solution (red line) in the visible and
NIR region. Inset: emission of Nd(DBM)3(H2O)2 (blue line) upon
excitation at 800 nm. The spectra were obtained in HPLC ethanol.
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being carried out from the IR-780 fragment without any
participation of the DBM ligands. As can be seen, the
excitation in the region of the first cyaninic transition allows for
efficient linear sensitization of the lanthanide emission with the
advantage of the 274,000 M−1 cm−1 polymethinic absorption
coefficient at 780 nm. Different applications can be envisioned
from regular linear absorption with such significant absorptivity
in the NIR region.5,6,10

The sensitization of the Nd3+ emission across the
polymethine antenna spectrum is a crucial verification of the
potential of our biphotonic excitation scheme. Specifically, the
experiments in Figure 7 demonstrate that once the organic
antenna is excited to the higher states (Sn, n > 1), energy
migration events result in the formation of Nd3+-localized
excited states. Here, the photophysical first step would
correspond to internal conversion to form the antenna-
localized S1 state, and the second step, to energy transfer to
the Nd3+ center.
Photophysics of Nd3+−Polymethine Complexes upon

Biphotonic Excitation with 865 nm Femtosecond
Pulses. We detected the lanthanide ion emission after two-
photon excitation using 110 fs, 865 nm laser pulses. The
respective spectra are shown in Figure 8 for both complexes.
The emission spectra were obtained with photon energies

tuned below the first cyaninic transition as indicated with
arrows in Figure 6. These emissions exhibit the characteristic
band from the Nd3+ ion corresponding to the 4F3/2 →

4I11/2
transition at 1050 nm, which is also observed using linear
excitation as in Figure 7. To verify the biphotonic nature of the
865 nm excitation of both Nd3+ complexes, we studied the
dependence of the 1050 nm emitted intensity as a function of
the power of the femtosecond pulse train. The log−log plot of
the signal intensity as a function of the excitation average
power shows slopes of ∼2.3, which confirms that the
lanthanide emissions are produced by nonlinear absorption
by the cyanine antenna. The laser power interval we explored is
limited on the lower end by the detection of the Nd3+ emission
with our setup, and on the higher end, to the possibility of
inducing other nonlinear optical effects, including self-phase
modulation. Importantly, the control experiments of the
Nd(DBM)3 solutions without the antenna ligand did not
show the 1050 nm band.

Time-Resolved Spectroscopy and Fluorescence Ani-
sotropy Decays. The emission decays from the cyanine S1
states of the complexes were followed using the TCSPC
technique. Changes in the decays of these signals, comparing
the free ligands with the Nd3+ complexes, give a direct measure
of the energy transfer rates. The experiments were conducted
by irradiating the solutions with 405 nm, 200 ps pulses and
time-resolving the 800 nm antenna emissions in acetone
solutions at room temperature. These experiments were carried
out in acetone, while the previous Nd3+ emission experiments
were performed in ethanol due to the fact that in acetone there
is a more rapid formation of the complexes upon addition of
Nd3+ aliquots. The static spectra in acetone are included in the
Supporting Information. We carried out time-resolved

Figure 6. (a) Absorption spectra of IR-phenNd(DBM)3 (black line)
and sum of the spectra from OH-phen, IR-780, and Nd-
(DBM)3(H2O)2 (red line). Inset: absorption spectra of Nd-
(DBM)3(H2O)2 (blue line) and the IR-phen ligand (green line).
(b) Absorption spectra of IR-tpyNd(DBM)3 (black line) and the sum
of OH-tpy, IR-780, and Nd(DBM)3(H2O)2 (red line). Inset:
absorption spectra of Nd(DBM)3(H2O)2 (blue line) and the IR-tpy
ligand (green line). The spectra were obtained in HPLC ethanol. The
arrows indicate the wavelength for two-photon excitation used in our
experiments (see below).

Figure 7. (a, b) Absorption (red line), emission (blue line, λexc = 730
nm), and excitation (black line, λem = 1050 nm) spectra of IR-
phenNd(DBM)3 and IR-tpyNd(DBM)3. Insets: emission spectra
(orange line, λexc = 780 nm) from the Nd3+ ion in the complex after
baseline correction. The dashed black lines correspond to fits of the
bands to Gaussian functions. The spectra were obtained from HPLC
ethanol solutions.
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fluorometric titrations on 1.5 mL of 220 μM solutions of the
ligands with additions of up to 2.0 equiv of Nd(DBM)3(H2O)2
in 65 μL aliquots with 0.25 equiv each. As shown in Figure 9,
when the ligand solutions are combined with the Nd-
(DBM)3(H2O)2 aliquots, there are notable decreases in the
ligand S1 decay times, which are related with the formation of
IR-phenNd(DBM)3 and IR-tpyNd(DBM)3 complexes. The
most notable decrease in the S1 lifetime corresponds to the IR-
phen ligand, which goes from 1.2 ns to 300 ps. This
corresponds to an energy transfer rate of 2.5 × 109 s−1 and a
yield of 75%. On the other hand, for the IR-tpyNd(DBM)3
case, the transfer rate corresponds to 1.4 × 108 s−1 and an
efficiency of 15.4%.
The clear difference in energy transfer rates between IR-

tpyNd(DBM)3 and IR-phenNd(DBM)3 can be directly related
to the differences in their donor−acceptor distances. These
distances were estimated from models using the optimized
ligand geometries (see Computational Methods section) and
typical distances between the Nd3+ center and the ligand
nitrogen atoms of 2.6 Å.10 For the IR-phenNd(DBM)3 case,
the distance from the polymethine meso carbon to the Nd3+

center corresponds to 7.9 Å, while for the IR-tpyNd(DBM)3
case, this distance is longer due to the geometry of this ligand
and the extra phenyl group, giving a value of 11.9 Å. A
comparison of the experimental rates with a simple Förster
model is included in a latter section.

As a control experiment, we performed the same titration
using solutions of the IR-780 dye with the same addition of
Nd(DBM)3(H2O)2 aliquots. These solutions do not show any
changes in the cyanine decay times (see Figure S15). Tables S1
and S2 summarize the fluorescence lifetimes, yields, and energy
transfer rates observed for the polymethine ligands and Nd3+

complexes.
For our study, we considered it interesting to directly

observe the formation of the complexes with the Nd3+ centers
through their rotational diffusion properties, which can be
directly measured through time resolution of the ligand
emission anisotropies. The rotational diffusion of a molecule
is commonly quantified by the time constant θ of an
exponential fit to the fluorescence anisotropy decay trace r(t)

=
−
+

⊥

⊥
r t

I t I t

I t I t
( )

( ) ( )

( ) 2 ( )

where, I∥(t) is the time-dependent fluorescence intensity with
polarization parallel to the excitation beam, and I⊥(t) is the
respective intensity with perpendicular polarization. The θ
values correspond to the molecular rotational relaxation times.
The operating concept in these experiments is that, given the
larger hydrodynamic volumes of Nd3+ complexes, slower
rotational relaxation times, can be expected in comparison with
the free ligands. A summary of the anisotropy results is
included in Table S3, and the traces are shown in Figures S16−

Figure 8. Dependency of the Nd3+ emission intensity at 1050 nm as a
function of the 865 nm excitation average power in log−log plots for:
(a) IR-phenNd(DBM)3 and (b) IR-tpyNd(DBM)3 (black symbols).
The red lines indicate linear fits to the data. The respective baseline-
corrected emission spectra of the antennas of Nd3+ complexes upon
865 nm femtosecond excitation are included in the insets (black lines
with red symbols).

Figure 9. TCSPC traces after the addition of up to 2.0 equiv of
Nd(DBM)3(H2O)2: (a) for the IR-phen ligand and (b) for the IR-tpy
ligand (colored continuous lines as indicated). The measurements
were conducted in acetone at room temperature.
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S19. The anisotropy traces of the Nd3+ complexes showed
slower decays in comparison with the free ligands. The
rotational relaxation times θ changed from 260 ± 29 to 355 ±
37 ps in going from IR-phen to IR-phenNd(DBM)3, while for
the terpyridine case, the θ values go from 222 ± 16 to 290 ±
30 ps. These increases in the rotational relaxation times are
consistent with the presence of emitters with a larger
hydrodynamic volume in IR-phenNd(DBM)3 and IR-tpyNd-
(DBM)3 solutions in comparison with the ligand-only
solutions, highlighting the formation of the complexes.
Energy Transfer Mechanism in Nd3+ Polymethinic

Ligand Complexes. The energy transfer mechanism for the
complexes is proposed considering the coincidence of the
bands from the 4F5/2 ←

4I9/2 transition of the Nd3+ ion with
the lowest energy emission of the ligands, together with the
decrease in the cyanine S1 lifetimes, as shown in Figure 9.
From these results, it can be concluded that the energy transfer
takes place from the lowest-energy singlet state of the
polymethine chain. Furthermore, these kinds of electronic
transitions obey the Wigner−Witmer spin selection rules,
which dictate that the total spin should not change during the
transition.92−95 The antenna multiplicity in the donor state is
singlet, while the Nd3+ ion is has a quadruplet multiplicity, with
a total spin S = 3/2. From the Wigner−Witmer rule, upon
addition of the total spins ST = 0 + 3/2 = 3/2, the spin is
preserved at initial the final state of the transition. In addition
to the spin conservation rules, transitions in lanthanide ions are
governed by their own selection rules, which are derived from
the Judd−Ofelt theory.9,10,15
From this theory, the following selection rules are derived:

(a) |ΔJ| = |J−J′| = 2, 4, 6 and (b) |ΔJ| = |J−J′| = 0, 1 (for J = J′
= 0, the transition is forbidden), where J and J′ are the total
angular momenta of the initial and final states, respectively.
The |ΔJ| can be associated with two canonical energy transfer
mechanisms (multipolar and exchange mechanisms), where
(a) corresponds to the Förster mechanism and (b) to the
Dexter mechanism. Applying this selection rule for the
observed transitions in the Nd3+ cyaninic complexes, 4F3/2 →
4I11/2, we have |ΔJ| = |3/2−11/2| = 4.6,9,10,15,78 The energy
migration in these complexes is then consistent with a through-
space, Förster-type mechanism, which can be effective across
distances of the order of a few nanometers. In the case of IR-
phenNd(DBM)3 and IR-tpyNd(DBM)3, the center-to-center
distances are 7.9 and 11.9 Å, respectively, which can be
appropriate for a through-space type of mechanism as shown
below.
The proposed series of steps for the sensitization upon

simultaneous absorption of two photons is as follows: The
antenna reaches the second excited state by two-photon
absorption from the ground state: S2 ← S0; this is rapidly
followed by internal conversion to form the S1 fluorescent
state, where this kind of emissive singlet is considered in the
literature to have a small degree of intraligand charge transfer
character.96−102 Once this state is formed in the scale of a
picosecond,87 energy transfer can occur, forming the 4F5/2
lanthanide state in kinetic competition with the radiative and
nonradiative decay of the emissive cyanine state. After the
energy migration step, conversion within the higher states of
the Nd3+ ion occurs (4F5/2 → 4F3/2). Finally, spontaneous
emission from the metal center (4F3/2 →

4I11/2) produces the
band centered at 1050 nm. The energy transfer mechanism is
summarized in Scheme 2.

The assignment of cyanine S1 as donor states as opposed to
the respective triplet states is actually consistent with studies
by Chan, Cohen, Schuck, and co-workers who showed that the
IR-806 cyanine, which has the exact same conjugation pattern
as IR-780, has a T1 energy of ≈1.25 eV.103 This energy is
below that required to promote a transition into the 4F3/2 state,
which lies 1.42 eV above the ion ground state.
To further support and highlight the participation of the S1

cyanine state, the respective energy transfer efficiencies ηet
were estimated considering a Förster-type model.104 These
calculations used the appropriate experimental parameters: the
refractive index of acetone (1.357 at 800 nm), the IR-phen and
IR-tpy fluorescence lifetimes (τ = 1.2 and 1.3 ns, respectively),
the ligand S1 emission quantum yields (0.31 and 0.36), the
molar absorptivity of the 4F5/2 ←

4I9/2 transition of the Nd3+

ion (ε = 3.6 M−1 cm−1 at λ = 800 nm), and finally, the
distances between the polymethine antenna and the Nd3+ ion
in both complexes from models built using the optimized
ligand geometries and typical Nd3+ distances to the respective
ligand atoms (2.6 Å).10 In addition, following previous
contributions, we considered a value of 2/3 as the isotropic
limit of the orientation factor κ2 for a dipolar-type
interaction.2,5 Using these parameters, the Förster model
predicts an energy transfer efficiency of ηet = 99% for IR-
phenNd(DBM)3, and ηet = 63% for IR-tpyNd(DBM)3. As can
be seen, the Förster model overestimates the energy transfer
efficiencies in comparison with the values obtained from the
increase in the total S1 decay rates shown in Figure 9. These
differences are most likely related to the fact that the Förster
model can severely overestimate the electronic couplings for
distances of the order of 10 Å or less.105−107 Such deviations
arise from a failure of the point−dipole interaction assumed in
the Förster model. These calculations, however, are consistent
with the notion that the donor state in these cases corresponds
to the first cyaninic excited singlet.

Scheme 2. Energy Transfer Pathways for One- and Two-
Photon Absorption (1PA and 2PA) in IR-phenNd(DBM)3
and IR-tpyNd(DBM)3

a

aAccording to this mechanism, the energy transfer occurs from the
first locally excited singlet of the polymethine chain, toward the
respective “receiver” excited state of the Nd3+ ion. In the case of
simultaneous biphotonic sensitization with 865 nm pulses, the
originally formed state is the second excited singlet in the cyanine
antenna, a state with a large two-photon cross section.
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■ CONCLUSIONS
In the present contribution, we aimed to demonstrate the
possibility of a nonlinear optical scheme for sensitizing the
emission of a lanthanide center through a polymethine
antenna, where the electronic transitions were designed in a
specific way with regard to the presence of an intermediate
transition (near-resonant with the S1 state of cyanine), a
nonlinearly active state in the antenna (polymethinic S2), and
the respective energy alignment of the localized first singlet
state of the ligand with an appropriate receiver state in the
lanthanide ion. With this design, we synthesized two
chromophoric ligands capable of coordinating the Nd3+ center,
one based on a phenanthroline unit and the other on a phenyl-
terpyridine unit. The full ligands have important two-photon
absorption from the use of a polymethine chromophore
derived from IR-780 cyanine directly bonded to the
phenanthroline or phenyl-terpyridine units. We demonstrated
the sensitization of the 1050 nm lanthanide emission of the
respective Nd3+ complexes by NIR light upon one and
simultaneous two-photon absorptions. Importantly, these
complexes can be efficiently sensitized by regular linear
excitation directly into the highly absorbing S1 transition of
the antenna with 780 nm light, a transition with one of the
largest absorption coefficients of any chromophore.108−120 The
nonlinear optical excitation was achieved with 865 nm
femtosecond pulses, which produces the emission of the
Nd3+ ion, where the quadratic dependence typical of
simultaneous two-photon absorption was verified. The non-
linear optical absorption is promoted by the S2 and S1
symmetries and an energy gap of 1.3 eV, which allows for a
near-resonant step-like transition to the higher cyaninic state
with a single-photon energy slightly below the first
transition.47,48,67,68 The energy transfer from the antenna
chromophore to the Nd3+ ion occurs by a mechanism that is
allowed by the Wigner−Witmer selection rules and by those
derived from the Judd−Ofelt theory. The exciton migration
most likely occurs through a Förster-type mechanism.
Importantly, the phenanthroline-type ligand is approximately
five times more efficient for the sensitization due to a shorter
donor−acceptor distance in comparison with the phenyl-
terpyridine ligand. This result indicates that the energy transfer
step is highly sensitive to the distance of the Nd3+ center to the
polymethinic ligand. Two-photon sensitization of lanthanide
emission can have applications in areas that require high
localization of the excitation events and long emission
lifetimes, which in the case of Nd3+ have been observed to
be in the range from 100 to 800 μs.2,5,73,90,116,121,122
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